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ABSTRACT algorithms [3, 4]. These techniques compute the position of
Self-localization of sensor nodes has become a fundamentaddes, based only on the information communicated with the
requirement for many sensor networks applications. In thig@nchors. Recently, Monte-Carlo techniques have been pro-
paper, we propose an interval-based rings-overlappirg tecposed [5, 6]. These Bayesian filtering methods are based on
nique using the comparison of the received signal strengtAn approximate sequential Monte-Carlo method where parti-
indicators. The high performance of this method remains irtles are drawn to estimate node locations. They outperforms
the way that it avoids the estimation of the channel pathlosstatic localization since they take advantage of the teaipor
model. Compared to the guaranteed boxed localization bas&@rrelation of the mobile node trajectory to improve thetacc
on connectivity measurements, the proposed method istrobu@cy of the localization.

under irregular rad_io_ propagati_on patterns. Simulaticuite In our previous work [7], we proposed a Guaranteed
corroborate the efficiency of this method in terms of acourac goxed Localization (GBL) technique based on interval anal-
and computation time. ysis. It deals with intervals as a new kind of numbers where

Index Terms— Mobile sensor networks, interval analy- all arithmetic and set operations can be performed [8, 9, 10]

Sis, m0b|||ty model, RSSI Comparison’ ring Over|apping The GBL method consists of USing a dynamic mOblIlty model
that propagates the location incertitude in an intervaifor

The localization problem is then defined as a Constraint Sat-
1. INTRODUCTION . ) . .
isfaction Problem (CSP) and the Waltz algorithm [11] is used

Mobile Ad hoc sensor NETworks (MANETS) have currently N Order to solve the CSP where both observations and propa-
become a popular and challenging research field. They af@tion equations define the constraints. In [7], the loasitn
composed of a distributed collection of smart sensors, eadf Performed using connectivity measurements based on the
of which has sensing, computation and communication cap@2thloss model. It consists of a radio propagation modé tha
bilities. The major limitations of sensor networks are thei Predicts the distance traveled by the signal given theainiti
limited memory resources and energy reserve. The sensd?8d the received signal strengths. In this paper, we propose
batteries are in fact not renewable and have consequemtly li @ enhanced interval-based method using the comparison of
ited lifetimes. Many applications involve mobile sensarsts ~ the Received Signal Strength Indicators (RSSI). It perform
as environment monitoring and target tracking [1]. Aimdkt a the localization process using rings overlapping [12]. One

applications require information about the geographimee# essential advantage of the method is that it overcomes the
tions of the sensors. high correlation of the performance of the GBL method to

Location estimation is an important task in many innova-the communication range value. Using RSSI comparison, the
tive applications of mobile sensor networks. For this psgpo Method does not need the knowledge of the channel pathloss
many localization algorithms have been proposed. EquippinParameters. Beside its guaranteed low cost aspect, the pro-
each sensor with localization hardware such as GPS reprBoSed algorithm yields a robust range-free localizatiotenn
sents a high energy consuming and expensive solution [2]. Alrégular radio propagation patterns.
alternative solution consists of providing some sensoes (d  The paper is organized as follows. In Section 2, we
notedanchorg with GPS and localizing other sensor nodesbriefly introduce the interval analysis theory. In Sectiow8
using exchanged information with anchors. Many anchordescribe the proposed model-free localization technique i
based approaches have been proposed in literature. Some BXANETSs. Section 4 reports simulation results while Section
isting works propose to perform successive static locitima 5 concludes the paper.



2. INTERVAL ANALYSIS THEORY T2

T2 - (£1(l=D)

Interval analysis is a broad field that treats an interval as a ) /[f_}\\ 1| (F*13=D

new kind of numbers [8, 9]. Since its introduction, the inter ] /f_\\ f e

val approach has undergone a rapid and wide development. =

It is based on the simple idea of enclosing a set of real num- 0 1T -t 1 2 %1

bers with an interval. The purpose of interval analysis is to 1 T~ s

provide guaranteed solutions to non-linear optimizaticbp (f] B

lems. Its guaranteed aspect consists of bounding errors and

uncertainties on computed quantities. Fig. 1. Inclusion functions and wrapping effect.

2.1. Introduction to intervals o]+ ) =z +y,7+7), (7)
. o [z] - [y] = [z -7,7 -y, 8)

An interval, denotedz], is defined by a closed bounded set . o

of real numbers as follows, [o] + [y] = [min(z + y, 27,7 %y, 7 +7), 9)

W =le7 = freR\z<o<m} (@) | eerpasr el

wherez andZ are lower and upper bounds of the interfgl 2] Z i] it z>0orz<0, (10)

An interval could also be regarded as a humber represented 1

by the ordered pair of its endpointsandz. The width of an (2] + [y] = [a] * Wl (11)

interval is defined asr([z]) = T— z. A box, denotedx], is a

multi-dimensional interval enclosing vectors. It is defir®y Another interesting tool in interval analysis is the inclu-

the Cartesian product ef real intervals as follows, sion function. Consider a functiofi defined fromIR" to

_ _ — — IR™. The interval functior]f] from IR™ to IR™ is an inclu-

(] = [z1] x - X [wn] = [z, Ta] X o X [z, T]. - (2)

sion function off if

The width of the box is the largest width of all its intervals. viz] € R", f([z]) C [F]([z]). (12)
Consider a boXx] of IR?. The area ofz] is the product of B

the widthes of its two intervals as shown in the following, ~ The purpose of the inclusion function is to provide encleser
for f([z]). Itis obvious that a function can have an infinite

A([2]) = w([za]) * w(laz]) = (1 —21) * (T2 — 22)- B)  humber of inclusion functions. The minimal inclusion func-

Aninterval has a dual nature as both a number and a set §Pn ©f /. denoted £}, is the smallest box that encloses it.

real numbers. Consequently, all arithmetic and set omesiti Let f be defined fromiR? to IR? by flx) = ( L1+ T2 )
are developed for intervals, for instance the inclusiaj (he T2
intersection (1), the interval unionl(), the addition {), the  \wherex = ( o1 ) z1 € [0,1] andz, € [—1,1]. Figure 1
substraction{), the multiplication §), the division ¢) and Z2

others. If[z] = [z,Z] and[y] = [y, 7] then the intersection
of [z] and[y] is empty,[z] N [y] = 0, if T < yorz > 7.
Otherwise, the intersection is an interval defined as falow

shows two inclusion functions, one of them being the mini-
mal inclusion function off. We can see that the area of the

enclosing box is higher than the exact solution. This is the
so-calledwrapping effect

[z] N [y] = [max(z, y), min(Z,7)]. (4)

The union of two intervals is not, in general, an interval. We2.2. Waltz contractor
define the interval unionl as the smallest interval containing

. Interval analysis provides powerful tools to resolve Coaiat
the set union as follows,

Satisfaction Problems (CSPs), such as non-linear optimiza
[z] U [y] = [[#] U [y]] = [min(z,y), max(Z,y)]. (5) tion problems. A CSP consists of a set of constrajits =
o ) {1,...,m} defined fromR" to IR. Satisfying the constraints
Let[z] = [1, 3] and[y] = [5,7]. The interval union ofz] and  consists of finding the set of solutioswhereasS = {z €
[y] is thus given byiz] LI [y] = [[1,3] U [5,7]] = [1,7]. R™ \ fi(x) = 0,1 < i < m}. Resolving the CSP in the in-
In the same manner as for the set operations, the elemegrval framework consists of finding the minimal biax| that
tary arithmetic operations can be characterized as follows  contains the solution s&. The power of interval arithmetics
[z] % [y] = {zxy \ z € [z] andy € [y]} (6) lies in their capacity.to provide riggrous boxgs tt_wat erelos
the ranges of operations and functions. Applied in CSP res-
wherex € {+,—,*,+}. The interval arithmetics are thus olutions, they yield interval results that contain the ensiet
defined individually in the following equations, of possible values of the solution.



The main shortcoming of the interval analysis tools re-
mains in their incapacity to enclose the solution set with th
minimal box. Consequently, a major focus of interval anialys >
turned to develop practical interval algorithms that caotr
the solutions. A contractor is, thus, an algorithm that owe
as possible the bounds of the solution box. Many contrac-
tors have been proposed in literature [9, 10]. One forward- Z,
backward technique is the Waltz contractor [11]. It corssiét
a simple algorithm that propagates iteratively the coirgisa
over a prior box, without any prior order, until no more con- Fig. 2. Ring generation using RSSI comparison.
traction is performed. It is worth noting that the Waltz con-
tractor is an efficient low-cost algorithm. However, beimg a 3.2. Rings generation using RSSI comparison

iterative method, it may yield local minimum. The general idea of our technique is to overlap rings cedtere

at anchors. The rings are generated by comparison between

3. BOXED LOCALIZATION BASED ON RSSI the RSSI signals an anchor sends to the mobile node and the
COMPARISON remaining anchors in its vicinity. This technique assumes

that with the increase of the distance between a sender and

A sensor field consists of two types of sensorsdesandan- & receiver, the signal strength monotonically decreasks. T

chors Nodes are sensors with unknown positions, wherea§ner (resp. outer) radius of a ring centered at an anchor is
anchors are equipped with GPS or other positioning systemgq,e maximal (resp._ minimal) d_|stance from this anchor to the
and thus know their exact locations. The nodes and the ag€t Of anchors which RSSI signals are higher (resp. lower)
chors are able to move uncontrollably in the network. Théhan the RSSI received by the mobile node to be localized.
problem is to estimate the nodes locations given the pasitio SUPPOSe we have three anchdfs Y and Z and one mo-

of the anchors and some measurements information. In tHil€ nodeS. If RSSTyy < RSSIxs < RSSIxz then
following, we will consider the localization of one mobile 9xz < dxs < dxy. Thus, the node5 lies inside the
node, without loss of generality, since each node localizes N9 defined bydyz anddxy as inner and outer radii re-

dependently to others. The same algorithm is implemente8P€ctively (see Figure 2). More generally, the ring number
on the remaining mobile nodes. i € {1,..., M}, is centered at the anchband has; and R;

as inner and outer radii defined as follows,
Ty = Inan?gi{ dij | RSSLJ Z RSSIZ }
Ri = minj#i{ dij | RSSIU S RSSL }

In mobile node localization, we are interested in estintatin ywhere M is the number of anchorg,; is the Euclidean dis-
the location of the node at ever time-step. Besides the meggnce between the anchoand the anchoy, RSSI,; is the
surements to anchors, the estimation problem takes ady@ntasignal strength sent by the anchioand received byj and

of the motion of the node to improve the accuracy. Our goalis 557, is the strength of the signal sent by the anchand

to provide a mobility model that is general enough to accomreceived by the unknown-position mobile node. An illustra-

modate a large number of real applications. The latter pgint tjon is shown in Figure 3. The observation equations are thus
motivated by many definitions in literature about simple mo-set py the following,

bility models [13]. In our algorithm, we assume that a node ivo ivo 5
is unaware of its moving speed and direction. The only avail- " = (@1(t) = a1)” + (22(t) —a3)” < R, ie I (19)
able prior information is that its _s_peed is I_ess_ than a makima\/vherea?l andaj, are the coordinates of theth anchor and
velocity, denoted,,,... The mobility equation is as follows, 7 js the indices set of all anchors involved in the localizatio

(21(t) — 21 (t — 1))% + (22(t) — m2(t — 1))2 <22, (13) Process.I could correspond td1, ..., M}, which is the set

of all anchors in the network, as well as to the set of anchors

wherez; andxs are the coordinates of the mobile node. So,within the communication range of the node.
if (t — 1) is the punctual position of the node at time 1,
the current squtip!m(t) Is pontained in the disk ‘Fe”‘efe_‘?' ON 3.3, RSSI comparison based localization
the previous position having,,., as radius. This mobility
model is in fact a generic model that does not suppose arijhe localization problem is defined as a Constraint Satisfac
prior knowledge of the direction and the speed variation otion Problem (CSP) where the mobility model is used to prop-
the node. More details about the mobility of the node couldhgate the previous position to the current time. The main
be added to refine the motion model, yielding more accuracidea of this technique is to define estimated locations as two
in the localization process. dimensional boxes, denotéd]. The prior model assuming

3.1. Mobility model of the node (14)



Fig. 4. Interval-based localization using RSSI comparison.

Fig. 3. Definition of the inner and outer radii of aring. ~ (16) yields the following,
aa](t = 1) + [=[ba](¢ I (18)
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that sensors move with a maximal velocity,,, is consis- ]
tently incorporated with the measurement equations. In an (1]
interval framework, the problem consists of propagatirgy th [22]

]

C

)=

) =1

) = [w2](t = 1) + [ [ba] (¢ , (20)
previous box using the motion equation and then of contract- 7 — — 3
ing the resulting box with the Waltz algorithm using the ob- ) = Ve =[]0 ~ o) = DI, (1)
servation rings as constraints. The motion equation is ééfin while equation (17) gives the following primitives,
as follows,

, ) ) [21](t) = [z1](8) N [a} + [ 1)) U )],  (22)

([xl](t) —[m](t—1))" + ([x2](t) —[w2](t—1))" = [07%(1{%]) be(t) = [\/Rf — [ad — [z2) (1)), (23)
while measurements are given by [22](t) = [22](t) N [ag + [_[bzé](t) U [bé](t)]], (24)
([21)(t) — a1)® + ([22)(t) — a3)® = [}, R7], i€l (17) [b5](t) = [\/R? = laf = [z1](1)]?]- (25)

An illustration of the method is shown in Figure 4. It shows
the smallest box that could be obtained with our localizatio
technique. It is worth noting that we are considering, far-si
plicity, a punctual previous position.

In order to reduce the computational cost of the localiza-
tion process, the mobility and observation models could be

The localization problem, put in an interval form, is then gpproximated. The disk equations are thus relaxed to square
SOlVed asaCSP deﬁned by the set Of Constl‘aintS abOVe. SO@quations_ The first approximated scheme consists of a par-

ing a CSP using intervals consists of finding the minimal b0>€ially approximated one where the mobility equation is re-
that satisfies all the constraints. Propagating boxes albw |axed as follows,

guaranteed estimation of the node position using only few [21](t) = [21](t — 1) + [~ Vmazs Vmas]
parameters. The Waltz algorithm provides a solution of the { [22] (1) = [£2](t — 1) + [~Vmaz, Vrmaz]
CSP. ltis a simple technigue based on propagating itetative ] )
all constraints without any prior order until no contractis ~ 1h€ second scheme consists of a fully approximated one

possible. This method allows to find local minimal boxes withWhere both the mobility equation and the observations are re
an effective time cost. laxed. The observation equations are thus written as fellow

where[z1](t) and[z2](¢) are the coordinate intervals of the

mobile node at time, ! anda} are the coordinates of the

i-th anchor,r; and R; are the radii of the ring centered on

the anchor andI is the set of indices of the anchors used to
localize the mobile node at tine

(26)

Each localization step is divided into a propagation phase { [21](t) = [a](£) N [all + [ Ry, Ril] iel. (27)
and a correction phase. In the propagation phase, the node [22](t) = [x2](t) N [a5 + [-Ri, Ri]]

uses its mobility model to propagate its previous position,The relaxed schemes yield larger boxes than the one obtained
yielding a prior position box. In the correction phase, bothwith the correct equations.

measurements and mobility equation are incorporated in the

Waltz algorithm in order to contract the prior box. The in- 4. SIMULATIONS

terval equations (16) and (17) are reformulated as primitiv

equations where each variable is defined as a function of alh order to evaluate the effectiveness of our algorithm on
others, in order to be implemented in the contractor. Equati MANETS, we moved a mobile node in B00m x 100m
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Fig. 5. Ratios of areas of estimated boxes: Case 2 over Cadeg. 6. Estimated boxes obtained with our method (Method
1 in solid line and Case 3 over Case 2 in dashed line. 1) and the guaranteed boxed method (Method 2).
25 ‘ ‘ ; ;
square area ovel00s. The node trajectory is composed of
two sinusoids with an abrupt direction change as shown in
Figure 6. The maximal velocity of the mobile node is equal ~ 2|
t02.0343m.s~ 1. We also deployed anchors in the network in T@
such away that at least three anchors are within the communi- £, |
cation range of the mobile node at every time step. In Section 8
3, we have considered two approximated schemes in addition 3
to the original proposed method. The three proposed tech- “g 1
nigues are denoted as follows: Case 1 (fully approximated =
scheme), Case 2 (partially approximated scheme) and Case & ;|
3 (correct models). To evaluate the different methods, we
define the error as the difference between the real positions

and the center of the computed location boxes. The computa- 9, 20 20 60 80 100
tion times needed to accomplish the localization for theehr Time (s)

cases are respectivelyl520s, 0.8730s and1.4510s whereas  Fig. 7. Ratios of boxes areas obtained with our method over

the average errors are respectivély665m, 0.9346m and  the areas obtained with the guaranteed boxed method.
0.9316m. Note that only anchors within the communication

range of the node are taken into consideration in the localbne moving node since each node self-localizes indepen-
ization process. Figure 5 shows the ratio of the areas of théently from other nodes using only anchors information. In
boxes obtained in Case 2 over the areas obtained in Caseal100m x 100m area, we move the mobile node on a trajec-
in solid line, and the ratio of the areas obtained in Case 8ry composed of two sinusoids ovéd0s with a maximal
over the areas obtained in Case 2 in dashed line. It is obvirelocity equal t02.035m.s~1. The sensing range is set to
ous that the relaxation of the observation model yields muchOm. Figure 6 illustrates the estimated boxes obtained with
larger boxes; while the approximation of the mobility modelour method (Method 1) compared to the boxes computed
affects slightly the localization process in our examplenC  with the GBL method (Method 2). As expected, the boxes
sequently, we will use Case 2 of the method in the followingin our method are smaller than the one resulting from the
simulations. In the following, to validate the performascé  GBL technique. The average error obtained in our method
our method, we compared it to the GBL technique that uses equal t00.9346m while it is equal t01.7775m with the
connectivity measurements to anchors [7]. We also compare@dBL method. The computation times are equad360s

our method to a Monte-Carlo based technique that uses tland0.7020s in Method 1 and Method 2 respectively. In both

RSSI-comparison as observation model. methods, only the anchors within the communication range
of the node are used to generate observation information.
4.1. Comparison to the GBL method Despite the small increase of the computational time, the

model-free RSSI-based method reduces the average boxes
In this section, a comparison of our method to the Guaranarea t011.9574m? while it is equal t035.8355m? in the
teed Boxed Localization (GBL) proposed in [7] is performed.GBL method. Figure 7 shows the ratios of the areas of the
Without loss of generality, we consider the localization ofboxes obtained in our method over those obtained in the GBL
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localization consists of a robust and non parameterizdd tec
nique with a small computational time. Simulation results
show that our method compares well to the GBL technique
in terms of accuracy. It outperforms the Monte-Carlo based
techniques in performance and computational costs, as well
In future works, we will deal with inaccurate environment
and sensor failure problems. In addition, we will make use of
the information exchanged between mobile nodes to improve
the localization process.

[1]

(2]

Fig. 8. Comparison of our method (BL) to a Monte-Carlo

based method (MC).

method. The average ratio, equalt8442, corroborates the
efficiency of our method.

4.2. Comparison to a Monte-Carlo based method

(3]

[4]

The Monte-Carlo localization boxed method proposed in [6]
consists of two phases: a prediction phase and an update
phase. In the prediction phase, a square region is created u?s]

ing approximated mobility and connectivity models. Pdetic

are then generated within this box. In the update phase, cor-
rect measurements are incorporated to filter and update dat%]

Only particles satisfying the correct constraints are ptase

The process is iterated until a certain number of partides i

kept. The observation model implemented consists of con-

nectivity measurements. In this section, we are defining a
Monte-Carlo based method that uses rings overlapping for
observation. For this purpose, we modified the Monte-CarI0[8]
localization boxed method in order to be implemented by
our observation model. The computation time needed by the[g]

Monte-Carlo method is equal t#6.6990s with 1.3426m as

average error. Figure 8 shows the particles obtained wéh t

Monte-Carlo method. The number of particles is seiGolt

Mo

shows the boxes obtained with our method, as well. Besides

the important gain in computation time, the Monte-Carlo

method requires the storage of at Ie&sparticles every time

(11]

step while our method only needs to save the bounds of the

coordinates describing one estimated box.

5. CONCLUSION

(12]

In this paper, we presented an interval-based localizatioli3]
method using RSSI-comparison of exchanged signals be-
tween anchors and between anchors and mobile nodes. The
proposed method generates small intersection area and thus
accurate location estimation. With the RSSI comparisaom, th
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