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ABSTRACT
Self-localization of sensor nodes has become a fundamental
requirement for many sensor networks applications. In this
paper, we propose an interval-based rings-overlapping tech-
nique using the comparison of the received signal strength
indicators. The high performance of this method remains in
the way that it avoids the estimation of the channel pathloss
model. Compared to the guaranteed boxed localization based
on connectivity measurements, the proposed method is robust
under irregular radio propagation patterns. Simulation results
corroborate the efficiency of this method in terms of accuracy
and computation time.

Index Terms— Mobile sensor networks, interval analy-
sis, mobility model, RSSI comparison, ring overlapping

1. INTRODUCTION

Mobile Ad hoc sensor NETworks (MANETs) have currently
become a popular and challenging research field. They are
composed of a distributed collection of smart sensors, each
of which has sensing, computation and communication capa-
bilities. The major limitations of sensor networks are their
limited memory resources and energy reserve. The sensors
batteries are in fact not renewable and have consequently lim-
ited lifetimes. Many applications involve mobile sensors such
as environment monitoring and target tracking [1]. Almost all
applications require information about the geographical loca-
tions of the sensors.

Location estimation is an important task in many innova-
tive applications of mobile sensor networks. For this purpose,
many localization algorithms have been proposed. Equipping
each sensor with localization hardware such as GPS repre-
sents a high energy consuming and expensive solution [2]. An
alternative solution consists of providing some sensors (de-
notedanchors) with GPS and localizing other sensor nodes
using exchanged information with anchors. Many anchor-
based approaches have been proposed in literature. Some ex-
isting works propose to perform successive static localization

algorithms [3, 4]. These techniques compute the position of
nodes, based only on the information communicated with the
anchors. Recently, Monte-Carlo techniques have been pro-
posed [5, 6]. These Bayesian filtering methods are based on
an approximate sequential Monte-Carlo method where parti-
cles are drawn to estimate node locations. They outperforms
static localization since they take advantage of the temporal
correlation of the mobile node trajectory to improve the accu-
racy of the localization.

In our previous work [7], we proposed a Guaranteed
Boxed Localization (GBL) technique based on interval anal-
ysis. It deals with intervals as a new kind of numbers where
all arithmetic and set operations can be performed [8, 9, 10].
The GBL method consists of using a dynamic mobility model
that propagates the location incertitude in an interval form.
The localization problem is then defined as a Constraint Sat-
isfaction Problem (CSP) and the Waltz algorithm [11] is used
in order to solve the CSP where both observations and propa-
gation equations define the constraints. In [7], the localization
is performed using connectivity measurements based on the
pathloss model. It consists of a radio propagation model that
predicts the distance traveled by the signal given the initial
and the received signal strengths. In this paper, we propose
an enhanced interval-based method using the comparison of
the Received Signal Strength Indicators (RSSI). It performs
the localization process using rings overlapping [12]. One
essential advantage of the method is that it overcomes the
high correlation of the performance of the GBL method to
the communication range value. Using RSSI comparison, the
method does not need the knowledge of the channel pathloss
parameters. Beside its guaranteed low cost aspect, the pro-
posed algorithm yields a robust range-free localization under
irregular radio propagation patterns.

The paper is organized as follows. In Section 2, we
briefly introduce the interval analysis theory. In Section 3, we
describe the proposed model-free localization technique in
MANETs. Section 4 reports simulation results while Section
5 concludes the paper.



2. INTERVAL ANALYSIS THEORY

Interval analysis is a broad field that treats an interval as a
new kind of numbers [8, 9]. Since its introduction, the inter-
val approach has undergone a rapid and wide development.
It is based on the simple idea of enclosing a set of real num-
bers with an interval. The purpose of interval analysis is to
provide guaranteed solutions to non-linear optimization prob-
lems. Its guaranteed aspect consists of bounding errors and
uncertainties on computed quantities.

2.1. Introduction to intervals

An interval, denoted[x], is defined by a closed bounded set
of real numbers as follows,

[x] = [x, x] = {x ∈ IR \ x ≤ x ≤ x} (1)

wherex andx are lower and upper bounds of the interval[x].
An interval could also be regarded as a number represented
by the ordered pair of its endpointsx andx. The width of an
interval is defined asw([x]) = x−x. A box, denoted[x], is a
multi-dimensional interval enclosing vectors. It is defined by
the Cartesian product ofn real intervals as follows,

[x] = [x1] × · · · × [xn] = [x
1
, x1] × · · · × [xn, xn]. (2)

The width of the box is the largest width of all its intervals.
Consider a box[x] of IR2. The area of[x] is the product of
the widthes of its two intervals as shown in the following,A([x]) = w([x1]) ∗w([x2]) = (x1 − x

1
) ∗ (x2 − x

2
). (3)

An interval has a dual nature as both a number and a set of
real numbers. Consequently, all arithmetic and set operations
are developed for intervals, for instance the inclusion (⊂), the
intersection (∩), the interval union (⊔), the addition (+), the
substraction (−), the multiplication (∗), the division (÷) and
others. If[x] = [x, x] and[y] = [y, y] then the intersection
of [x] and [y] is empty,[x] ∩ [y] = ∅, if x < y or x > y.
Otherwise, the intersection is an interval defined as follows,

[x] ∩ [y] = [max(x, y), min(x, y)]. (4)

The union of two intervals is not, in general, an interval. We
define the interval union⊔ as the smallest interval containing
the set union as follows,

[x] ⊔ [y] = [[x] ∪ [y]] = [min(x, y), max(x, y)]. (5)

Let [x] = [1, 3] and[y] = [5, 7]. The interval union of[x] and
[y] is thus given by[x] ⊔ [y] = [[1, 3] ∪ [5, 7]] = [1, 7].

In the same manner as for the set operations, the elemen-
tary arithmetic operations can be characterized as follows,

[x] ⋆ [y] = {x ⋆ y \ x ∈ [x] andy ∈ [y]} (6)

where⋆ ∈ {+,−, ∗,÷}. The interval arithmetics are thus
defined individually in the following equations,
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Fig. 1. Inclusion functions and wrapping effect.

[x] + [y] = [x + y, x + y], (7)

[x] − [y] = [x − y, x − y], (8)

[x] ∗ [y] = [min(x ∗ y, x ∗ y, x ∗ y, x ∗ y),

max(x ∗ y, x ∗ y, x ∗ y, x ∗ y)],
(9)

1

[x]
= [

1

x
,
1

x
] if x > 0 or x < 0, (10)

[x] ÷ [y] = [x] ∗
1

[y]
. (11)

Another interesting tool in interval analysis is the inclu-
sion function. Consider a functionf defined fromIRn to
IRm. The interval function[f ] from IRn to IRm is an inclu-
sion function off if

∀[x] ∈ IRn, f([x]) ⊆ [f ]([x]). (12)

The purpose of the inclusion function is to provide enclosers
for f([x]). It is obvious that a function can have an infinite
number of inclusion functions. The minimal inclusion func-
tion of f , denoted[f∗], is the smallest box that encloses it.

Let f be defined fromIR2 to IR2 by f(x) =

(

x1 + x2

x2

)

wherex =

(

x1

x2

)

, x1 ∈ [0, 1] andx2 ∈ [−1, 1]. Figure 1

shows two inclusion functions, one of them being the mini-
mal inclusion function off . We can see that the area of the
enclosing box is higher than the exact solution. This is the
so-calledwrapping effect.

2.2. Waltz contractor

Interval analysis provides powerful tools to resolve Constraint
Satisfaction Problems (CSPs), such as non-linear optimiza-
tion problems. A CSP consists of a set of constraintsfi, i =
{1, ..., m} defined fromIRn to IR. Satisfying the constraints
consists of finding the set of solutionsS whereasS = {x ∈
IRn \ fi(x) = 0, 1 ≤ i ≤ m}. Resolving the CSP in the in-
terval framework consists of finding the minimal box[x∗] that
contains the solution setS. The power of interval arithmetics
lies in their capacity to provide rigorous boxes that enclose
the ranges of operations and functions. Applied in CSP res-
olutions, they yield interval results that contain the entire set
of possible values of the solution.



The main shortcoming of the interval analysis tools re-
mains in their incapacity to enclose the solution set with the
minimal box. Consequently, a major focus of interval analysis
turned to develop practical interval algorithms that contract
the solutions. A contractor is, thus, an algorithm that narrows
as possible the bounds of the solution box. Many contrac-
tors have been proposed in literature [9, 10]. One forward-
backward technique is the Waltz contractor [11]. It consists of
a simple algorithm that propagates iteratively the constraints
over a prior box, without any prior order, until no more con-
traction is performed. It is worth noting that the Waltz con-
tractor is an efficient low-cost algorithm. However, being an
iterative method, it may yield local minimum.

3. BOXED LOCALIZATION BASED ON RSSI
COMPARISON

A sensor field consists of two types of sensors:nodesandan-
chors. Nodes are sensors with unknown positions, whereas
anchors are equipped with GPS or other positioning systems,
and thus know their exact locations. The nodes and the an-
chors are able to move uncontrollably in the network. The
problem is to estimate the nodes locations given the positions
of the anchors and some measurements information. In the
following, we will consider the localization of one mobile
node, without loss of generality, since each node localizesin-
dependently to others. The same algorithm is implemented
on the remaining mobile nodes.

3.1. Mobility model of the node

In mobile node localization, we are interested in estimating
the location of the node at ever time-step. Besides the mea-
surements to anchors, the estimation problem takes advantage
of the motion of the node to improve the accuracy. Our goal is
to provide a mobility model that is general enough to accom-
modate a large number of real applications. The latter pointis
motivated by many definitions in literature about simple mo-
bility models [13]. In our algorithm, we assume that a node
is unaware of its moving speed and direction. The only avail-
able prior information is that its speed is less than a maximal
velocity, denotedvmax. The mobility equation is as follows,

(x1(t) − x1(t − 1))2 + (x2(t) − x2(t − 1))2 ≤ v2

max (13)

wherex1 andx2 are the coordinates of the mobile node. So,
if x(t − 1) is the punctual position of the node at timet − 1,
the current solutionx(t) is contained in the disk centered on
the previous position havingvmax as radius. This mobility
model is in fact a generic model that does not suppose any
prior knowledge of the direction and the speed variation of
the node. More details about the mobility of the node could
be added to refine the motion model, yielding more accuracy
in the localization process.
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Fig. 2. Ring generation using RSSI comparison.

3.2. Rings generation using RSSI comparison

The general idea of our technique is to overlap rings centered
at anchors. The rings are generated by comparison between
the RSSI signals an anchor sends to the mobile node and the
remaining anchors in its vicinity. This technique assumes
that with the increase of the distance between a sender and
a receiver, the signal strength monotonically decreases. The
inner (resp. outer) radius of a ring centered at an anchor is
the maximal (resp. minimal) distance from this anchor to the
set of anchors which RSSI signals are higher (resp. lower)
than the RSSI received by the mobile node to be localized.
Suppose we have three anchorsX , Y and Z and one mo-
bile nodeS. If RSSIXY ≤ RSSIXS ≤ RSSIXZ then
dXZ ≤ dXS ≤ dXY . Thus, the nodeS lies inside the
ring defined bydXZ and dXY as inner and outer radii re-
spectively (see Figure 2). More generally, the ring numberi,
i ∈ {1, ..., M}, is centered at the anchori and hasri andRi

as inner and outer radii defined as follows,
{

ri = maxj 6=i{ dij | RSSIij ≥ RSSIi }
Ri = minj 6=i{ dij | RSSIij ≤ RSSIi }

(14)

whereM is the number of anchors,dij is the Euclidean dis-
tance between the anchori and the anchorj, RSSIij is the
signal strength sent by the anchori and received byj and
RSSIi is the strength of the signal sent by the anchori and
received by the unknown-position mobile node. An illustra-
tion is shown in Figure 3. The observation equations are thus
set by the following,

r2

i ≤ (x1(t) − ai
1
)2 + (x2(t) − ai

2
)2 ≤ R2

i , i ∈ I (15)

whereai
1

andai
2

are the coordinates of thei-th anchor and
I is the indices set of all anchors involved in the localization
process.I could correspond to{1, ..., M}, which is the set
of all anchors in the network, as well as to the set of anchors
within the communication range of the node.

3.3. RSSI comparison based localization

The localization problem is defined as a Constraint Satisfac-
tion Problem (CSP) where the mobility model is used to prop-
agate the previous position to the current time. The main
idea of this technique is to define estimated locations as two-
dimensional boxes, denoted[x]. The prior model assuming
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Fig. 3. Definition of the inner and outer radii of a ring.

that sensors move with a maximal velocityvmax is consis-
tently incorporated with the measurement equations. In an
interval framework, the problem consists of propagating the
previous box using the motion equation and then of contract-
ing the resulting box with the Waltz algorithm using the ob-
servation rings as constraints. The motion equation is defined
as follows,

([x1](t)− [x1](t−1))2 +([x2](t)− [x2](t−1))2 = [0, v2

max]
(16)

while measurements are given by

([x1](t) − ai
1
)2 + ([x2](t) − ai

2
)2 = [r2

i , R2

i ], i ∈ I (17)

where[x1](t) and [x2](t) are the coordinate intervals of the
mobile node at timet, ai

1
andai

2
are the coordinates of the

i-th anchor,ri andRi are the radii of the ring centered on
the anchori andI is the set of indices of the anchors used to
localize the mobile node at timet.

The localization problem, put in an interval form, is then
solved as a CSP defined by the set of constraints above. Solv-
ing a CSP using intervals consists of finding the minimal box
that satisfies all the constraints. Propagating boxes allows a
guaranteed estimation of the node position using only few
parameters. The Waltz algorithm provides a solution of the
CSP. It is a simple technique based on propagating iteratively
all constraints without any prior order until no contraction is
possible. This method allows to find local minimal boxes with
an effective time cost.

Each localization step is divided into a propagation phase
and a correction phase. In the propagation phase, the node
uses its mobility model to propagate its previous position,
yielding a prior position box. In the correction phase, both
measurements and mobility equation are incorporated in the
Waltz algorithm in order to contract the prior box. The in-
terval equations (16) and (17) are reformulated as primitive
equations where each variable is defined as a function of all
others, in order to be implemented in the contractor. Equation
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vmax

Fig. 4. Interval-based localization using RSSI comparison.

(16) yields the following,

[x1](t) = [x1](t − 1) + [−[b1](t) ⊔ [b1](t)], (18)

[b1](t) = [
√

v2
max − [[x2](t) − [x2](t − 1)]2], (19)

[x2](t) = [x2](t − 1) + [−[b2](t) ⊔ [b2](t)], (20)

[b2](t) = [
√

v2
max − [[x1](t) − [x1](t − 1)]2], (21)

while equation (17) gives the following primitives,

[x1](t) = [x1](t) ∩ [ai
1

+ [−[bi
1
](t) ⊔ [bi

1
](t)]], (22)

[bi
1
](t) = [

√

R2

i − [ai
2
− [x2](t)]2], (23)

[x2](t) = [x2](t) ∩ [ai
2

+ [−[bi
2
](t) ⊔ [bi

2
](t)]], (24)

[bi
2
](t) = [

√

R2

i − [ai
1
− [x1](t)]2]. (25)

An illustration of the method is shown in Figure 4. It shows
the smallest box that could be obtained with our localization
technique. It is worth noting that we are considering, for sim-
plicity, a punctual previous position.

In order to reduce the computational cost of the localiza-
tion process, the mobility and observation models could be
approximated. The disk equations are thus relaxed to square
equations. The first approximated scheme consists of a par-
tially approximated one where the mobility equation is re-
laxed as follows,

{

[x1](t) = [x1](t − 1) + [−vmax, vmax]
[x2](t) = [x2](t − 1) + [−vmax, vmax]

. (26)

The second scheme consists of a fully approximated one
where both the mobility equation and the observations are re-
laxed. The observation equations are thus written as follows,

{

[x1](t) = [x1](t) ∩ [ai
1
+ [−Ri, Ri]]

[x2](t) = [x2](t) ∩ [ai
2
+ [−Ri, Ri]]

, i ∈ I. (27)

The relaxed schemes yield larger boxes than the one obtained
with the correct equations.

4. SIMULATIONS

In order to evaluate the effectiveness of our algorithm on
MANETs, we moved a mobile node in a100m × 100m
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Fig. 5. Ratios of areas of estimated boxes: Case 2 over Case
1 in solid line and Case 3 over Case 2 in dashed line.

square area over100s. The node trajectory is composed of
two sinusoids with an abrupt direction change as shown in
Figure 6. The maximal velocity of the mobile node is equal
to 2.0343m.s−1. We also deployed anchors in the network in
such a way that at least three anchors are within the communi-
cation range of the mobile node at every time step. In Section
3, we have considered two approximated schemes in addition
to the original proposed method. The three proposed tech-
niques are denoted as follows: Case 1 (fully approximated
scheme), Case 2 (partially approximated scheme) and Case
3 (correct models). To evaluate the different methods, we
define the error as the difference between the real positions
and the center of the computed location boxes. The computa-
tion times needed to accomplish the localization for the three
cases are respectively0.4520s, 0.8730s and1.4510s whereas
the average errors are respectively1.7665m, 0.9346m and
0.9316m. Note that only anchors within the communication
range of the node are taken into consideration in the local-
ization process. Figure 5 shows the ratio of the areas of the
boxes obtained in Case 2 over the areas obtained in Case 1
in solid line, and the ratio of the areas obtained in Case 3
over the areas obtained in Case 2 in dashed line. It is obvi-
ous that the relaxation of the observation model yields much
larger boxes; while the approximation of the mobility model
affects slightly the localization process in our example. Con-
sequently, we will use Case 2 of the method in the following
simulations. In the following, to validate the performances of
our method, we compared it to the GBL technique that uses
connectivity measurements to anchors [7]. We also compared
our method to a Monte-Carlo based technique that uses the
RSSI-comparison as observation model.

4.1. Comparison to the GBL method

In this section, a comparison of our method to the Guaran-
teed Boxed Localization (GBL) proposed in [7] is performed.
Without loss of generality, we consider the localization of
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Fig. 6. Estimated boxes obtained with our method (Method
1) and the guaranteed boxed method (Method 2).
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one moving node since each node self-localizes indepen-
dently from other nodes using only anchors information. In
a 100m × 100m area, we move the mobile node on a trajec-
tory composed of two sinusoids over100s with a maximal
velocity equal to2.035m.s−1. The sensing range is set to
10m. Figure 6 illustrates the estimated boxes obtained with
our method (Method 1) compared to the boxes computed
with the GBL method (Method 2). As expected, the boxes
in our method are smaller than the one resulting from the
GBL technique. The average error obtained in our method
is equal to0.9346m while it is equal to1.7775m with the
GBL method. The computation times are equal to0.9360s

and0.7020s in Method 1 and Method 2 respectively. In both
methods, only the anchors within the communication range
of the node are used to generate observation information.
Despite the small increase of the computational time, the
model-free RSSI-based method reduces the average boxes
area to11.9574m2 while it is equal to35.8355m2 in the
GBL method. Figure 7 shows the ratios of the areas of the
boxes obtained in our method over those obtained in the GBL
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based method (MC).

method. The average ratio, equal to0.3442, corroborates the
efficiency of our method.

4.2. Comparison to a Monte-Carlo based method

The Monte-Carlo localization boxed method proposed in [6]
consists of two phases: a prediction phase and an update
phase. In the prediction phase, a square region is created us-
ing approximated mobility and connectivity models. Particles
are then generated within this box. In the update phase, cor-
rect measurements are incorporated to filter and update data.
Only particles satisfying the correct constraints are accepted.
The process is iterated until a certain number of particles is
kept. The observation model implemented consists of con-
nectivity measurements. In this section, we are defining a
Monte-Carlo based method that uses rings overlapping for
observation. For this purpose, we modified the Monte-Carlo
localization boxed method in order to be implemented by
our observation model. The computation time needed by the
Monte-Carlo method is equal to46.6990s with 1.3426m as
average error. Figure 8 shows the particles obtained with the
Monte-Carlo method. The number of particles is set to50. It
shows the boxes obtained with our method, as well. Besides
the important gain in computation time, the Monte-Carlo
method requires the storage of at least50 particles every time
step while our method only needs to save the bounds of the
coordinates describing one estimated box.

5. CONCLUSION

In this paper, we presented an interval-based localization
method using RSSI-comparison of exchanged signals be-
tween anchors and between anchors and mobile nodes. The
proposed method generates small intersection area and thus
accurate location estimation. With the RSSI comparison, the

localization consists of a robust and non parameterized tech-
nique with a small computational time. Simulation results
show that our method compares well to the GBL technique
in terms of accuracy. It outperforms the Monte-Carlo based
techniques in performance and computational costs, as well.
In future works, we will deal with inaccurate environment
and sensor failure problems. In addition, we will make use of
the information exchanged between mobile nodes to improve
the localization process.
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