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Abstract—Location awareness is a fundamental requirement
for many applications of sensor networks. This paper proposs
an original technique for self-localization in mobile ad-hoc
networks. This method is adapted to the limited computatioml
and memory resources of mobile nodes. The localization prdém
is solved in an interval analysis framework. The propagation of
the estimation errors is based on an interval formulation ofa
state space model, where observations consist of anchordzal
connectivities. The problem is then formulated as a constiiat
satisfaction problem where a simple Waltz algorithm is appied in
order to contract the solution. This technique yields a guaanteed
and robust online estimation of the mobile node positions. &
servation errors as well as anchor node imperfections are teen
into consideration in a simple and computational-consistet way.
Multi-hop anchor-based and back-propagated localizatios are
also made possible in our method. Simulation results on molg
node trajectories corroborate the efficiency of the proposg
technique and show that it outperforms the particle filtering
methods.

I. INTRODUCTION

networks assume that information provided by the sensor
nodes are tightly related to their geographical locatidinere-
fore, the localization process is an absolute necessityaikem
sense of the observed data. Many applications such as target
tracking or spatial interpolation for region monitoring],[1
[2], [3] depend on the knowledge of the locations of sensor
nodes. There are several constraints for choosing a lataliz
technique, such as the limited computational power and the
restricting environment conditions. A simple solution sisits

of equipping all nodes with Global Positioning Systems (EPS
[4]. However, this technique is impractical given the high
energy consumption, the high cost and the binding size of
GPS devices.

Recently, anchor-based localization methods have been
proposed. In such methods, few nodes (cabedhord are
equipped with GPS. The remaining nodes gather information
from anchors in order to estimate their positions using ieffic
self-localization techniques. Some of the existing andyased
works consist of repetitive static localization algorithifb],

The emergence of Mobile Ad-hoc sensor NETworkEl [7]- For instance, in the centroid method [6], each node

(MANETS) has recently launched a growing widespread fiegefines its position as the center of all the observed anchors
of research involving theoretical and applicative chajlem N @ different scenario, a bounding box localization hasnbee
The increasing capabilities and the decreasing costs oflenoProposed in [8], where nodes use their detection of a moving
devices make now mobile wireless networks possible af@f9et to improve their position estimates. However, these
practical. These networks have significant advantages of@gthods have a limited performance due to the absence of
traditional wired networks, such as easy deployment, sefly mobility modeling in the localization procedure. In [9]
management and no requirement for established infragneuct @ dynamic localization scheme, the Monte-Carlo Localorati
MANETSs are wireless networks defined by a collection dfMCL), has been proposed. Itis a new kind of Bayesian filter-
low-cost, tiny and densely distributed mobile sensor npdd8d algorithms based on the sequential Monte-Carlo method
equipped with sensing and computation resources. Thagrist10]. Using state space models, it incorporates a mobility
problems of such embedded devices are their limited memoPjoPagating model in the localization process. More rdgent
bandwidth, computational capabilities and energy resen@? enhanced version of MCL, the Monte-Carlo localization
In addition, many applications impose non-renewable nod8gxed algorithm [11], has been proposed in order to make bet-
batteries and thus a limited lifetime of the network. Havinég" use of the gathered information. These Bayesian teabaiq
typical low powered nodes, the main challenge of wireleg§€ implemented by an approximate particle filter methodl [10
sensor network research is to design collaborative andygnerWhere many samples (particles) are drawn in order to estimat
aware processing tasks in order to prolong the lifetime eof thhe node position. Nevertheless, particle-based metheets a
whole network. high number of particles in order to achieve a good locatinat
Research on mobile sensor networks, where the nod@formance and thus require large amounts of memory.
mobility is uncontrolled, has partly focused on self-lozafion In our work, we propose a new online anchor-based lo-

issue. Data processing and decision-making in mobile sen§glization technique allowing the propagation of the posit
incertitude in an interval form. In order to take advantafie o

nodes mobility models, a state-space formulation is adbpte
for the online self-localization of nodes. The central idéaur
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Operations| Definitions
[z] N [y] = [max{z,y}, min{Z, 7}]
[z] U [y] = [min{z, y}, max{z, §}]
]+ ly=z+y.T+7Y
]l -ly=[z-3.7—y
[z] = [y] =

sional intervals) allows a guaranteed estimation of theenod
position using only few parameters (endpoints of one box).
The proposed boxed localization achieves a substantial gai
in both memory and localization computational costs while
ensuring the same performance as the particle filter algost
Furthermore, a boxed modeling of the anchors positions and
of the sensing range incertitude enhances the robustnéss of TABLE |
localization technique. Moreover, a back-propagatedlilzma SOME DEFINITIONS OF OPERATIONS USED IN INTERVAL ANALYSIS
tion is made possible for applications that do not need a real
time localization. This contribution also proposes a mtip
based localization technique for low anchor density netsor ) ) ) )
A large sensor field is covered with very few anchor nodes [RPme of the listed operations are defined in Table I.
flooding the network with anchor messages. With the multi- Set-theoretic operations can be applied to intervals. Con-
hop anchors information, every sensor node is able to asststrSider two intervalgz] and[y]. Their intersection is
location boundaries wher(_a it surely exist. _ N[y = [{z | 2 € 2], 2 € [y]}].

The rest of the paper is organized as follows. In section
I, a brief introduction to interval analysis tools and theiMost often, the union of two intervals is not an interval. In
use in solving constraint satisfaction problems is progosédhe interval framework, the union of two intervals is caateld
Section Il contains the main contribution of this paper: as the smallest interval containing U [y]. Thus, the interval
guaranteed energy/memory-aware self-localization teeien unionu is defined as shown in Table I.
for MANETS. In Section IV, numerical results illustratingg A multi-dimensional intervalz| of IR", calledbox results
efficiency of the proposed technique are discussed. Sedtiorfrom the cartesian product of real intervals as follows,
concludes the paper.

*| 1|+ C|D

[min{z *y,z 7, T * y,T * T},
max{z * ¥, 2 *7,T *y,T *G}]

[Z] = [21] X .. X [2] = [21,T1] X .. X [2,,,Tn].  (3)

Il. INTERVAL ANALYSIS Its i-th interval componenz,, z;] is the projection ofx] onto
the i-th axis. The notions introduced previously for intervals

The interval analysis represents a rigorous active field N tend straightforwardly to boxes. For example, the iers

SC'en.t'f'C gomputatlon. This growing b_ranch of applied nqaﬂ}ion of two boxes is obtained by intersecting independently
ematics aims to manipulate intervals instead of real number

Although the interval analysis is just a new language fépe intervals constituting these boxes.
inequalities, it is a very powerful framework providing an

interesting alternative to punctual approximation. Witterval B- Inclusion functions

methods, one is able to compute bounds of the possibleSome other interval analysis tools are the inclusion func-
solutions that correspond to measured quantities, andtthusions. Let f be a function fromIR"™ to IR”. The image byf
obtain guaranteed regions that involve the correct soluticof a box [z], denotedf ([z]), is defined as

With simple operations, the interval analysis allows to -con

sistently deal with problems involving non-punctual (i) fl2]) = {f(2) | = € [=]}.

data. Interval computation is a special case of computation |t js obvious thatf([z]) is not necessarily a box.

sets, and the set theory provides the foundations for teevat  The interval function[f] from IR" to IR” is an inclusion
analysis. In the following, the basics of the interval as@\are function for f if it yields a box [f]([z]) such that

briefly presented, followed by constraint satisfactionlgem

tools. V[z] C R", f([z]) C [f]([z]) C R” 4)
From this definition, it is straightforward to see that for a
A. Interval arithmetics function f more than one inclusion function may exist. The

The interval analysis approach treats intervals as a ned kifinimal ir;clusion function off, denoted f]*, is the smallest
of numbers represented by the ordered pair of its endpoirf@X in IR that enclosesf([z]). An illustration of inclusion

An interval[z] of R is a closed bounded set defined as follow€inctions is shown in Fig. 1. ,
Let[f;], « =1---p, bep inclusion functions fronlR" to R

[z] = [2,7] = {z € R,z <z <7} (1) associated with the coordinate functiofisof f. A possible

wherexz andZ are the (finite or infinite) inferior and superior”‘ldusIon function off is then given by

interval endpoints respectively. Interval analysis agplall [F1([x]) = [f1]([x]) x .. x [fp]([x])-

standard set and arithmetic operations on intervals. ) ) , ) )
--cﬂws, a simple approach to build an inclusion function for

f is to consider separately eadlf;] and to replace each
involved real variable withinf; by an interval variable, and
each operator or function by its interval counterpart. The
resulting inclusion function[f] is then called the natural
[Zloyl =[{zoy e Rz € [z],y € [y]}]- (2) inclusion function off.

(+), substractior{—), multiplication () and division(/), can
be extended to intervals. In fact, lkebe any of these operators.
It can be extended as an interval operator as follows,



@2 g D;,i = 1,...,n. The final phase (iv) consists of applying
s the explicit equations repetitively, without any prior erdto
contract the variable intervals in the way to satisfy all the
(=) constraints. The loop is repeated until none of the vargalse
| no longer pontracted. The solution box is therefore defined b
the cartesian product of the contracted intervals. The boxes
1 obtained are not necessarily the smallest boxes encloseng t
- oy set of solutions. In other words, the Waltz contractor dags n
lead certainly to globally minimal boxes; but to local mirdm
However, it remains a simple low-cost efficient techniquee S

Fig. 1. lllustration of inclusion functions. algo”thm 1.

~
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2

Input: Dy, D, ..., D,
] _ _ _ |, Output: [z1]*, [xa2]*, ..., [zn]*

There is no guarantee that the natural inclusion function|isgenerate primitive functiong?,i = 1,....n,j = 1,...,m
thebest onehat can be used fof. In fact, the principal lack of | ;sing them constraints in order to expresé explicitly
interval analysis tools is their incapacity to find the mialm | oach variable:
size box that encloses any set of solutionslRrt. In order | \yhile at least one variable is contractedb

to overcome this drawback, constraint satisfaction ators for j=1,...,m do
(also called contractors) are combined to the intervalyesisl for i =1....ndo
tools. The rationale behind these techniques is to use the | (23] = [x:] DF?([zk] k #0);
redundancy of equations in order to reduce the size of the end ‘ ‘ ¢ ’ ’
enclosing box. end

end
C. Satisfaction of constraints : Waltz algorithm Algorithm 1: Waltz algorithm.

A Constraint Satisfaction Problem (CSP) is defined by
a set ofm constraints,f1, fo, ..., fin, involving n variables
x1,%9,...,L,. Each constraint is defined as an equation I1l. GUARANTEED BOXED LOCALIZATION
fi(z1,...,2,) = 0 linking the components of the-vector

: . The proposed Guaranteed Boxed Localization (GBL) tech-
x = (x1,...,x,). Each variable;; has a nonempty domaih;

g Lo : o nigue is based on propagating a set of constraints defined by
of possible valu_es. Satlsfylng the constraints consistsding the prior mobility model of the moving nodes and the infor-
the set C,)f solutionsS, defined a,SS ={ze D |,f(w), = 0} mation messages communicated by the neighboring anchors
whereJ_c is the vectqr of con_stramtsnadd an initial prior box (moving or static nodes equipped with positioning systems)
enclosing the SO“_J“O”’ Qef|ned iR" by the comblnatlon_of In this paper, non-anchor information are not used. Theegefo

all the real doma_m_sDi,z =1..,mn In_general, the s_olutlon the problem is reduced to separable self-localizationlerob
setls nota box; it is a gomplete assignment of varlable_s Mfhere each node uses its individual prior moving model in
satisfies all the constraints. Solving the CSP problem in aition to anchor information. In the following, withoudss
interval analysis framework consists of finding the smallegf generality, we focus on the localization of only one mebil

box [z]* C D that contains all possible solutions. node. The same algorithm is implemented in parallel on the
A contractor is a tool for the constraint satisfaction peshl remaining nodes.

It is an operator applied in order to get the solutifr}*,

and thus to eventually contract as possible the initial Bbx o o

In other words, the contractor is an algorithm that uses &t Definition of the localization problem

constraints in order to reduce as much as possible the areMobile nodes are moving in a-dimensional deployment

of the box enclosing the exact solution. There are differeatea where changes in direction and speed occur uncontrol-
kinds of methods to develop contractors. Each of these mekibly. Many mobility models have been proposed in order to
ods may be more suitable to some types of CSP. In thispresent the real movements of mobile nodes [17], [18], [19
paper, we use the forward-backward propagation technigliee model we are using in our method consists of a state space
called Waltz algorithm [13], [14]. This contractor consisif model where only the maximal velocity of a node is known. In
applying iteratively primitive constraints, without anyigr this model, a mobile node moves between two time-steps from
order, until the contractor becomes inefficient. A pringtivits current location to a new location by randomly choosing a
constraint is a function involving arithmetic operationsda direction and a speed for its movement. The speed is bounded
standard functions (cos, exp, etc.). This strategy inwl{fe by its maximal valuey,, .., while the direction varies between
using constraints equations to define explicitly each ¥eia 0 and 27. This means that over one time-period, the node
as a function of all the others, (ii) using interval analygis moves within thev,,.,-radius disk, centered at the previous
express all variables and arithmetic operations in anvater position. Letx(t) = (z1(¢); z2(t)) be the coordinates of the
framework, and (iii) initializing the variables with the oi@ins mobile node at time. The dynamic state space model that



we use in the GBL technique is defined by the followingovers a guaranteed rectangular area where all acceptable
equations, positions certainly exist. The novelty of our work is that
{ 21(t) = 21(t — 1) + v(t) cos O(¢) we defing locations as inter.vals coverin.g al! acceptable So-
_ . (5) Iutions with respect to the given constraints instead ohgisi
x2(t) = x2(t — 1) + v(¢) sin H(¢) . . » . .
approximated values. Propagating the positions in theviate
where, for simplicity, the duration of one time-period igorm guarantees a bounded cumulative error in the locidizat
assumed equal tbs. Variablesv(t) andf(t) are respectively process. The self-localization problem is then formulatech
the node velocity and the moving direction between instantSP problem, where both the mobility and the observation
t —1 andt. In our model, where only the maximal velocity ofmodels define the set of constraints.
mobile nodes is assumed knowr{f) andd(t) are uniformly  The boxed localization algorithm is based on two phases
distributed betweerd and v,,,, and 0 and 27 respectively. at every time-step: (i) the propagation phase and (ii) the
This leads to a disk equation given by, contraction phase. The first phase consists of generatig th
9 9 9 first domain of solutions called the prior region. It uses the
(@1(t) =21t = 1))" + (22(8) = 22(t = 1))” < Vs - (6) mobility equation to propagate the Iolzation cgomputedaﬂ
If we consider a punctual position &t — 1 defined by till the current timet yielding a two-dimensional interval.
xz(t —1) = (a,b), the position at time will be a disk having The contraction step consists of applying the observatimh a
Umaz @S radius anda, b) as center. In other words, equatiorihe mobility constraints iteratively in order to minimizbet
(6) does not yield a punctual solution, but a disk where ttagea of the prior box. This can be implemented by the Waltz
real solution certainly exists. Additional prior inforni@ on contractor. Note that the Waltz algorithm does not produce
the nodes trajectories could incorporated to refine thergéneghe globally minimal box but a local minimum. This means
mobility model described above. that the position box generated is not necessarily the gbtim
Measurements to anchors are then used to further refgmution of the localization problem.
the mobile node localization. If a node can communicate In order to use the interval analysis tools, the localizatio
with an anchor, its position is restricted to be in somproblem should be modified in the way to fit the interval
region relative to the anchor. Such constraints are used fogmework. Let[z](t) and[z2](¢) be the coordinate intervals
the moving node to define local connectivity measuremerasthe mobile node at timeé. In the interval form, the motion
at each time step. A connectivity measurement relative to aquation (6) is formulated as follows,
anchor consists of one-bit information set itdf the anchor 9 5 5
is within the communication range of the mobile node. Thisl21] () =[] (¢ = 1) +[[22] (8) = [22) (t=1)]" = [0, v0,] (8)
anchor. is called)ne-hopanchor. Wg m_ake the assumption ofhere Umas IS the maximal velocity of the node. In order
a rotationally symmetric communication rangevhere each i, yse interval analysis operators, constraints shouldfme-r
node communicates with neighboring nodes that fall withe t iy, jated whereby each coordinate is defined as a function of

disk of radius- centered on the node. L&t be the number of 5 other variables. The above constraint can be rewriteen a
anchors in the deployment area andoe the index of a single fg(jows

anchor such that: € {1, ..., M}. The observation equations

e AR AR A
th:th——Qtuth—+2t

() :{ 1ot (z1(t) — af")® + (z2(t) — a5")* <1 (9)

0 otherwise where [b](t) = [\, — [[22](t) — [22](t — 1)]?] and

. (1) [ba](t) = [\/vZ0s — [l21)(t) — [1](£ — D] If the previous
where a;* and a3' are the coordinates of thai-th anchor, position is punctual, the result will be a disk. However, the
m € {1,.., M}. As for the mobility equation, each obserygnagation of a box with a disk equation does not produce a
vation equation does not yield a punctual solution, but @sk |n other words, if the position at the previous timepst
disk centered on the corresponding one-hop anchor withis non-punctual, the mobility equation does not yield a sk
as radius. Satisfying all the observation equations preslug, + 5 rounded corner square as shown in Fig. 2. Resolving
the overlapping region of all one-hop anchor disks. Thge equation (8) alone, as in the propagation phase, leads to
localization problem is defined by the set of the mobility,g minimal inclusion function of the solution, i.e. the riniral
equation and the observation equations where the conitigctiy,oy that encloses the rounded corner square. The box could be
measurements are non-zero. The solution of this problemyissineq by extending the coordinate intervals obtained-at

not punctual, but it consists of the intersection regionhef t |\ a vmas length in the top, down, right and left directions
anchor disks with the mobility disk. respectively.

The connectivity constraints could also be formulated in an
B. Localization by interval analysis interval form as follows,

The interval framework provides an efficient and consistent 02 a2 21
methodology to solve the localization problem described by [21](®) = arl” + le2l(®) = aa]" = [0,r7] i € 1 (10)
(6) and (7). Instead of manipulating punctual position®g thwherer is the communication range of the nodé, and a}
main idea of our approach is to associate the node positiare the punctual coordinates of th¢h anchor and is the set
with a multidimensional interval (box). The position boxof all anchors communicating with the mobile node. In other
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Fig. 4. Approximated schemes using square equations in tiglitg model
in (a) and both in the mobility and observation models in (b).

Fig. 2. The result of the propagation of a box with a disk equat

Fig. 4(a) shows the resulting box obtained by relaxing the mo
bility equation. Replacing the correct motion model witke th
approximated squared model does not affect the propagation
phase (i.e. when the mobility equation is used alone). Ity fac
as shown in Fig. 2, defining the rounded corner square in the
interval framework yields an identical box to the one obedin
while propagating the previous box with the approximated
equation. However, the approximation of the motion model
Fig. 3. Mobility and observation models with disk equations may affect the contraction phase. In the second scheme, the
connectivity constraints are also approximated as follows

[ai -7, ai + 7]

lab — r, ab + 1] ,1€el. (23)

)
N
NN

words, I is the set of indices of all one-hop anchors; those
with connectivity measurements equalltoExplicit equations
are also needed to implement the Waltz algorithm. They drig. 4(b) illustrates the box obtained using the approxiomest
defined as follows, of the motion and observation equations. It is worth noting
. . . that, in the illustration of the approximated schemes, wesha
{ [21](1) = [[“11 [bll](t)] U [azl + 16 ,iel (11) considered a punctual position of the node in the previous
[22](8) = [laz — [b] ()] U [a3 + [b3] ()] time step. As expected, relaxing the constraints leadsrg@ia
where [bi](t) = [\/r? —[[z2](t) —a5]?] and [b5](t) = ggzgogisrtce(:\rllzlt?aﬁlr:;I03|ng those obtained when using the

[v/r2 — [[z1](t) — a}]?]. If we consider punctual anchor po- . o
sitions, the disk equations yield disks centered on the one—Algorlthm 2 shows the guaranteed boxed localization

hop anchors with- as radius. In the interval form, each disipseudo-code based on the one-hop anchors observauon;. It
uses the second scheme of the method where only observations
it. It consists of taking a square centered at the corresjpgndare kept as disk equations and _the propagation mod_el IS
anchor with2r as its side length approximated by squared constraints. The Waltz algorithm
o " ; .stops when the number of iterations preformed exceeds a
The localization process consists of solving the equation . . ; .
system defined by the mobility and the observation moderFT‘rtam threshold or when the instant location box is no more
The common solution of all equations contains the corre%(t)mraqed' . .
The interval-based approach also provides a convenient

position of the mobile node. It is defined by the intersectio K to deal with . . focti h
region of the observation disks and the mobility roundegpmework to deal with environment imperfections such as

corner square. With the interval analysis tools, the Cowutanchors positions or the communicati(_)n range imprecisions_
position consists of the contracted box enclosing the aperl Eor instance, the GPS QOes not proylde elxact anchor posi-
ping area set by all the constraints together. Fig. 3 shows fiens. Mor_eo_ver, converting the rec_ewed signal strength ¢
smallest box that encloses the correct solution, if we amrs dlsta_nce_s is imprecise. The conversion errors could affet .
punctual position for the mobile node at the previous tiregp-s localization results_when the real d|stanc_e fr_om the mobile
That is, for simplicity, the rounded corner square is redluccQOde to an anchor is close to the pommunlcatlon range value.
to a disk. In order to reduce the computational cost, we a|H£5 these cwcumstan_cgs, t.he mobile node cogld.b.e supposed
propose two additional approximating schemes by relaxieg toutS|de the connectivity disk of an anchor while it is not and

disk equations to square equations. In the first scheme, Yige-versa. In the G%L t_echmque, tglebun(;]ertamty a;b_out thel
prior motion equation is approximated as follows, measurements can be incorporated by the use of intervals

for anchors positions and the communication range instead
[1](2) of approximated values. With the non scalar communication
[x2](t) range, the border of the connectivity disk is not a circle dut

[1‘1](t - 1) + [_’Umama Umaac]

['rQ](t - 1) + [_vmama 'Umaz] (12)



Input: v,nq., 7, @anchors coordinates, observations
Initialization : [z1](0) and [x2](0);

for t < T do

[xl](t) = [xl](t - 1) + [_vmarvvmaz];

[xQ](t) = [xQ](t - 1) + [_vmarv Umaz];

I = Indices of1-hop anchors;

while contraction is positivado

for i € I do
[b1](t) = [V/r? = [f2](t) — a}]?];
[z1](t) = } o
Hxl](t) N [[al — [bll](t)] = azl _+ [bzl](t)m’ Fig. 5. Different values ob,,4. (lower in (a) and larger in (b) than its real
[b5](t) = [v/7? = [[z1](£) — a1 ]?]; value).
[z2](t) =
[[z2] () N [[ag — [b5](£)] U [ay + (5] ()]]]; o _ _
end as shown in Fig. 5(b). Note that the choice of the maximal
end velocity has the same impact on all localization methodsgisi
end the state space model with a fixed velocity. For instance, the
Algorithm 2: Guaranteed boxed localization algorithm particle filtering technique suffers, in the same way, frdre t
using approximated propagation equations. dependence on the value of the maximal velocity.

C. Back-propagated localization
ring. The constraints are modified as follows, In this section, we propose an extension of the GBL tech-
1] (8) = [l ])2 + [[wa] () — [a2]]2 = [0, max[r]?], i € I (14 nique for S|tuaF|onf5 where the rgaltlme constraint is retax
[lz1](8) = [an]]” + [f2](t) = [a2] [ Il (14) In online applications, observations collected at a curren
where [a¢] and [a}] are the coordinate intervals of theth instant should be processed to generate a solution before

anchor andr] is the communication range box. receiving observations at the next time instant. Howewar, f
The explicit equations are then defined as follows, non-realtime applications, collected information at arent
i i i i time-step could be used to correct boxes obtained at previou
{ [21)(t) = [[[a}] B [b}](t)] . [[a}] + [bzl](tm ,ie1 (15) time-steps. In fact, the position box obtained at titmesing
2] (t) = [{las] — [b5](1)] U [[a] + 2] (1)]] only observations from the current instant is used to correc
where [b¢](t) = [\/maX[T]Q ~ 2] (1) — [a3]]%] and 6] (t) = bOX§§ obtalne(_j at mstant_s— 1,t—2,t—3,.... Sl_nce_ the
[v/max[r]? — [[a1](¢) — [a}]]?]. position coordinates coming from two consecutive instants

Remark 1:The algorithm we propose uses constrainfe related with the mobility model, this equation is used
based on a state space model. The contraction is thus m%gorrect past boxes. Let the position box correspon_ding to
on an initial box until it encloses the intersection area of YNe ¢ — 1 denoted by theprevious box The observations

propagation disk and the connectivity regions provided tgp!lécted at time are used to generate a current Hax(?).

the detected anchors. Using the general prior model wherdiS Pox is then propagated in a backward way using the
only the maximal velocity of a node is fixed, we defin®"0r €quation defined by (8). The back-propagatioragf)

the propagation constraint as a disk equation determined ¥i§'dS an additional constraint for tirevious boxUsing this

the maximal velocity. An erroneous value of the maximgonstraint yields a more accurate box for the instant 1.
velocity parameter may affect the localization performeand N€ resulting boxz|(¢ — 1) is then similarly used to correct
leading to an inaccurate intersection region. Indeed, aaish 1€ POX corresponding to— 2, and so on. These steps could

in Fig. 5, a small velocity may cause an empty overlappi repeated until the initial instant or until a fixed humber

region, whereas a larger velocity than the real value caudfisPackward time-steps is performed. The equations used to
less contraction of the solution box. Note that with a large€fine the constraints for thgrevious boxeare shown in the

value, the propagation disk may cover the intersection ef tf°!lOWing,

sensed anchors regions. Applying the localization in thisec [z1](k — 1) = [[[z1](k) — [b1](k)] U [[z1](k) + [b1](k)]]

is equivalent to repetitive static methods that do not atersi [22](k — 1) = [[[x2] (k) — [b2] (k)] U [[z2](k) + [b2](k)]]

the state space model. This situation also occurs when we (16)

use the correct value of,,,, but for some time instants, where %k decreases from the current instant

the real velocity is much smaller tham,,,. In this case, down to some fixed instant greater than2,

the connectivity region formed by anchors will be includad i[b1](k) = (V12 — [[22](k — 1) — [22](k)]?] and

the vy, disk; and thus the motion model will not contributgbo|(k) = [\/02,4, — [[z1](k — 1) — [z1](k)]?]. These

to the contraction at these time instants. In case of empmguations are defined using equation (9) and going back in
intersection, the mobility model constraint is relaxed dnel time starting with the current instant

Waltz algorithm is only applied to the observation constigi  The first phase of the algorithm defined above consists of
A larger box that yields less accurate position is thus ole@i going back in order to corregirevious boxesThe following




F—1 wherek > 1, x1(t) andxzy(t) are the real coordinates of the
node andz! anda} are the coordinates of thieth anchor.

Other hop-counting techniques might be used, for instance
the DV-hop method [15], [16]. It is a hop-by-hop localizatio
algorithm that works as an extension of both distance vector
routing and GPS positioning. This method aims to compute
N y average hop distances from each node to all anchors. Every
anchor overwhelms the network with messages composed

@) (b) of five fields: the ID of the anchor, its two coordinates in
the deployment area coordinate system, the sequence number

(consistent with the time step) and a hop counter that ise®a
every time the message passes by a node. Each unknown-
position node has an anchor table updated every time the node

phase consists of propagating the resultprgvious boxes feceives an anchor message with a new sequence number or
forwardly till the current time-step in order to update agai@ lower hop-count. An anchor that receives another anchor
all available position boxes. The forward-propagationliasp Message uses the hop-count, the coordinates of the anchor
the same iterations of the backward correction but in therott@nd its own coordinates to compute an elementary distance
direction. That is, th@revious boxeare propagated forwardly corresponding to one hop-count. Every anchor sends the
in order to provide additional constraints for the follogin average elementary distance as a supplementary field in its

instants. The forward propagation is given by the followinfPllowing-sequence messages or as an intermediate comect
equations, message. The average hop equivalent size is therefore used

by the unknown position nodes in addition to hop-counts
{ [21] (k) = [[[z1](k = 1) = [b1] (k)] U [[21](k = 1) + [01](F)]] {5 compute there average distances to anchors. In order to
[x2] (k) = [[[z2](k = 1) — [bo] (B)] U [[2] (K — 1) + [b2](1k)]] apply this technique in our method, every node compares
( its estimated distances from anchors to thresholds that are

multiple of the communication range and therefore, it define
[bl](g) = [V Vihee = [l22] (k) — [1;2](@_ VPP and bo)(k) = 0 ring that encloses every anchor. This means that we are
[‘/Ugmlz N l[.[xl].(k) - r[fll](k'_ 8] é F'ﬂ' 6(a)hshov¥fs the ::or;] adapting the DV-hop method in the way that we are bounding

ward localization while F|g.. 6(b) shows the effect of t §he estimated distances to affect hop-counts to ancharseSi

backward phase on the previous boxes. the computation of the distances to anchors are imprecise,

This technique takes advantage of all available infornnati(EJsing thresholds and thus hop-counts instead of the estimat

since it makes use of old, current and future Observatio'?ﬁStances keeps the guaranteed aspect of the method
Using more information, it outperforms the simple online In our work, we adapt the multi-hop information a:5 ad-
localization introduced in Section Ill-B. However, sindest ditional constraints to be involved in the nodes localiza-

me_thod Uses add|t|ongl constraln'gs_ at every tlme_step,- It tfon problem. This technique outperforms the one-hop based
quires higher computational capacities than the onlindw:t method in both accuracy and computational efficiency in low
anchors density networks. While the propagation equation
D. Boxed localization using multi-hop information remains unchanged, the observations constraints are ewdifi
In the guaranteed boxed localization technique, anch@ecording to the following equation,
Eﬁig;\tﬁ sensor field with beacon messages periodically Eachl](t) B azﬂg 4[] (8) — aé]g — (k- 1)2T27 kgrg] (19)
position sensor node receives messages from th
anchors within its communication range and makes use of thikere: € I, I, is the indices set of alt-hop anchors detected
information to construct location boundaries. The acopafc by the mobile node ané > 1. The algorithm 3 refers to the
the position estimation is thus related to the number of onesulti-hop based localization method. It considers the sdco
hop anchors neighboring each GPS-less node. scheme of our method that uses the approximated propagation
To enhance the localizations performance in networks whegguations.
anchors density is low, a hop counting technique based onThe hop-counting techniques presented above could gener-
received signal strength can be employed. The anchisr ate erroneous measurements due to environmentimperfsctio
ranged as &-hop anchor with respect to a certain node iThe strengths of the signals sent by the anchors decredse wit
it is located within thering formed by the two concentric the increase of the traveled distance. The relation between
Ry,_,-circle andRy-circle around the node witl;, = kr and signal strength and the distance is defined by a paramederize
r is the communication range. The estimated distance betwg@thloss model. The conversion of the received signal gthen
an anchor and the mobile node is obtained by converting tite distance information is imprecise due to the imprecision
strength of the signal sent by the anchor and received b¥ the pathloss parameters. Moreover, the signal strength
the node. The additional constraint is given by the follayvincould be modified in a noisy channel. In parallel, the DV-
equation, hop technique yields estimated distances that could lead to
‘ . imprecise observations in an noisy environment. The distan
(k—-1)r< \/(:m(t) —ai)? + (x2(t) —ab)? < kr (18) obtained in the two-hop counting techniques could be lower o

Fig. 6. Back-propagated localization : first forward stefé@hand backward
step in (b).

wherek increases from the instaftup to the current instartt




Input: v,nq., 7, @anchors coordinates, observations
Initialization : [z1](0) and [x2](0);
for t < T do
[21](t) = [z1](t = 1) + [~Vmaz, Vmaal;
[w2](t) = [z2](t — 1) + [~Vmaz, Umaal;
K = maximal hop-count;
for ke {1,..,K} do
| I = Indices set ofk-hop anchors
end
Wh|le Contraction iS pOSitiV&iO @ Mobile node e Real anchor o Estimated anchor @ Mobile node e Real anchor o Estimated anchor
for ke {1,..,K} do (@) (b)
for i 6 Ij; do Fig. 7. The impact of the ranging errors over the observaitidormation
[bY](t) = [\/k;Qr? — [[2] (t) — aé]Q]; in (a) and the result of using the boxed thresholds in (b).
[z1](¢) = ‘ ,
[[z1](2) N [[ay — [b3](8)] U [a3 + [b3]()]]]; : .
3](t) = [\/k2r2 — [[e1](t) — a]2]; process, an anchor con5|der§d asa 2-hop_anchor is thuedocat
[22] (t) = at a distance from the mo.blle node varying between ér
([2)(t) N [[ad — [B3](£)] U [ad + (3] (£)]]]; and 2r + dr. The correct distances between the anchors and
end the mobile node are thus covered with the extended ring.
end Therefore, choosing a convenient value of the interval vidt
end over the thresholds ensures robustness against rangorg.err
end
Algorithm 3: Multi-hop guaranteed boxed localization IV. SIMULATIONS
algorithm. The performance of the proposed GBL localization tech-

nigue in MANETS is tested using the reference point group
mobility model given in [17], [18], [19]. According to this

larger than its true value. A comparison between the distarf@CPility model, the mobile nodes follow the same reference
and the thresholds is performed in order to locate an anctigHectory with small independent stochastic deviatiohe
within a ring and thus to generate measurements needed in &fSideB00 nodes deployed in a squarg0m x 100m region.
multi-hop approach. A small modification of the distance had'® communication and sensing range are set0ta. The
no impact when the true position of the anchor is equidistafg"Sity of anchors is set in such a way that each node has
to the circles defining the ring: but it could produce sigmifit at least3 anch(_)rs in its y|C|n|ty. The referencg trajectory is
erroneous measurements when the anchor is too close to GR&Posed o2 sinusoids with an abrupt change in order to test
of the ring bounds. In Fig. 7(a), we consider a 1-hop anchijle capacity of the algorithm to track the position of nodes i
a1, a 2-hop anchoms and a 3-hop anchotiz. a2 and as a difficult case (see Fig. 8). As th_e_ localization technigsie i
are located within the rings centered on the mobile node afilly Pased on known anchor positions, the performance can
having » and 2+ and 2r and 3r as inner and outer radii P€ illustrated by following only one mobile node.
respectively, whilea; is located within the disk of radius 1he maximal true velocity is” = 2.035m per second. The
r. With the hop-counting techniques, the distance from ttiaree proposed boxed localization techniques (with cffer
mobile node to the anchors are modified in the way that tiR&Or and observations constraints types), are denotedlas f
three anchors are considered as 2-hop anchors, which e}y Case 1 (square-square), Case 2 (square-disk) and3Case
to erroneous observations. Using inaccurate measurertent&disk-disk). In order to compare the three cases, the mdxima
locate the mobile node leads to incorrect boxes. In ord&fOCity parameter,,,, is set to its maximal real value®.
to take the ranging errors into considerations, we chang-glae computation times needed to accomplish the localizatio
the scalar thresholds that are multiple of the communinatié” the three cases are respectivéli3280s, 0.6550s and
range. We replaced them with intervals centered on theiregal 0.7640s. The average errors, _tr_lat are the dlsta_nces between
with a fixed width. In other words, we used larger rings a&'€ real and the estimated positions, are respectiveisom,
illustrated in Fig. 7(b). A threshold:r is replaced by the 1-7775m angl.7775m, ;Nhereas the 020rrespon(_j|ng variances
interval [kr— o7, kr+6r]. The use of boxed thresholds induce@'® 1.5960m”, 1.3504m" and 1.3504m?, respectively. Fig. 8
the equation given below shows the estimated b_oxes_ obtained in the first and second
cases. The boxes obtained in Case 2 are included in those of
[[1](t) — [ai]]? + [[z2] () — [ab]]? = Case 1 during the whole observation period.
[max{0, (k — 1)r — or}2, (kr + or)2]. (20) In Fig. 9, we show the ratios of_the boxes areas.obtained. in
the three cases. As expected, using the correct disk eqsatio
Fig. 7(b) shows in a dashed line the circles obtained Wgr observations contracts more the boxes. However, it istwo
replacing the thresholdsand2r with intervals. The new ring noting that relaxing the disk constraint to a square coimtra
corresponding to the 2-hop anchors is thus located betwdenthe prior mobility does not affect the obtained boxesum o
the circles of radiir — §r and 2r + ér. In our localization example (constant ratio equal to 1). In fact, the approxionat



100 : 1
Anchors ﬂ
o Real positions
& ) Case 1 boxes ||
U N S e Case 2 boxes 70-9’ ]
w
. I
g
__ 60r ] c0.8f :
£ 8
X
N o
x . o)
40r ] 50.7F 1
[%2]
9o
g
207 1 0.67 1
0 R . | | | 05 ) ) ) )
0 20 40 60 80 100 0 20 40 60 80 100
x1 (m) Time (s)
Fig. 8. Estimated boxes shown evey in Case 1 (square-square) and Casgig, 10. Ratios of boxes areas obtained with the Waltz locgr dve boxes
2 (square-disk). areas obtained without the Waltz loop, in Case 2.
1.4 .
— Case 2/Case 1l 38
‘‘‘‘‘ Case 3/ Case 2
1.2f
- _375 1
Y 1 E
g g
S0.8f g 37 ]
[ %]
= Q
S 3
r o
© 0.6 ©36.5 1
8 &
E 0.4 :%
36 1
0.2 1
O L L L L 355 Il L L L
0 20 40 60 80 100 2 4 6 8 10
Time (s) Maximal iterations number (-)
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algorithm in Case 2.

of the mobility model has no effect in the propagation phase a

shown in Section 11I-B. This approximation may however hav@Ver the maximal iterations number tolerated by the Waltz
an impact on the algorithm performances when used in tH@P- Note that only a few .number of iterations is needed to
Waltz algorithm (iterating the propagation and the cortteac OPtimally contract the position boxes.

phases). The use of the correct mobility equation may lead to

smaller location boxes when the observations area intsrseg. variation of the maximal velocity parameter

with one of the rounded corners of the square, which was nOLI'he estimated boxes result from the intersection of the

the case in our example. . . .
P prior and the observations model regions. Here, we show

o ) the dependance of the localization outputs on the maximal

A. Efficiency of the Waltz algorithm velocity parametem,,q,. In Fig. 12, we report the average

The Waltz algorithm is a contractor developed as a sefror as function of the ratio of,,,, to its real value (from
lution for constraint satisfaction problems. It propagatee 0.5 to 6). This figure shows that the best results are obtained
constraints set by the model equations. The principle of tlaé the real maximal velocity value. After a certain value of
Waltz algorithm is to loop over the constraints, without any,,.., the average error becomes constant. In fact, the prior
prior order, until the contraction is no more possible. Inegion encloses the intersection of observation regiodshas
order to identify its effectiveness, in this section, we pame then no effect on the contraction of the boxes. This sitmatio
the localization results obtained by intersecting comstsa is equivalent to the absence of the prior model information.
equations with and without the Waltz loop over the constsinFig. 13 shows boxes obtained with,,, lower, equal and
In Fig. 10, we show the ratios of resulting boxes areasrger than its real value. With a lower parameter, boxes are
This figure illustrates the contraction capacity of the Waltreduced but do not contain the true positions at most of the
algorithm. Fig. 11 reports the decreasing average boxes atine steps. A larger parameter leads to larger boxes and thus
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max %
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max %
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max. (with Case 2). The time needed to accomplish the localimatio
‘‘‘‘‘ . Real positions . .
; algorithms is aroun@.5930s for the GBL method and.7300s
__ 60r for the MCB method. Besides the gain in computation time,
Er s MCB requires the storage of at leai particles every time
a0l step while GBL only needs to save the resulting endpoints
coordinates describing one estimated box.
In order to find out the particles number needed for a total
20t coverage of the real position, we use a variable number of
particles in the MCB localization algorithm. Experimertos/
0 that the minimal number of particles needed is aroand

0 20 40 60 80 100 particles. With this particle distribution, the averageoerob-

X1 (m) tained in MCB is2.0296m with a variance equal t.6200m>
while the computation time is up t5.4960s. These results
demonstrate the high performance of our method compared to
the MCB localization, in terms of computation time, memory

Fig. 13. Estimated boxes for three different valuevgf., in Case 1.

to a loss in estimation accuracy. requirement and accuracy. In Fig. 15, we show the results of
the localization by MCB with500 particles compared to the
C. Comparison to the Monte-Carlo boxed localization GBL technique.

The Monte-Carlo Boxed (MCB) localization algorithm [11] . o
consists of two steps: (i) The prediction of particles imsigD- Impact of the ranging errors on the localization process
the intersection of the mobility square and the observation The GBL method uses RSSI measurements in order to
approximated squares, and (i) the filtering of particles bgefine anchor information. Fixing a threshaly, an anchor
accepting only those respecting the disks constraintss&hés considered within the sensing range of the node if its
two steps are repeated until a fixed number of particles derresponding RSSI is larger thdmy. Errors over the RSSI
kept. The estimated position is the mean of the particles Tlvalues may yield erroneous measurements and thus affect
method requires saving all the particles in the memory atyevehe localization process. Another equivalent problem s th
instant in order that can be used in the next time step. accuracy of the channel pathloss model relating the signal

In order to compare the proposed Guaranteed Boxed Locsirength to the distance traveled by the signal. Errors over
ization (GBL) to the MCB method, we use the same simulatidghe pathloss parameters lead to an incorrect sensing range
conditions as above. The number of particles is seb@o value corresponding t@,. Let r be the computed value of
particles. In Fig. 14, we plot the estimated boxes obtain¢lde sensing range andg its correct value. An erroneous value
by the GBL technique. We plot also th@ particles obtained of » leads to an inaccurate localization even with correct
by the MCB method. Fig. 14 clearly illustrates that the realbservations. A value larger thang yields larger boxes and
position can not be efficiently covered wifi particles. The thus less precision in the localization results; while adow
average error is equal t@.1865m with a variance equal value leads to smaller boxes that may not contain the real
to 1.7596m? using the MCB method while they are up topositions or it could lead to empty intersections, as weil. |
1.7775m and 1.3504m? respectively with the GBL method this case, the estimation error is more important. Morgover
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Fig. 17. Average error obtained using different values efdknsing range.

range information. Uncertainty about these informatiory ma

100 ‘ ‘ T lead to inaccurate localization results as shown in Section
=l R N rsr =12 IV-D. In GBL method, where boxes might be used instead of
sol P — reir=s | approximated values for these parameters, one can entrance t
= o Reaf . robustness of the localization technique. An illustratidithis
positions . ) . .
pTiTe robustness is shown in this section where we compare the GBL
__60f [ it 1 (Case 2) to MCB method based on uncertain anchors positions
£ e Hﬂﬁﬂ fediellnd ; and communication range. For this purpose, we fiha 2m
B Y=l - ! box around the true anchors positions andéna interval on
40+ += ; ro o
/EEI_! ‘‘‘‘‘‘‘ - the communication range whose exact valuelisn. The
= average errors obtained are equallté712m and 3.0203m
20t for GBL and MCB respectively, showing the capacity of the
GBL technique to efficiently deal with uncertainty about the
input parameters.
% 20 40 60 80 100

x1 (m) F. Back-propagated localization

Fig. 16. Estimated boxes obtained using different valugb@tensing range. ~ The back-propagated localization uses the current result t
update previous boxes, and then propagates again forwardly

, the updated boxes to correct the up-to-time one. In order to
this may cause the loss of the guaranteed aspect of the methgd,, the performance of our technique in offline applicatjon

Fig. 16 shows the boxes obtained using different values 9f \se the mobility model composed of two sinusoids as
r. As can be expected, the boxes obtained using ro are  jp5ve. The maximal velocity of the node i¢ = 2.035m

wider than the ones obtained usingbut they still contain the per second. We run the offline GBL localization and compare
real positions; while the boxes obtained with smaller r&ngg 1, the online localization where current measurements ar
do not contain the exact position at almost all the timessteR,gaq for contracting only current boxes. Simulations shea t
Fig. ;7 shows the average estimation error asa functioneof t o hackward propagation yields a reductiopvious boxes
sensing range valuey is set to10m. We variedr between \ypije the following forward propagation gfrevious boxebas

Gm and14m. As expected, the minimal error is obtained whilgy contracting impact. This means that only one-way update
using the correct value of the sensing range. Whengreater (backward way) is sufficient.

thanrg, the error increases slightly with the increase-00On In our technique, we limited the numbé¢ of backward

the other hand, when is lower thanry, the increase of the yime_steps allowed since it increases the computationa-co
estimation error is more important with the decrease.of plexity. In order to determine the maximal after which
N o contractions are no more efficient, we plot the average boxes
E. Boxed anchors positions and communication range  area as a function of the number of the backward time-steps
In a network where only few nodes (anchors) are equippatlowed as reported in Fig. 18. It shows that the backward
with GPS, unknown-position nodes estimate their positiggropagation remains efficient untltime-steps back. Fig. 19
using anchors information. Thus, anchor-based locatinatishows the boxes obtained in the online localization and the
techniques, where nodes periodically communicate with apack-propagated localization with back time-steps. We can
chors, require accurate anchor positions and communicatiee, in Fig. 19, that with back-propagated localizatiorxeso
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(Case 2) of our method. One can note that wiitho 7-hop
are much more contracted than with online localization. Thghchors in Case B¢{hop anchors in Case 1), the mobile node
computation time of the offline localization algorithm is ups optimally localized. Fig. 21 shows the boxes obtainedhwit
to 0.7650s with an average error decreasing 100759m, 1-hop based and up t@-hop based methods in the second
compared to a computation time 0f6450s and an average case. With the increase of the number of involved anchors,
error of 1.7775m for online localization; whereas the errorthe average error decreases frat775m to 0.6241m with
variance decreases from5960m? for the online method to variances decreasing from3504m?2 to 0.3494m?, at the cost

0.3899m? for the back-propagated technique. of the computational time which increases fran%920s to
15.1930s. Note that this technique could be used to reduce
G. Boxed localization using multi-hop anchors the number of anchors in the network while maintaining a

The multi-hop based localization is an efficient techniqu%OOOI localization performance.

in low anchors density networks. It uses near and far anchors

information to localize each moving node. In order to evidua V. CONCLUSION

this technique, we keep the same anchors density as abovin this contribution, we introduced the Guaranteed Boxed
and consequently, the number of anchors involved in th®calization, a novel approach based on interval analysis
localization process at each time step will increase. Bbéh tfor self-localization in MANETs. The use of a state space
received strength based and the DV-hop based method camtmelel provides an accurate dynamic process instead of a
used to define at which hop each anchor belongs at every timepeated static localization. By associating boxes toretéd
step. In Fig. 20, we plot the average error as a function of tpesitions, we have covered bounded areas where solutions
maximal hop-count allowed in the total approximated schenserely exist. The propagation of position boxes maintains
(Case 1) and the approximated prior model based scheméounded estimation cumulative error. Compared to Monte
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