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Anchor-based localization via interval analysis for
mobile ad-hoc sensor networks
Farah Mourad, Hichem Snoussi, Fahed Abdallah, Cédric Richard

Abstract—Location awareness is a fundamental requirement
for many applications of sensor networks. This paper proposes
an original technique for self-localization in mobile ad-hoc
networks. This method is adapted to the limited computational
and memory resources of mobile nodes. The localization problem
is solved in an interval analysis framework. The propagation of
the estimation errors is based on an interval formulation of a
state space model, where observations consist of anchor-based
connectivities. The problem is then formulated as a constraint
satisfaction problem where a simple Waltz algorithm is applied in
order to contract the solution. This technique yields a guaranteed
and robust online estimation of the mobile node positions. Ob-
servation errors as well as anchor node imperfections are taken
into consideration in a simple and computational-consistent way.
Multi-hop anchor-based and back-propagated localizations are
also made possible in our method. Simulation results on mobile
node trajectories corroborate the efficiency of the proposed
technique and show that it outperforms the particle filtering
methods.

I. I NTRODUCTION

The emergence of Mobile Ad-hoc sensor NETworks
(MANETs) has recently launched a growing widespread field
of research involving theoretical and applicative challenges.
The increasing capabilities and the decreasing costs of mobile
devices make now mobile wireless networks possible and
practical. These networks have significant advantages over
traditional wired networks, such as easy deployment, self-
management and no requirement for established infrastructure.
MANETs are wireless networks defined by a collection of
low-cost, tiny and densely distributed mobile sensor nodes,
equipped with sensing and computation resources. The arising
problems of such embedded devices are their limited memory,
bandwidth, computational capabilities and energy reserve.
In addition, many applications impose non-renewable nodes
batteries and thus a limited lifetime of the network. Having
typical low powered nodes, the main challenge of wireless
sensor network research is to design collaborative and energy-
aware processing tasks in order to prolong the lifetime of the
whole network.

Research on mobile sensor networks, where the nodes
mobility is uncontrolled, has partly focused on self-localization
issue. Data processing and decision-making in mobile sensor
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networks assume that information provided by the sensor
nodes are tightly related to their geographical locations.There-
fore, the localization process is an absolute necessity to make
sense of the observed data. Many applications such as target
tracking or spatial interpolation for region monitoring [1],
[2], [3] depend on the knowledge of the locations of sensor
nodes. There are several constraints for choosing a localization
technique, such as the limited computational power and the
restricting environment conditions. A simple solution consists
of equipping all nodes with Global Positioning Systems (GPS)
[4]. However, this technique is impractical given the high
energy consumption, the high cost and the binding size of
GPS devices.

Recently, anchor-based localization methods have been
proposed. In such methods, few nodes (calledanchors) are
equipped with GPS. The remaining nodes gather information
from anchors in order to estimate their positions using efficient
self-localization techniques. Some of the existing anchor-based
works consist of repetitive static localization algorithms [5],
[6], [7]. For instance, in the centroid method [6], each node
defines its position as the center of all the observed anchors.
In a different scenario, a bounding box localization has been
proposed in [8], where nodes use their detection of a moving
target to improve their position estimates. However, these
methods have a limited performance due to the absence of
any mobility modeling in the localization procedure. In [9],
a dynamic localization scheme, the Monte-Carlo Localization
(MCL), has been proposed. It is a new kind of Bayesian filter-
ing algorithms based on the sequential Monte-Carlo method
[10]. Using state space models, it incorporates a mobility
propagating model in the localization process. More recently,
an enhanced version of MCL, the Monte-Carlo localization
Boxed algorithm [11], has been proposed in order to make bet-
ter use of the gathered information. These Bayesian techniques
are implemented by an approximate particle filter method [10]
where many samples (particles) are drawn in order to estimate
the node position. Nevertheless, particle-based methods need a
high number of particles in order to achieve a good localization
performance and thus require large amounts of memory.

In our work, we propose a new online anchor-based lo-
calization technique allowing the propagation of the position
incertitude in an interval form. In order to take advantage of
nodes mobility models, a state-space formulation is adopted
for the online self-localization of nodes. The central ideaof our
method is to define the localization problem as a Constraint
Satisfaction Problem (CSP). Tools of interval analysis [12]
are then used in order to solve the CSP, where the prior
mobility model and the observations are both considered
as simultaneous constraints. Propagating boxes (multidimen-
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sional intervals) allows a guaranteed estimation of the node
position using only few parameters (endpoints of one box).
The proposed boxed localization achieves a substantial gain
in both memory and localization computational costs while
ensuring the same performance as the particle filter algorithms.
Furthermore, a boxed modeling of the anchors positions and
of the sensing range incertitude enhances the robustness ofthe
localization technique. Moreover, a back-propagated localiza-
tion is made possible for applications that do not need a real-
time localization. This contribution also proposes a multi-hop
based localization technique for low anchor density networks.
A large sensor field is covered with very few anchor nodes by
flooding the network with anchor messages. With the multi-
hop anchors information, every sensor node is able to construct
location boundaries where it surely exist.

The rest of the paper is organized as follows. In section
II, a brief introduction to interval analysis tools and their
use in solving constraint satisfaction problems is proposed.
Section III contains the main contribution of this paper: a
guaranteed energy/memory-aware self-localization technique
for MANETs. In Section IV, numerical results illustrating the
efficiency of the proposed technique are discussed. SectionV
concludes the paper.

II. I NTERVAL ANALYSIS

The interval analysis represents a rigorous active field in
scientific computation. This growing branch of applied math-
ematics aims to manipulate intervals instead of real numbers.
Although the interval analysis is just a new language for
inequalities, it is a very powerful framework providing an
interesting alternative to punctual approximation. With interval
methods, one is able to compute bounds of the possible
solutions that correspond to measured quantities, and thusto
obtain guaranteed regions that involve the correct solution.
With simple operations, the interval analysis allows to con-
sistently deal with problems involving non-punctual (interval)
data. Interval computation is a special case of computationon
sets, and the set theory provides the foundations for the interval
analysis. In the following, the basics of the interval analysis are
briefly presented, followed by constraint satisfaction problem
tools.

A. Interval arithmetics

The interval analysis approach treats intervals as a new kind
of numbers represented by the ordered pair of its endpoints.
An interval[x] of IR is a closed bounded set defined as follows,

[x] = [x, x] = {x ∈ IR, x ≤ x ≤ x} (1)

wherex andx are the (finite or infinite) inferior and superior
interval endpoints respectively. Interval analysis applies all
standard set and arithmetic operations on intervals.

The main classical arithmetic operations, namely addition
(+), substraction(−), multiplication(∗) and division(/), can
be extended to intervals. In fact, let⋄ be any of these operators.
It can be extended as an interval operator as follows,

[x] ⋄ [y] = [{x ⋄ y ∈ IR|x ∈ [x], y ∈ [y]}] . (2)

Operations Definitions
∩ [x] ∩ [y] = [max{x, y},min{x, y}]

⊔ [x] ⊔ [y] = [min{x, y},max{x, y}]
+ [x] + [y] = [x + y, x + y]

− [x] − [y] = [x − y, x − y]
∗ [x] ∗ [y] = [min{x ∗ y, x ∗ y, x ∗ y, x ∗ y},

max{x ∗ y, x ∗ y, x ∗ y, x ∗ y}]

TABLE I
SOME DEFINITIONS OF OPERATIONS USED IN INTERVAL ANALYSIS.

Some of the listed operations are defined in Table I.
Set-theoretic operations can be applied to intervals. Con-

sider two intervals[x] and [y]. Their intersection is

[x] ∩ [y] = [{z | z ∈ [x], z ∈ [y]}] .

Most often, the union of two intervals is not an interval. In
the interval framework, the union of two intervals is calculated
as the smallest interval containing[x]∪ [y]. Thus, the interval
union⊔ is defined as shown in Table I.

A multi-dimensional interval[x] of IRn, calledbox, results
from the cartesian product ofn real intervals as follows,

[x] = [x1] × ... × [xn] = [x
1
, x1] × ... × [xn, xn]. (3)

Its i-th interval component[xi, xi] is the projection of[x] onto
the i-th axis. The notions introduced previously for intervals
extend straightforwardly to boxes. For example, the intersec-
tion of two boxes is obtained by intersecting independently
the intervals constituting these boxes.

B. Inclusion functions

Some other interval analysis tools are the inclusion func-
tions. Letf be a function fromIRn to IRp. The image byf
of a box [x], denotedf([x]), is defined as

f([x]) = {f(x) | x ∈ [x]}.

It is obvious thatf([x]) is not necessarily a box.
The interval function[f ] from IRn to IRp is an inclusion

function for f if it yields a box [f ]([x]) such that

∀[x] ⊂ IRn, f([x]) ⊂ [f ]([x]) ⊂ IRp (4)

From this definition, it is straightforward to see that for a
function f more than one inclusion function may exist. The
minimal inclusion function off , denoted[f ]∗, is the smallest
box in IRp that enclosesf([x]). An illustration of inclusion
functions is shown in Fig. 1.

Let [fi], i = 1 · · · p, bep inclusion functions fromIRn to IR
associated with the coordinate functionsfi of f . A possible
inclusion function off is then given by

[f ]([x]) = [f1]([x]) × ... × [fp]([x]).

Thus, a simple approach to build an inclusion function for
f is to consider separately each[fi] and to replace each
involved real variable withinfi by an interval variable, and
each operator or function by its interval counterpart. The
resulting inclusion function[f ] is then called the natural
inclusion function off .
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Fig. 1. Illustration of inclusion functions.

There is no guarantee that the natural inclusion function is
thebest onethat can be used forf . In fact, the principal lack of
interval analysis tools is their incapacity to find the minimal
size box that encloses any set of solutions inIRn. In order
to overcome this drawback, constraint satisfaction algorithms
(also called contractors) are combined to the interval analysis
tools. The rationale behind these techniques is to use the
redundancy of equations in order to reduce the size of the
enclosing box.

C. Satisfaction of constraints : Waltz algorithm

A Constraint Satisfaction Problem (CSP) is defined by
a set ofm constraints,f1, f2, ..., fm, involving n variables
x1, x2, ..., xn. Each constraint is defined as an equation
fj(x1, ..., xn) = 0 linking the components of then-vector
x = (x1, ..., xn). Each variablexi has a nonempty domainDi

of possible values. Satisfying the constraints consists offinding
the set of solutionsS, defined asS = {x ∈ D |f(x) = 0}
wheref is the vector of constraints andD an initial prior box
enclosing the solution, defined inIRn by the combination of
all the real domainsDi, i = 1, ..., n. In general, the solution
set is not a box; it is a complete assignment of variables that
satisfies all the constraints. Solving the CSP problem in an
interval analysis framework consists of finding the smallest
box [x]∗ ⊂ D that contains all possible solutions.

A contractor is a tool for the constraint satisfaction problem.
It is an operator applied in order to get the solution[x]∗,
and thus to eventually contract as possible the initial boxD.
In other words, the contractor is an algorithm that uses all
constraints in order to reduce as much as possible the area
of the box enclosing the exact solution. There are different
kinds of methods to develop contractors. Each of these meth-
ods may be more suitable to some types of CSP. In this
paper, we use the forward-backward propagation technique
called Waltz algorithm [13], [14]. This contractor consists of
applying iteratively primitive constraints, without any prior
order, until the contractor becomes inefficient. A primitive
constraint is a function involving arithmetic operations and
standard functions (cos, exp, etc.). This strategy involves (i)
using constraints equations to define explicitly each variable
as a function of all the others, (ii) using interval analysisto
express all variables and arithmetic operations in an interval
framework, and (iii) initializing the variables with the domains

Di, i = 1, ..., n. The final phase (iv) consists of applying
the explicit equations repetitively, without any prior order, to
contract the variable intervals in the way to satisfy all the
constraints. The loop is repeated until none of the variables is
no longer contracted. The solution box is therefore defined by
the cartesian product of then contracted intervals. The boxes
obtained are not necessarily the smallest boxes enclosing the
set of solutions. In other words, the Waltz contractor does not
lead certainly to globally minimal boxes; but to local minima.
However, it remains a simple low-cost efficient technique. See
algorithm 1.

Input : D1, D2, ..., Dn

Output : [x1]
∗, [x2]

∗, ..., [xn]∗

Generate primitive functionsF j
i , i = 1, ..., n, j = 1, ..., m

using them constraints in order to express explicitly
each variable;
while at least one variable is contracteddo

for j = 1, ..., m do
for i = 1, ..., n do

[xi] = [xi] ∩ F j
i ([xk], k 6= i);

end
end

end
Algorithm 1 : Waltz algorithm.

III. G UARANTEED BOXED LOCALIZATION

The proposed Guaranteed Boxed Localization (GBL) tech-
nique is based on propagating a set of constraints defined by
the prior mobility model of the moving nodes and the infor-
mation messages communicated by the neighboring anchors
(moving or static nodes equipped with positioning systems).
In this paper, non-anchor information are not used. Therefore,
the problem is reduced to separable self-localization problems
where each node uses its individual prior moving model in
addition to anchor information. In the following, without loss
of generality, we focus on the localization of only one mobile
node. The same algorithm is implemented in parallel on the
remaining nodes.

A. Definition of the localization problem

Mobile nodes are moving in a2-dimensional deployment
area where changes in direction and speed occur uncontrol-
lably. Many mobility models have been proposed in order to
represent the real movements of mobile nodes [17], [18], [19].
The model we are using in our method consists of a state space
model where only the maximal velocity of a node is known. In
this model, a mobile node moves between two time-steps from
its current location to a new location by randomly choosing a
direction and a speed for its movement. The speed is bounded
by its maximal value,vmax, while the direction varies between
0 and 2π. This means that over one time-period, the node
moves within thevmax-radius disk, centered at the previous
position. Letx(t) = (x1(t); x2(t)) be the coordinates of the
mobile node at timet. The dynamic state space model that
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we use in the GBL technique is defined by the following
equations,

{

x1(t) = x1(t − 1) + v(t) cos θ(t)
x2(t) = x2(t − 1) + v(t) sin θ(t)

(5)

where, for simplicity, the duration of one time-period is
assumed equal to1s. Variablesv(t) andθ(t) are respectively
the node velocity and the moving direction between instants
t−1 andt. In our model, where only the maximal velocity of
mobile nodes is assumed known,v(t) andθ(t) are uniformly
distributed between0 and vmax and 0 and 2π respectively.
This leads to a disk equation given by,

(x1(t) − x1(t − 1))2 + (x2(t) − x2(t − 1))2 ≤ v2

max . (6)

If we consider a punctual position att − 1 defined by
x(t− 1) = (a, b), the position at timet will be a disk having
vmax as radius and(a, b) as center. In other words, equation
(6) does not yield a punctual solution, but a disk where the
real solution certainly exists. Additional prior information on
the nodes trajectories could incorporated to refine the general
mobility model described above.

Measurements to anchors are then used to further refine
the mobile node localization. If a node can communicate
with an anchor, its position is restricted to be in some
region relative to the anchor. Such constraints are used by
the moving node to define local connectivity measurements
at each time step. A connectivity measurement relative to an
anchor consists of one-bit information set to1 if the anchor
is within the communication range of the mobile node. This
anchor is calledone-hopanchor. We make the assumption of
a rotationally symmetric communication ranger where each
node communicates with neighboring nodes that fall within the
disk of radiusr centered on the node. LetM be the number of
anchors in the deployment area andm be the index of a single
anchor such thatm ∈ {1, ..., M}. The observation equations
are defined by

ym(t) =

{

1 if (x1(t) − am
1

)2 + (x2(t) − am
2

)2 ≤ r2

0 otherwise
(7)

where am
1

and am
2

are the coordinates of them-th anchor,
m ∈ {1, ..., M}. As for the mobility equation, each obser-
vation equation does not yield a punctual solution, but a
disk centered on the corresponding one-hop anchor withr
as radius. Satisfying all the observation equations produces
the overlapping region of all one-hop anchor disks. The
localization problem is defined by the set of the mobility
equation and the observation equations where the connectivity
measurements are non-zero. The solution of this problem is
not punctual, but it consists of the intersection region of the
anchor disks with the mobility disk.

B. Localization by interval analysis

The interval framework provides an efficient and consistent
methodology to solve the localization problem described by
(6) and (7). Instead of manipulating punctual positions, the
main idea of our approach is to associate the node position
with a multidimensional interval (box). The position box

covers a guaranteed rectangular area where all acceptable
positions certainly exist. The novelty of our work is that
we define locations as intervals covering all acceptable so-
lutions with respect to the given constraints instead of using
approximated values. Propagating the positions in the interval
form guarantees a bounded cumulative error in the localization
process. The self-localization problem is then formulatedas a
CSP problem, where both the mobility and the observation
models define the set of constraints.

The boxed localization algorithm is based on two phases
at every time-step: (i) the propagation phase and (ii) the
contraction phase. The first phase consists of generating the
first domain of solutions called the prior region. It uses the
mobility equation to propagate the location computed att− 1
till the current time t yielding a two-dimensional interval.
The contraction step consists of applying the observation and
the mobility constraints iteratively in order to minimize the
area of the prior box. This can be implemented by the Waltz
contractor. Note that the Waltz algorithm does not produce
the globally minimal box but a local minimum. This means
that the position box generated is not necessarily the optimal
solution of the localization problem.

In order to use the interval analysis tools, the localization
problem should be modified in the way to fit the interval
framework. Let[x1](t) and [x2](t) be the coordinate intervals
of the mobile node at timet. In the interval form, the motion
equation (6) is formulated as follows,

[[x1](t)−[x1](t−1)]2+[[x2](t)−[x2](t−1)]2 = [0, v2

max] (8)

where vmax is the maximal velocity of the node. In order
to use interval analysis operators, constraints should be refor-
mulated whereby each coordinate is defined as a function of
all other variables. The above constraint can be rewritten as
follows,
{

[x1](t) = [[[x1](t − 1) − [b1](t)] ∪ [[x1](t − 1) + [b1](t)]]
[x2](t) = [[[x2](t − 1) − [b2](t)] ∪ [[x2](t − 1) + [b2](t)]]

(9)
where [b1](t) = [

√

v2
max − [[x2](t) − [x2](t − 1)]2] and

[b2](t) = [
√

v2
max − [[x1](t) − [x1](t − 1)]2]. If the previous

position is punctual, the result will be a disk. However, the
propagation of a box with a disk equation does not produce a
disk. In other words, if the position at the previous time-step
is non-punctual, the mobility equation does not yield a disk;
but a rounded corner square as shown in Fig. 2. Resolving
the equation (8) alone, as in the propagation phase, leads to
the minimal inclusion function of the solution, i.e. the minimal
box that encloses the rounded corner square. The box could be
defined by extending the coordinate intervals obtained att−1
with a vmax length in the top, down, right and left directions
respectively.

The connectivity constraints could also be formulated in an
interval form as follows,

[[x1](t) − ai
1
]2 + [[x2](t) − ai

2
]2 = [0, r2], i ∈ I (10)

wherer is the communication range of the node,ai
1

and ai
2

are the punctual coordinates of thei-th anchor andI is the set
of all anchors communicating with the mobile node. In other
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[x](t − 1)
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t − 1
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Fig. 2. The result of the propagation of a box with a disk equation.

r

vmax

A

A

A

Fig. 3. Mobility and observation models with disk equations.

words, I is the set of indices of all one-hop anchors; those
with connectivity measurements equal to1. Explicit equations
are also needed to implement the Waltz algorithm. They are
defined as follows,

{

[x1](t) = [[ai
1
− [bi

1
](t)] ∪ [ai

1
+ [bi

1
](t)]]

[x2](t) = [[ai
2
− [bi

2
](t)] ∪ [ai

2
+ [bi

2
](t)]]

, i ∈ I (11)

where [bi
1
](t) = [

√

r2 − [[x2](t) − ai
2
]2] and [bi

2
](t) =

[
√

r2 − [[x1](t) − ai
1
]2]. If we consider punctual anchor po-

sitions, the disk equations yield disks centered on the one-
hop anchors withr as radius. In the interval form, each disk
taken alone is represented by the smallest box that encloses
it. It consists of taking a square centered at the corresponding
anchor with2r as its side length.

The localization process consists of solving the equation
system defined by the mobility and the observation models.
The common solution of all equations contains the correct
position of the mobile node. It is defined by the intersection
region of the observation disks and the mobility rounded
corner square. With the interval analysis tools, the computed
position consists of the contracted box enclosing the overlap-
ping area set by all the constraints together. Fig. 3 shows the
smallest box that encloses the correct solution, if we consider a
punctual position for the mobile node at the previous time-step.
That is, for simplicity, the rounded corner square is reduced
to a disk. In order to reduce the computational cost, we also
propose two additional approximating schemes by relaxing the
disk equations to square equations. In the first scheme, the
prior motion equation is approximated as follows,

{

[x1](t) = [x1](t − 1) + [−vmax, vmax]
[x2](t) = [x2](t − 1) + [−vmax, vmax]

. (12)

r

vmax

A

A

A

r

vmax

A A

A

(a) (b)

Fig. 4. Approximated schemes using square equations in the mobility model
in (a) and both in the mobility and observation models in (b).

Fig. 4(a) shows the resulting box obtained by relaxing the mo-
bility equation. Replacing the correct motion model with the
approximated squared model does not affect the propagation
phase (i.e. when the mobility equation is used alone). In fact,
as shown in Fig. 2, defining the rounded corner square in the
interval framework yields an identical box to the one obtained
while propagating the previous box with the approximated
equation. However, the approximation of the motion model
may affect the contraction phase. In the second scheme, the
connectivity constraints are also approximated as follows,

{

[x1](t) ⊆ [ai
1
− r, ai

1
+ r]

[x2](t) ⊆ [ai
2
− r, ai

2
+ r]

, i ∈ I. (13)

Fig. 4(b) illustrates the box obtained using the approximations
of the motion and observation equations. It is worth noting
that, in the illustration of the approximated schemes, we have
considered a punctual position of the node in the previous
time step. As expected, relaxing the constraints leads to larger
position intervals enclosing those obtained when using the
exact disk constraints.

Algorithm 2 shows the guaranteed boxed localization
pseudo-code based on the one-hop anchors observations. It
uses the second scheme of the method where only observations
are kept as disk equations and the propagation model is
approximated by squared constraints. The Waltz algorithm
stops when the number of iterations preformed exceeds a
certain threshold or when the instant location box is no more
contracted.

The interval-based approach also provides a convenient
framework to deal with environment imperfections such as
anchors positions or the communication range imprecisions.
For instance, the GPS does not provide exact anchor posi-
tions. Moreover, converting the received signal strength to
distances is imprecise. The conversion errors could affectthe
localization results when the real distance from the mobile
node to an anchor is close to the communication range value.
In these circumstances, the mobile node could be supposed
outside the connectivity disk of an anchor while it is not and
vice-versa. In the GBL technique, the uncertainty about the
measurements can be incorporated by the use of intervals
for anchors positions and the communication range instead
of approximated values. With the non scalar communication
range, the border of the connectivity disk is not a circle buta
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Input : vmax, r, anchors coordinates, observations
Initialization : [x1](0) and [x2](0);
for t ≤ T do

[x1](t) = [x1](t − 1) + [−vmax, vmax];
[x2](t) = [x2](t − 1) + [−vmax, vmax];
I = Indices of1-hop anchors;
while contraction is positivedo

for i ∈ I do
[bi

1
](t) = [

√

r2 − [[x2](t) − ai
2
]2];

[x1](t) =
[[x1](t) ∩ [[ai

1
− [bi

1
](t)] ∪ [ai

1
+ [bi

1
](t)]]];

[bi
2
](t) = [

√

r2 − [[x1](t) − ai
1
]2];

[x2](t) =
[[x2](t) ∩ [[ai

2
− [bi

2
](t)] ∪ [ai

2
+ [bi

2
](t)]]];

end
end

end
Algorithm 2 : Guaranteed boxed localization algorithm
using approximated propagation equations.

ring. The constraints are modified as follows,

[[x1](t)− [ai
1
]]2 +[[x2](t)− [ai

2
]]2 = [0, max[r]2], i ∈ I (14)

where [ai
1
] and [ai

2
] are the coordinate intervals of thei-th

anchor and[r] is the communication range box.
The explicit equations are then defined as follows,
{

[x1](t) = [[[ai
1
] − [bi

1
](t)] ∪ [[ai

1
] + [bi

1
](t)]]

[x2](t) = [[[ai
2
] − [bi

2
](t)] ∪ [[ai

2
] + [bi

2
](t)]]

, i ∈ I (15)

where[bi
1
](t) = [

√

max[r]2 − [[x2](t) − [ai
2
]]2] and [bi

2
](t) =

[
√

max[r]2 − [[x1](t) − [ai
1
]]2].

Remark 1:The algorithm we propose uses constraints
based on a state space model. The contraction is thus made
on an initial box until it encloses the intersection area of a
propagation disk and the connectivity regions provided by
the detected anchors. Using the general prior model where
only the maximal velocity of a node is fixed, we define
the propagation constraint as a disk equation determined by
the maximal velocity. An erroneous value of the maximal
velocity parameter may affect the localization performance
leading to an inaccurate intersection region. Indeed, as shown
in Fig. 5, a small velocity may cause an empty overlapping
region, whereas a larger velocity than the real value causes
less contraction of the solution box. Note that with a large
value, the propagation disk may cover the intersection of the
sensed anchors regions. Applying the localization in this case
is equivalent to repetitive static methods that do not consider
the state space model. This situation also occurs when we
use the correct value ofvmax but for some time instants,
the real velocity is much smaller thanvmax. In this case,
the connectivity region formed by anchors will be included in
the vmax disk; and thus the motion model will not contribute
to the contraction at these time instants. In case of empty
intersection, the mobility model constraint is relaxed andthe
Waltz algorithm is only applied to the observation constraints.
A larger box that yields less accurate position is thus obtained,

A

A

A

vmax

A

vmax

(a) (b)

Fig. 5. Different values ofvmax (lower in (a) and larger in (b) than its real
value).

as shown in Fig. 5(b). Note that the choice of the maximal
velocity has the same impact on all localization methods using
the state space model with a fixed velocity. For instance, the
particle filtering technique suffers, in the same way, from the
dependence on the value of the maximal velocity.

C. Back-propagated localization

In this section, we propose an extension of the GBL tech-
nique for situations where the realtime constraint is relaxed.
In online applications, observations collected at a current
instant should be processed to generate a solution before
receiving observations at the next time instant. However, for
non-realtime applications, collected information at a current
time-step could be used to correct boxes obtained at previous
time-steps. In fact, the position box obtained at timet using
only observations from the current instant is used to correct
boxes obtained at instantst − 1, t − 2, t − 3,. . .. Since the
position coordinates coming from two consecutive instants
are related with the mobility model, this equation is used
to correct past boxes. Let the position box corresponding to
time t − 1 denoted by theprevious box. The observations
collected at timet are used to generate a current box[x](t).
This box is then propagated in a backward way using the
prior equation defined by (8). The back-propagation of[x](t)
yields an additional constraint for theprevious box. Using this
constraint yields a more accurate box for the instantt − 1.
The resulting box[x](t − 1) is then similarly used to correct
the box corresponding tot − 2, and so on. These steps could
be repeated until the initial instant or until a fixed number
of backward time-steps is performed. The equations used to
define the constraints for theprevious boxesare shown in the
following,
{

[x1](k − 1) = [[[x1](k) − [b1](k)] ∪ [[x1](k) + [b1](k)]]
[x2](k − 1) = [[[x2](k) − [b2](k)] ∪ [[x2](k) + [b2](k)]]

(16)
where k decreases from the current instantt
down to some fixed instant greater than2,
[b1](k) = [

√

v2
max − [[x2](k − 1) − [x2](k)]2] and

[b2](k) = [
√

v2
max − [[x1](k − 1) − [x1](k)]2]. These

equations are defined using equation (9) and going back in
time starting with the current instantt.

The first phase of the algorithm defined above consists of
going back in order to correctprevious boxes. The following
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Fig. 6. Back-propagated localization : first forward step in(a) and backward
step in (b).

phase consists of propagating the resultingprevious boxes
forwardly till the current time-step in order to update again
all available position boxes. The forward-propagation applies
the same iterations of the backward correction but in the other
direction. That is, theprevious boxesare propagated forwardly
in order to provide additional constraints for the following
instants. The forward propagation is given by the following
equations,
{

[x1](k) = [[[x1](k − 1) − [b1](k)] ∪ [[x1](k − 1) + [b1](k)]]
[x2](k) = [[[x2](k − 1) − [b2](k)] ∪ [[x2](k − 1) + [b2](k)]]

(17)
wherek increases from the instant2 up to the current instantt,
[b1](k) = [

√

v2
max − [[x2](k) − [x2](k − 1)]2] and [b2](k) =

[
√

v2
max − [[x1](k) − [x1](k − 1)]2]. Fig. 6(a) shows the for-

ward localization while Fig. 6(b) shows the effect of the
backward phase on the previous boxes.

This technique takes advantage of all available information
since it makes use of old, current and future observations.
Using more information, it outperforms the simple online
localization introduced in Section III-B. However, since this
method uses additional constraints at every time step, it re-
quires higher computational capacities than the online method.

D. Boxed localization using multi-hop information

In the guaranteed boxed localization technique, anchors
flood the sensor field with beacon messages periodically. Each
unknown position sensor node receives messages from the
anchors within its communication range and makes use of this
information to construct location boundaries. The accuracy of
the position estimation is thus related to the number of one-
hop anchors neighboring each GPS-less node.

To enhance the localizations performance in networks where
anchors density is low, a hop counting technique based on
received signal strength can be employed. The anchori is
ranged as ak-hop anchor with respect to a certain node if
it is located within thering formed by the two concentric
Rk−1-circle andRk-circle around the node withRk = kr and
r is the communication range. The estimated distance between
an anchor and the mobile node is obtained by converting the
strength of the signal sent by the anchor and received by
the node. The additional constraint is given by the following
equation,

(k − 1)r <
√

(x1(t) − ai
1
)2 + (x2(t) − ai

2
)2 ≤ kr (18)

wherek ≥ 1, x1(t) andx2(t) are the real coordinates of the
node andai

1
andai

2
are the coordinates of thei-th anchor.

Other hop-counting techniques might be used, for instance
the DV-hop method [15], [16]. It is a hop-by-hop localization
algorithm that works as an extension of both distance vector
routing and GPS positioning. This method aims to compute
average hop distances from each node to all anchors. Every
anchor overwhelms the network with messages composed
of five fields: the ID of the anchor, its two coordinates in
the deployment area coordinate system, the sequence number
(consistent with the time step) and a hop counter that increases
every time the message passes by a node. Each unknown-
position node has an anchor table updated every time the node
receives an anchor message with a new sequence number or
a lower hop-count. An anchor that receives another anchor
message uses the hop-count, the coordinates of the anchor
and its own coordinates to compute an elementary distance
corresponding to one hop-count. Every anchor sends the
average elementary distance as a supplementary field in its
following-sequence messages or as an intermediate correction
message. The average hop equivalent size is therefore used
by the unknown position nodes in addition to hop-counts
to compute there average distances to anchors. In order to
apply this technique in our method, every node compares
its estimated distances from anchors to thresholds that are
multiple of the communication range and therefore, it defines
the ring that encloses every anchor. This means that we are
adapting the DV-hop method in the way that we are bounding
the estimated distances to affect hop-counts to anchors. Since
the computation of the distances to anchors are imprecise,
using thresholds and thus hop-counts instead of the estimated
distances keeps the guaranteed aspect of the method.

In our work, we adapt the multi-hop information as ad-
ditional constraints to be involved in the nodes localiza-
tion problem. This technique outperforms the one-hop based
method in both accuracy and computational efficiency in low
anchors density networks. While the propagation equation
remains unchanged, the observations constraints are modified
according to the following equation,

[[x1](t) − ai
1
]2 + [[x2](t) − ai

2
]2 = [(k − 1)2r2, k2r2] (19)

wherei ∈ Ik, Ik is the indices set of allk-hop anchors detected
by the mobile node andk ≥ 1. The algorithm 3 refers to the
multi-hop based localization method. It considers the second
scheme of our method that uses the approximated propagation
equations.

The hop-counting techniques presented above could gener-
ate erroneous measurements due to environment imperfections.
The strengths of the signals sent by the anchors decrease with
the increase of the traveled distance. The relation betweenthe
signal strength and the distance is defined by a parameterized
pathloss model. The conversion of the received signal strength
to distance information is imprecise due to the imprecision
of the pathloss parameters. Moreover, the signal strength
could be modified in a noisy channel. In parallel, the DV-
hop technique yields estimated distances that could lead to
imprecise observations in an noisy environment. The distance
obtained in the two-hop counting techniques could be lower or
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Input : vmax, r, anchors coordinates, observations
Initialization : [x1](0) and [x2](0);
for t ≤ T do

[x1](t) = [x1](t − 1) + [−vmax, vmax];
[x2](t) = [x2](t − 1) + [−vmax, vmax];
K = maximal hop-count;
for k ∈ {1, ..., K} do

Ik = Indices set ofk-hop anchors
end
while contraction is positivedo

for k ∈ {1, ..., K} do
for i ∈ Ik do

[bi
1
](t) = [

√

k2r2 − [[x2](t) − ai
2
]2];

[x1](t) =
[[x1](t) ∩ [[ai

1
− [bi

1
](t)] ∪ [ai

1
+ [bi

1
](t)]]];

[bi
2
](t) = [

√

k2r2 − [[x1](t) − ai
1
]2];

[x2](t) =
[[x2](t) ∩ [[ai

2
− [bi

2
](t)] ∪ [ai

2
+ [bi

2
](t)]]];

end
end

end
end

Algorithm 3 : Multi-hop guaranteed boxed localization
algorithm.

larger than its true value. A comparison between the distance
and the thresholds is performed in order to locate an anchor
within a ring and thus to generate measurements needed in our
multi-hop approach. A small modification of the distance has
no impact when the true position of the anchor is equidistant
to the circles defining the ring; but it could produce significant
erroneous measurements when the anchor is too close to one
of the ring bounds. In Fig. 7(a), we consider a 1-hop anchor
a1, a 2-hop anchora2 and a 3-hop anchora3. a2 and a3

are located within the rings centered on the mobile node and
having r and 2r and 2r and 3r as inner and outer radii
respectively, whilea1 is located within the disk of radius
r. With the hop-counting techniques, the distance from the
mobile node to the anchors are modified in the way that the
three anchors are considered as 2-hop anchors, which leads
to erroneous observations. Using inaccurate measurementsto
locate the mobile node leads to incorrect boxes. In order
to take the ranging errors into considerations, we changed
the scalar thresholds that are multiple of the communication
range. We replaced them with intervals centered on their values
with a fixed width. In other words, we used larger rings as
illustrated in Fig. 7(b). A thresholdkr is replaced by the
interval[kr−δr, kr+δr]. The use of boxed thresholds induces
the equation given below

[[x1](t) − [ai
1
]]2 + [[x2](t) − [ai

2
]]2 =

[max{0, (k − 1)r − δr}2, (kr + δr)2].
(20)

Fig. 7(b) shows in a dashed line the circles obtained by
replacing the thresholdsr and2r with intervals. The new ring
corresponding to the 2-hop anchors is thus located between
the circles of radiir − δr and 2r + δr. In our localization

r

2r

3r

a1

a2

a3

Mobile node Real anchor Estimated anchor

1-hop

2-hop

3-hop

2r + δr

r − δr

a1

a2

a3

Mobile node Real anchor Estimated anchor

2-hop

(a) (b)

Fig. 7. The impact of the ranging errors over the observationinformation
in (a) and the result of using the boxed thresholds in (b).

process, an anchor considered as a 2-hop anchor is thus located
at a distance from the mobile node varying betweenr − δr
and 2r + δr. The correct distances between the anchors and
the mobile node are thus covered with the extended ring.
Therefore, choosing a convenient value of the interval width
over the thresholds ensures robustness against ranging errors.

IV. SIMULATIONS

The performance of the proposed GBL localization tech-
nique in MANETs is tested using the reference point group
mobility model given in [17], [18], [19]. According to this
mobility model, the mobile nodes follow the same reference
trajectory with small independent stochastic deviations.We
consider300 nodes deployed in a square100m×100m region.
The communication and sensing range are set to10m. The
density of anchors is set in such a way that each node has
at least3 anchors in its vicinity. The reference trajectory is
composed of2 sinusoids with an abrupt change in order to test
the capacity of the algorithm to track the position of nodes in
a difficult case (see Fig. 8). As the localization technique is
only based on known anchor positions, the performance can
be illustrated by following only one mobile node.

The maximal true velocity isv∗ = 2.035m per second. The
three proposed boxed localization techniques (with different
prior and observations constraints types), are denoted as fol-
lows: Case 1 (square-square), Case 2 (square-disk) and Case3
(disk-disk). In order to compare the three cases, the maximal
velocity parametervmax is set to its maximal real valuev∗.
The computation times needed to accomplish the localization
for the three cases are respectively0.3280s, 0.6550s and
0.7640s. The average errors, that are the distances between
the real and the estimated positions, are respectively1.9830m,
1.7775m and1.7775m, whereas the corresponding variances
are 1.5960m2, 1.3504m2 and 1.3504m2, respectively. Fig. 8
shows the estimated boxes obtained in the first and second
cases. The boxes obtained in Case 2 are included in those of
Case 1 during the whole observation period.

In Fig. 9, we show the ratios of the boxes areas obtained in
the three cases. As expected, using the correct disk equations
for observations contracts more the boxes. However, it is worth
noting that relaxing the disk constraint to a square constraint
for the prior mobility does not affect the obtained boxes in our
example (constant ratio equal to 1). In fact, the approximation
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Fig. 8. Estimated boxes shown every5s in Case 1 (square-square) and Case
2 (square-disk).
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Fig. 9. Ratios of boxes areas for the considered three cases.

of the mobility model has no effect in the propagation phase as
shown in Section III-B. This approximation may however have
an impact on the algorithm performances when used in the
Waltz algorithm (iterating the propagation and the contraction
phases). The use of the correct mobility equation may lead to
smaller location boxes when the observations area intersects
with one of the rounded corners of the square, which was not
the case in our example.

A. Efficiency of the Waltz algorithm

The Waltz algorithm is a contractor developed as a so-
lution for constraint satisfaction problems. It propagates the
constraints set by the model equations. The principle of the
Waltz algorithm is to loop over the constraints, without any
prior order, until the contraction is no more possible. In
order to identify its effectiveness, in this section, we compare
the localization results obtained by intersecting constraints
equations with and without the Waltz loop over the constraints.
In Fig. 10, we show the ratios of resulting boxes areas.
This figure illustrates the contraction capacity of the Waltz
algorithm. Fig. 11 reports the decreasing average boxes area
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Fig. 10. Ratios of boxes areas obtained with the Waltz loop over the boxes
areas obtained without the Waltz loop, in Case 2.
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Fig. 11. Average boxes areas vs. the maximal iterations number in the Waltz
algorithm in Case 2.

over the maximal iterations number tolerated by the Waltz
loop. Note that only a few number of iterations is needed to
optimally contract the position boxes.

B. Variation of the maximal velocity parameter

The estimated boxes result from the intersection of the
prior and the observations model regions. Here, we show
the dependance of the localization outputs on the maximal
velocity parametervmax. In Fig. 12, we report the average
error as function of the ratio ofvmax to its real value (from
0.5 to 6). This figure shows that the best results are obtained
at the real maximal velocity value. After a certain value of
vmax, the average error becomes constant. In fact, the prior
region encloses the intersection of observation regions and has
then no effect on the contraction of the boxes. This situation
is equivalent to the absence of the prior model information.
Fig. 13 shows boxes obtained withvmax lower, equal and
larger than its real value. With a lower parameter, boxes are
reduced but do not contain the true positions at most of the
time steps. A larger parameter leads to larger boxes and thus
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Fig. 12. Average error vs. the velocity ratio in Case 1 and Case 2.

0 20 40 60 80 100
0

20

40

60

80

100

x1 (m)

x2
 (

m
)

v
max

 = v*/2
v

max
 = v*

v
max

 = 6.v*

Real positions

Fig. 13. Estimated boxes for three different values ofvmax in Case 1.

to a loss in estimation accuracy.

C. Comparison to the Monte-Carlo boxed localization

The Monte-Carlo Boxed (MCB) localization algorithm [11]
consists of two steps: (i) The prediction of particles inside
the intersection of the mobility square and the observations
approximated squares, and (ii) the filtering of particles by
accepting only those respecting the disks constraints. These
two steps are repeated until a fixed number of particles is
kept. The estimated position is the mean of the particles. This
method requires saving all the particles in the memory at every
instant in order that can be used in the next time step.

In order to compare the proposed Guaranteed Boxed Local-
ization (GBL) to the MCB method, we use the same simulation
conditions as above. The number of particles is set to50
particles. In Fig. 14, we plot the estimated boxes obtained
by the GBL technique. We plot also the50 particles obtained
by the MCB method. Fig. 14 clearly illustrates that the real
position can not be efficiently covered with50 particles. The
average error is equal to2.1865m with a variance equal
to 1.7596m2 using the MCB method while they are up to
1.7775m and 1.3504m2 respectively with the GBL method
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Fig. 14. Comparison of the GBL method (Case 2) to the MCB method using
50 particles at each step. The estimated boxes with GBL are shown in bold
line. The computed particles with MCB and the real positionsare illustrated
by dots and circles respectively.

(with Case 2). The time needed to accomplish the localization
algorithms is around0.5930s for the GBL method and2.7300s
for the MCB method. Besides the gain in computation time,
MCB requires the storage of at least50 particles every time
step while GBL only needs to save the resulting endpoints
coordinates describing one estimated box.

In order to find out the particles number needed for a total
coverage of the real position, we use a variable number of
particles in the MCB localization algorithm. Experiments show
that the minimal number of particles needed is around500
particles. With this particle distribution, the average error ob-
tained in MCB is2.0296m with a variance equal to1.6200m2

while the computation time is up to25.4960s. These results
demonstrate the high performance of our method compared to
the MCB localization, in terms of computation time, memory
requirement and accuracy. In Fig. 15, we show the results of
the localization by MCB with500 particles compared to the
GBL technique.

D. Impact of the ranging errors on the localization process

The GBL method uses RSSI measurements in order to
define anchor information. Fixing a thresholdP0, an anchor
is considered within the sensing range of the node if its
corresponding RSSI is larger thanP0. Errors over the RSSI
values may yield erroneous measurements and thus affect
the localization process. Another equivalent problem is the
accuracy of the channel pathloss model relating the signal
strength to the distance traveled by the signal. Errors over
the pathloss parameters lead to an incorrect sensing range
value corresponding toP0. Let r be the computed value of
the sensing range andr0 its correct value. An erroneous value
of r leads to an inaccurate localization even with correct
observations. A value larger thanr0 yields larger boxes and
thus less precision in the localization results; while a lower
value leads to smaller boxes that may not contain the real
positions or it could lead to empty intersections, as well. In
this case, the estimation error is more important. Moreover,
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Fig. 15. Comparison of the GBL method (Case 2) to the MCB method using
500 particles at each step. The estimated boxes with GBL are shown in bold
line. The computed particles with MCB and the real positionsare illustrated
by dots and circles respectively.
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Fig. 16. Estimated boxes obtained using different values ofthe sensing range.

this may cause the loss of the guaranteed aspect of the method.
Fig. 16 shows the boxes obtained using different values of
r. As can be expected, the boxes obtained usingr > r0 are
wider than the ones obtained usingr0 but they still contain the
real positions; while the boxes obtained with smaller ranges
do not contain the exact position at almost all the time-steps.
Fig. 17 shows the average estimation error as a function of the
sensing range value.r0 is set to10m. We variedr between
6m and14m. As expected, the minimal error is obtained while
using the correct value of the sensing range. Whenr is greater
thanr0, the error increases slightly with the increase ofr. On
the other hand, whenr is lower thanr0, the increase of the
estimation error is more important with the decrease ofr.

E. Boxed anchors positions and communication range

In a network where only few nodes (anchors) are equipped
with GPS, unknown-position nodes estimate their position
using anchors information. Thus, anchor-based localization
techniques, where nodes periodically communicate with an-
chors, require accurate anchor positions and communication
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Fig. 17. Average error obtained using different values of the sensing range.

range information. Uncertainty about these information may
lead to inaccurate localization results as shown in Section
IV-D. In GBL method, where boxes might be used instead of
approximated values for these parameters, one can enhance the
robustness of the localization technique. An illustrationof this
robustness is shown in this section where we compare the GBL
(Case 2) to MCB method based on uncertain anchors positions
and communication range. For this purpose, we put a2m×2m
box around the true anchors positions and a2m interval on
the communication range whose exact value is10m. The
average errors obtained are equal to1.9712m and 3.0203m
for GBL and MCB respectively, showing the capacity of the
GBL technique to efficiently deal with uncertainty about the
input parameters.

F. Back-propagated localization

The back-propagated localization uses the current result to
update previous boxes, and then propagates again forwardly
the updated boxes to correct the up-to-time one. In order to
show the performance of our technique in offline applications,
we use the mobility model composed of two sinusoids as
above. The maximal velocity of the node isv∗ = 2.035m
per second. We run the offline GBL localization and compare
it to the online localization where current measurements are
used for contracting only current boxes. Simulations show that
the backward propagation yields a reduction ofprevious boxes,
while the following forward propagation ofprevious boxeshas
no contracting impact. This means that only one-way update
(backward way) is sufficient.

In our technique, we limited the numberK of backward
time-steps allowed since it increases the computational com-
plexity. In order to determine the maximalK after which
contractions are no more efficient, we plot the average boxes
area as a function of the number of the backward time-steps
allowed as reported in Fig. 18. It shows that the backward
propagation remains efficient until5 time-steps back. Fig. 19
shows the boxes obtained in the online localization and the
back-propagated localization with5 back time-steps. We can
see, in Fig. 19, that with back-propagated localization, boxes
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Fig. 18. Average boxes areas vs. the number of backward time-steps allowed
in Case 2.
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Fig. 19. Estimated boxes with online and back-propagated (offline) GBL
(Case 2).

are much more contracted than with online localization. The
computation time of the offline localization algorithm is up
to 0.7650s with an average error decreasing to1.0759m,
compared to a computation time of0.6450s and an average
error of 1.7775m for online localization; whereas the error
variance decreases from1.5960m2 for the online method to
0.3899m2 for the back-propagated technique.

G. Boxed localization using multi-hop anchors

The multi-hop based localization is an efficient technique
in low anchors density networks. It uses near and far anchors
information to localize each moving node. In order to evaluate
this technique, we keep the same anchors density as above
and consequently, the number of anchors involved in the
localization process at each time step will increase. Both the
received strength based and the DV-hop based method can be
used to define at which hop each anchor belongs at every time-
step. In Fig. 20, we plot the average error as a function of the
maximal hop-count allowed in the total approximated scheme
(Case 1) and the approximated prior model based scheme
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Fig. 20. Average error vs. the hop-count involved in Case 1 and Case 2 of
our method.
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Fig. 21. Estimated boxes with1-hop and up to7-hop based GBL (Case 2).

(Case 2) of our method. One can note that with1 to 7-hop
anchors in Case 2 (6-hop anchors in Case 1), the mobile node
is optimally localized. Fig. 21 shows the boxes obtained with
1-hop based and up to7-hop based methods in the second
case. With the increase of the number of involved anchors,
the average error decreases from1.7775m to 0.6241m with
variances decreasing from1.3504m2 to 0.3494m2, at the cost
of the computational time which increases from0.5920s to
15.1930s. Note that this technique could be used to reduce
the number of anchors in the network while maintaining a
good localization performance.

V. CONCLUSION

In this contribution, we introduced the Guaranteed Boxed
Localization, a novel approach based on interval analysis
for self-localization in MANETs. The use of a state space
model provides an accurate dynamic process instead of a
repeated static localization. By associating boxes to estimated
positions, we have covered bounded areas where solutions
surely exist. The propagation of position boxes maintains
a bounded estimation cumulative error. Compared to Monte
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Carlo-based algorithms, the computation time and the needed
memory are highly reduced while the total error decreases. Our
simulation experiments reveal that the interval-based technic
provides accurate results even when the anchors information
and the sensing range are uncertain. With the multi-hop-based
approach, we are able to provide accurate localization in low-
anchor density networks; whereas in offline applications, cur-
rent measurements together with past and future observations
can be used to improve the performance of our method. Many
issues remain to be explored in future work, particularly in
the presence of environment imperfections. The use of belief
functions represents a solution to handle more consistently
erroneous information communicated between nodes.
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