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Abstract—In this contribution, we propose an original al- More reasonable localization methods may rely on providing
gorithm for self-localization in mobile ad-hoc networks. The few nodes gnchorg with GPS while designing efficient self-
proposed technique, based on interval analysis, is suited tthe localization techniques for the remaining nodes

limited computational and memory resources of mobile nodes S . - . o
The incertitude about the estimated position of each node is The objective of this work is to deal with self-localization

propagated in an interval form. The propagation is based on a Of mobile sensor nodes. Some existing works propose to
state space model and formulated by a constraints satisfadon  perform successive static localization algorithms [3], [the
problem. Observations errors as well as anchor nodes imper- |imited performances of such approaches are essentially du
fections are taken into account in a simple and computationa  , the ghsence of any mobility modeling in the localization
consistent way. A simple Waltz algorithm is then applied in o .
order to contract the solution, yielding a guaranteed and rdust procedur_e. Recently, the M_onte-CarIo Localization a@_m“' ]
online estimation of the mobile node position. Simulation esults [5] and its enhanced version, the Monte-Carlo localization
on mobile node group trajectories corroborate the efficieng of Boxed algorithm [6], have been proposed. This new kind of
the proposed technique and show that it compares favorablyat Bayesian filtering algorithms, based on state space models,
particle filtering methods. aim at incorporating a mobility propagating model in the
localization process. Because of the non linearity of bbth t
mobility model and the observations, the Bayesian localiza
Mobile Ad-hoc sensor NETworks (MANETS) is an emertion algorithm is implemented by an approximate sequential
gent multidisciplinary research field. The attractiversfssuch Monte Carlo (particle filter) method [7] where many samples
research field is essentially due to both its theoreticalamd (particles) are drawn in order to estimate the node position
plicative challenging aspects. MANETs are commonly defingdowever, in order to achieve good localization performance
as networks composed of low-cost, tiny and densely digetbu a high number of particles is needed.
mobile wireless sensor nodes, equipped with computationaln this paper, we propose a new localization technique
resources. The major constraints of such embedded devieeslmased on a state space model and allowing the propaga-
their limited memory, computational capabilities and egyer tion of the position incertitude in an interval form. Tools
reserve. In fact, the nodes batteries are not renewable aridinterval analysis [8] are then used in order to solve a
have thus a limited lifetime. Prolonging the lifetime of theonstraint satisfaction problem where the prior mobilitydal
whole network by designing collaborative and energy-awategether with the observations are considered as simuitene
processing tasks is the main challenging aspect in wirelessnstraints. Propagating boxes (multidimensional iratksjv
sensor network research. allows a guaranteed estimation of the node position using
In mobile sensor networks, where the nodes mobility isnly few parameters (endpoints of one box). The proposed
uncontrolled, self-localization represents a fundamédssaie. boxed localization achieves a substantial gain in both nmgmo
In fact, the success of data processing and decision-makargl localization computational cost while ensuring the esam
is tightly related to the accuracy of the geographic locetio performances as the particle filter algorithms. Furtheemor
of the deployed nodes. Target tracking or spatial intetmpia a boxed modeling of the anchors positions and the sensing
for region monitoring [1] are illustrative examples of ltica- range incertitude enhances the robustness of the lodalizat
dependent applications of wireless sensor networks. &rayi technique.
all nodes with Global Positioning Systems (GPS) [2] is a The paper is organized as follows. Section Il is a brief
simple solution. However, given the high energy consunmptiointroduction to interval analysis tools and their use inveaj
the high cost and the binding size of GPS systems, this tedonstraints satisfaction problems. Section Il contaihs t
nology is unsuitable in the wireless sensor network contexmain contribution of this paper: A guaranteed energy/memor

I. INTRODUCTION



aware self-localization technique for MANETS. In Sectidf) | techniques can be used for contraction. In this paper, we
numerical results, illustrating the effectiveness of thepgpsed use the Waltz algorithm [9] which consists of iteratively
technique, are discussed. Section V concludes the paper. contracting each constraint, without any prior order, Iuttig
contractor becomes inefficient. The contractions are based
primitive constraints propagation. By primitive consitai, we
Interval analysis represents a rigorous mathematical tq@fer to arithmetic operations and standard functions, s,

aiming at manipulating intervals instead of real numbergtc)). For further details about the Waltz algorithm, retier
The interval framework provides an interesting alterrato  [10].

punctual approximation, yielding guaranteed regionsliring
the correct solution. In addition, it allows to efficientlyal
with problems involving interval data. In the following, we

brigfly rgcall the basics of interval analysis and constsin The proposed Guaranteed Boxed Localization (GBL) tech-
satisfaction tools. nigue is based on propagating a set of constraints defined by
A. Definitions and notations the prior mobility model of the moving nodes and the infor-
mation messages communicated by the neighboring anchors
(moving or static nodes equipped with positioning systems)
In this paper, non-anchors information are not used. Thegef

2] = [z,T] ={zr e R,z <2 <T} (1) only the individual prior moving model is used and the

h 4z the (finit infinite) int | endooint Aproblem is reduced to separable self-localization problem
wherez andz are the (finite or infinite) interval endpoints. In the following, without loss of generality, we focus on the

muitld|_menS|odnaIt|rc1)'theryal (a blo?<) dfj can be defined as A)ocalization of only one mobile node. The same algorithm is

cartesian product ok, intervals:[z] = [21] X [2]... X [&n,]. implemented in parallel on the remaining nodes.
Standard set operations are naturally defined on intervals,

such as equality=), inclusion (C), intersection(n) and

convex union defined as follows, A. Model equations

(2] U[y] = [z, 7] U [y, 7] = min{z, y}, max{Z,7}] (2) Mobile nodes are moving in @-dimensional deployment
) ) - - _ area, with a maximal velocity fixed to,,,,. This means that
Arithmetic operations are also extended to intervals. Fg{er one time step, the node moves within the,,-radius

Il. INTERVAL ANALYSIS

IIl. GUARANTEED BOXED LOCALIZATION

A real interval, denotedz]|, is defined as a closed and
connected subset dR:

instance, we list the following basic operations, disk, centered at the previous position.
e [F]+yl=lz+yT+7Y Let 7 (t) = (x1(t); 22(t)) be the coordinates of the mobile
o [z -yl =[z-7.7—-y node at time t. The dynamic state space model that we use in
o [2] [yl = min{z+y, z+7, Ty, T+P}, max{z+y,2+ the GBL technique is defined by the following equations,
U, T*Y, T * 7}
The arithmetic operations on intervals may take advantage { x1(t) = x1(t — 1) + v. cos(0) 3)
of some algebraic properties such associativity commuta- xa(t) = w2(t — 1) + v.sin(0)

tivity and subdistributivity ([z]([y] + [2]) C [z][y] + [2][#])-

The main shortcoming of interval analysis tools is theivhere, for simplicity, the duration between two time steps |
incapacity to enclose with a minimal size box any set @ssumed equal tés. v and ¢ are respectively the constant
solutions inIR"™. In order to circumvent this drawback,node velocity and direction between instants 1 and .
Constraints Satisfaction a|gorithms (a|so Ca”ed Com are Add|t|0na| information about the priOI’ diStribution Of the
used. The rationale behind these techniques is to use f@bile node positions can be added to refine the general
redundancy of equations in order to reduce the size of tA¥bility model described above.
enclosing box. At each time step, the moving node is collecting local

] ] ) ) connectivity measurements. A connectivity measuremem co
B. Satisfaction of constraints : Waltz algorithm sists of one-bit information provided by the anchors within

A Constraints Satisfaction Problem (CSP) is defined communication range (one-hop anchors).
by m equationsf;(x1,...,x,) = 0,5 = 1...m linking the et M be the number of anchors in the deployment area and
components of am-vectorz. The constraints can be put in &y, be the index of a single anchor such thate {1,..,M}.
vector form f(x) = 0. Satisfying the constraints consists offhe observation equation is defined as follows,
finding a regionS C B defined asS = {x € B| f(x) = 0}
and whereB is an initial prior box enclosing the solution. m(p) = { 1 if |a™, T @) <r )
In general,S is not a box. Solving the CSP problem in an “ 1 0 otherwise
interval analysis framework consists of finding the minimal
box [x*] C B such thatS C [z*]. where @™ represents the coordinates of the" anchor,r

A contractor is an operator providing the solutiGer] of is the communication range of the node afid-|| is the
the CSP problem by contracting the initial b@ Different Euclidean distance between the two points.



A1) A
Fig. 1. Propagation and observation models with disk eqoati (b)
L . . Fig. 2. Approximated schemes using square equations in ribygagation
B. Localization by interval analysis model in (a) and (b) and in the observation model in (b).

The interval framework provides an efficient and consistent |, order to reduce the computational cost, we also propose
methodology to solve the localization problem described By, aqgitional approximating schemes by relaxing the disk
the equations 3 and 4 above. Instead of manipulating punctyg ations to square equations. In the first scheme, only the

positions, the pivotal idea of our approach is to associaigi,r propagation equations are approximated as follows,
the node position to a multidimensional interval (box). The

position box covers a guaranteed rectangular area where all { [z1](t) = [21](t = 1) + [~Vmaz, Umas) 9)
acceptable positionsertainly exist. [22](t) = [22](t — 1) + [~Vmaz, Umas]

The self-localization problem is formulated as a CSP probig.2a shows the resulting box obtained by relaxing the
lem, where a prior regiol is contracted using Waltz algo-propagation equations. In the second scheme, the conitgctiv
rithm and the constrainté set by the prior model and theconstraints are also approximated as follows,

observation equations. . .
N { [@1)(t) € [af — 7.0 +7]

Applying interval analysis to the above prior model disk, : :
" Y P [w2) (1) C [ah — 7,05 +7]

the equation 3 is formulated as follows,

iel (10)

9 9 ) Fig.2b illustrates the box obtained using the approxinmetiof
([21)(8) = [ ](t = 1))7 + ([w2](8) = [22](t = 1))" = [0,V}n0a] ~ the propagation and observation equations. Note thatingax
) , . the constraints leads to larger positions intervals eirodps
where[z,] and|z»] are the coordinate intervals of the mobilgy,se obtained when using the exact disk constraints.

node andv,q. is its maximal velocity. The interval-based approach provides also a convenient
In order to use interval analysis operators, the above cqfsmework to deal with environment imperfections such as
straint can be rewritten as follows, anchors positions or the communication range imprecisions
[£1](t) = [[z1](t = 1) — [b1] ()] U [[z1](t — 1) + [b1](2)] For instance, the GPS does not provide exact anchor pasition
{ [22](t) = [[2](t — 1) — [b2](1)] U [[w2](t — 1) + [b2](2)] In the GBL technique, the uncertainty about these values can
(6) beincorporated by the use of intervals instead of approtdcha
where [b1](t) = /v2,,., — ([z2](t) — [z2](t —1))?> and values. The constraints equations are modified as follows,
bgt: ’U%mw— z1|(t) — |71 t—1))2. i1\ 2 P2 2 .
| ']I'(h)e prio\/r region Eg til(er)l co[rltrgcted t)))y the observed anchof&®(®) — 1)) + ([#2](8) = [az])” = [0, max([r]7)], 4 6(1]1)

connectivity constraints given by, where [a}] and [a}] are the coordinates intervals of th&

([1](t) — a})? + ([z2])(t) — ab)? =[0,7%], i eI (7) anchor andr]| is the communication range box.
_ ~ The explicit equations are then defined as follows,
wherer is the communication range of the nodg, and a}, ; ; ; ;
are the coordinates of thé" anchor and! is the set of all { [21](t) = [[all] - [b}](t)] J Ha}] * [b}](t)] i€l (12)
one-hop anchors detected by the mobile node. [22](8) = [[a3] — [b5] ()] U [[a2] + [b5])(2)]

Explicit equations are also needed to implement the Waljghere bil(t) = VI — ([z2](t) — [a3))? and [bi](t) =
algorithm. They are defined as follows, VITE = (1)) = [ai])2.

211(8) = lai — 1O U [a + B8]+ ' Remark 1:The proposed algorithm relies on contracting an

{ { 1%(3 — { i _ {bg}(tﬁ U { . + {bzl}(tﬁ i€l (8) jnitial box in order to cover the intersection of the propizgh
z2]( ag 5)( as 2)( . - . .
. . disk and the connectivity regions provided by the sensed

where [bi](t) = /12— ([z2](t) —a})? and [bi](t) = anchors. The propagated disk is determined by the prior mode
V12 — ([1](t) — a})2. maximal velocity whose value may affect the localization

The correct position of the mobile node is situated insideerformances. In fact, an erroneous maximal velocity mag le
the intersection of the mobility disk and the anchor disk$o an inaccurate overlapping region: A small velocity (B&,
Applying the interval analysis consists of minimizing thexb with respect to the real value, may cause an empty intecsecti
enclosing the disks intersection (see Fig.1). while a larger value (Fig.3b) provides a vague information
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value). Fig. 4. Estimated boxes shown evefy in case 1 (square-square) and case
. . -gn(square-disk).

and thus, less contraction of the anchor overlapping regi

In case of empty intersection, the mobility model constrain 4 ‘ ‘ ‘

is relaxed and the Waltz algorithm is only applied on the 1ol = Case2/Case3 ||

observations constraints. A larger box (less accurateipoyi

is thus obtained (see Fig.3b).
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IV. SIMULATIONS

The performances of the proposed GBL localization tech-
nigue in MANETS are tested using the reference point group
mobility model given in [11]. According to this mobility
model, the mobile nodes follow the same reference trajgctor
with small independent stochastic deviations. We consider 0 ‘ ‘ ‘ ‘
300 nodes deployed in a squat®0m x 100m region. The ° 20 “ time 6 % 100
communication and sensing range are sdiOim. The density Fig. 5. Ratios of boxes areas for the considered 3 cases.

of anchors is set in such a way that each node has at3east o ) )
anchors in its vicinity. The reference trajectory is comambs dependance of the localization outputs on the maximal Vigloc

of 2 sinusoids with an abrupt change in order to test tRArameteny,q,. In Fig.6, we report the average relative error
capacity of the algorithm to track the nodes positions @S function of the ratio of,;.q. to its real value (from.5 to
difficult situations (see Fig.4). As the localization teitjue 6). The flgur_e shows t.hat the optimal result_s are obtained at
is only based on known anchor positions, the performand§ real maximal velocity value. After a certain valuevgfos,
can be illustrated by following only one mobile node. the average error becomes constant. In fact, the prior megio
The average real velocity is around = 2.035m per encloses the intersection of observation regions and les th
second. The proposed boxed localization techniques (witR© effect on contracting the boxes. This situation is edaiva
different prior and observations constraints types), areoted 0 the absence of the prior model information. Fig.7 shows
as follows: case 1 (square-square), case 2 (square-disk) BRxes obtained with,,,.,. lower, equal and larger than its real
case 3 (disk-disk). In order to compare tBecases, the value. With a lower parameter, boxes are reduced but do not
maximal velocity parametep,,, is set to its average real contain the real positions at most of the time steps; While_
value v*. The computation times needed to accomplish tife larger parameter leads to larger boxes and thus a loss in
localization for the 3 cases are respectively590s, 0.6390s €stimation accuracy.
and 0.7180s and the relative errors are respectivalysy, g Comparison to Monte-Carlo boxed localization
1.78% and 1.78%. Fig.4 shows the estimated boxes obtained o )
in the first and second cases respectively. The boxes otitaineT"e Monte-Carlo Boxed (MCB) localization algorithm [6]
in case 2 are included in those of case 1 during the whdj@nsists of two steps: (i) The prediction of particles iesid
observation period. the intersection of the mobility square and the observation
In Fig.5, we show the ratios of the boxes areas obtain@@Proximated squares, and (ii) the filtering of particles by
with the 3 cases. As can be expected, using the correct dR€epting only those respecting the disks constraintssehe

equations for observations contracts more the boxes. HaweWO Steps are repeated until a fixed number of particles is
it is worth noting that relaxing the disk constraint to a sqauakept- The estimated position is the mean of the particles Th

constraint for the prior mobility does not affect the obtain Method requires saving all the particles in the memory ateve

Ratios of boxes areas
o
)
-

I
~
;

o
N}

boxes (constant ratio equal to 1). instant so that to be used in the next time step.
o ] ) In order to compare the proposed Guaranteed Boxed Local-
A. Variation of the maximal velocity ization (GBL) to the MCB method, we use the same simulation

The estimated boxes result from the intersection of th®nditions as above. The number of particles is seb@o
prior and the observations model regions. Here, we show tparticles. In Fig.8, we plot the estimated boxes obtained by
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Fig. 7. Estimated boxes for three different valuesvgfq .

the GBL technique. We plot also th& particles obtained
by the MCB method. Fig.8 clearly illustrates that witi
particles, the real position can not be efficiently covergue
average relative error is equal2®25% with the MCB method
while it is aroundl.78% with the GBL method (with case 2).

100

—— GBL boxes
90r .

MCB patrticles ||
Real positions ||

701

601

501

X2

301

201

O I I I I
0 20 40 60 80 100

x1

Fig. 8. Estimated boxes with GBL and estimated particle$i MICB using
50 particles.

localization in MANETS. The dynamic localization, based on
a state space model, allows a more accurate localization tha
running a repeated static localization. Associating baxes
estimated positions, one is able to cover bounded areasewher
solutions surely exist (guaranteed localization). Coraegan
Monte Carlo-based algorithms, the computation time and the
needed memory are highly reduced while the total error is de-
creased. Future works will focus on the use of belief funio

in order to deal more efficiently with inaccurate environitsen
where erroneous information might be communicated between
nodes.
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