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Abstract—In this contribution, we propose an original al-
gorithm for self-localization in mobile ad-hoc networks. The
proposed technique, based on interval analysis, is suited to the
limited computational and memory resources of mobile nodes.
The incertitude about the estimated position of each node is
propagated in an interval form. The propagation is based on a
state space model and formulated by a constraints satisfaction
problem. Observations errors as well as anchor nodes imper-
fections are taken into account in a simple and computational-
consistent way. A simple Waltz algorithm is then applied in
order to contract the solution, yielding a guaranteed and robust
online estimation of the mobile node position. Simulation results
on mobile node group trajectories corroborate the efficiency of
the proposed technique and show that it compares favorably to
particle filtering methods.

I. I NTRODUCTION

Mobile Ad-hoc sensor NETworks (MANETs) is an emer-
gent multidisciplinary research field. The attractivenessof such
research field is essentially due to both its theoretical andap-
plicative challenging aspects. MANETs are commonly defined
as networks composed of low-cost, tiny and densely distributed
mobile wireless sensor nodes, equipped with computational
resources. The major constraints of such embedded devices are
their limited memory, computational capabilities and energy
reserve. In fact, the nodes batteries are not renewable and
have thus a limited lifetime. Prolonging the lifetime of the
whole network by designing collaborative and energy-aware
processing tasks is the main challenging aspect in wireless
sensor network research.

In mobile sensor networks, where the nodes mobility is
uncontrolled, self-localization represents a fundamental issue.
In fact, the success of data processing and decision-making
is tightly related to the accuracy of the geographic locations
of the deployed nodes. Target tracking or spatial interpolation
for region monitoring [1] are illustrative examples of location-
dependent applications of wireless sensor networks. Providing
all nodes with Global Positioning Systems (GPS) [2] is a
simple solution. However, given the high energy consumption,
the high cost and the binding size of GPS systems, this tech-
nology is unsuitable in the wireless sensor network context.

More reasonable localization methods may rely on providing
few nodes (anchors) with GPS while designing efficient self-
localization techniques for the remaining nodes.

The objective of this work is to deal with self-localization
of mobile sensor nodes. Some existing works propose to
perform successive static localization algorithms [3], [4]. The
limited performances of such approaches are essentially due
to the absence of any mobility modeling in the localization
procedure. Recently, the Monte-Carlo Localization algorithm
[5] and its enhanced version, the Monte-Carlo localization
Boxed algorithm [6], have been proposed. This new kind of
Bayesian filtering algorithms, based on state space models,
aim at incorporating a mobility propagating model in the
localization process. Because of the non linearity of both the
mobility model and the observations, the Bayesian localiza-
tion algorithm is implemented by an approximate sequential
Monte Carlo (particle filter) method [7] where many samples
(particles) are drawn in order to estimate the node position.
However, in order to achieve good localization performances
a high number of particles is needed.

In this paper, we propose a new localization technique
based on a state space model and allowing the propaga-
tion of the position incertitude in an interval form. Tools
of interval analysis [8] are then used in order to solve a
constraint satisfaction problem where the prior mobility model
together with the observations are considered as simultaneous
constraints. Propagating boxes (multidimensional intervals)
allows a guaranteed estimation of the node position using
only few parameters (endpoints of one box). The proposed
boxed localization achieves a substantial gain in both memory
and localization computational cost while ensuring the same
performances as the particle filter algorithms. Furthermore,
a boxed modeling of the anchors positions and the sensing
range incertitude enhances the robustness of the localization
technique.

The paper is organized as follows. Section II is a brief
introduction to interval analysis tools and their use in solving
constraints satisfaction problems. Section III contains the
main contribution of this paper: A guaranteed energy/memory-



aware self-localization technique for MANETs. In Section IV,
numerical results, illustrating the effectiveness of the proposed
technique, are discussed. Section V concludes the paper.

II. I NTERVAL ANALYSIS

Interval analysis represents a rigorous mathematical tool
aiming at manipulating intervals instead of real numbers.
The interval framework provides an interesting alternative to
punctual approximation, yielding guaranteed regions involving
the correct solution. In addition, it allows to efficiently deal
with problems involving interval data. In the following, we
briefly recall the basics of interval analysis and constraints
satisfaction tools.

A. Definitions and notations

A real interval, denoted[x], is defined as a closed and
connected subset ofIR:

[x] = [x, x] = {x ∈ IR, x ≤ x ≤ x} (1)

wherex andx are the (finite or infinite) interval endpoints. A
multidimensional interval (a box) ofIRnx can be defined as a
cartesian product ofnx intervals:[x] = [x1] × [x2]... × [xnx

].
Standard set operations are naturally defined on intervals,

such as equality(=), inclusion (⊂), intersection(∩) and
convex union defined as follows,

[x] ∪ [y] = [x, x] ∪ [y, y] = [min{x, y}, max{x, y}] (2)

Arithmetic operations are also extended to intervals. For
instance, we list the following basic operations,

• [x] + [y] = [x + y, x + y]
• [x] − [y] = [x − y, x − y]
• [x] ∗ [y] = [min{x ∗ y, x ∗ y, x ∗ y, x ∗ y}, max{x ∗ y, x ∗

y, x ∗ y, x ∗ y}]

The arithmetic operations on intervals may take advantage
of some algebraic properties such asassociativity, commuta-
tivity andsubdistributivity([x]([y] + [z]) ⊆ [x][y] + [x][z]).

The main shortcoming of interval analysis tools is their
incapacity to enclose with a minimal size box any set of
solutions in IRnx . In order to circumvent this drawback,
constraints satisfaction algorithms (also called contractors) are
used. The rationale behind these techniques is to use the
redundancy of equations in order to reduce the size of the
enclosing box.

B. Satisfaction of constraints : Waltz algorithm

A Constraints Satisfaction Problem (CSP)H is defined
by m equationsfj(x1, ..., xn) = 0, j = 1 . . .m linking the
components of ann-vectorx. The constraints can be put in a
vector formf(x) = 0. Satisfying the constraints consists of
finding a regionS ⊂ B defined asS = {x ∈ B |f(x) = 0}
and whereB is an initial prior box enclosing the solution.
In general,S is not a box. Solving the CSP problem in an
interval analysis framework consists of finding the minimal
box [x∗] ⊂ B such thatS ⊂ [x∗].

A contractor is an operator providing the solution[x∗] of
the CSP problem by contracting the initial boxB. Different

techniques can be used for contraction. In this paper, we
use the Waltz algorithm [9] which consists of iteratively
contracting each constraint, without any prior order, until the
contractor becomes inefficient. The contractions are basedon
primitive constraints propagation. By primitive constraints, we
refer to arithmetic operations and standard functions (cos, exp,
etc.). For further details about the Waltz algorithm, referto
[10].

III. G UARANTEED BOXED LOCALIZATION

The proposed Guaranteed Boxed Localization (GBL) tech-
nique is based on propagating a set of constraints defined by
the prior mobility model of the moving nodes and the infor-
mation messages communicated by the neighboring anchors
(moving or static nodes equipped with positioning systems).
In this paper, non-anchors information are not used. Therefore,
only the individual prior moving model is used and the
problem is reduced to separable self-localization problems.
In the following, without loss of generality, we focus on the
localization of only one mobile node. The same algorithm is
implemented in parallel on the remaining nodes.

A. Model equations

Mobile nodes are moving in a2-dimensional deployment
area, with a maximal velocity fixed tovmax. This means that
over one time step, the node moves within thevmax-radius
disk, centered at the previous position.

Let −→x (t) = (x1(t); x2(t)) be the coordinates of the mobile
node at time t. The dynamic state space model that we use in
the GBL technique is defined by the following equations,

{

x1(t) = x1(t − 1) + v. cos(θ)
x2(t) = x2(t − 1) + v. sin(θ)

(3)

where, for simplicity, the duration between two time steps is
assumed equal to1s. v and θ are respectively the constant
node velocity and direction between instantst − 1 and t.
Additional information about the prior distribution of the
mobile node positions can be added to refine the general
mobility model described above.

At each time step, the moving node is collecting local
connectivity measurements. A connectivity measurement con-
sists of one-bit information provided by the anchors withinits
communication range (one-hop anchors).

Let M be the number of anchors in the deployment area and
m be the index of a single anchor such thatm ∈ {1, ..., M}.
The observation equation is defined as follows,

ym(t) =

{

1 if ‖−→a m,−→x (t)‖ ≤ r

0 otherwise
(4)

where−→a m represents the coordinates of themth anchor,r
is the communication range of the node and‖·, ·‖ is the
Euclidean distance between the two points.
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Fig. 1. Propagation and observation models with disk equations.

B. Localization by interval analysis

The interval framework provides an efficient and consistent
methodology to solve the localization problem described by
the equations 3 and 4 above. Instead of manipulating punctual
positions, the pivotal idea of our approach is to associate
the node position to a multidimensional interval (box). The
position box covers a guaranteed rectangular area where all
acceptable positionscertainly exist.

The self-localization problem is formulated as a CSP prob-
lem, where a prior regionB is contracted using Waltz algo-
rithm and the constraintsf set by the prior model and the
observation equations.

Applying interval analysis to the above prior model disk,
the equation 3 is formulated as follows,

([x1](t) − [x1](t− 1))2 + ([x2](t) − [x2](t− 1))2 = [0, v2

max]
(5)

where[x1] and[x2] are the coordinate intervals of the mobile
node andvmax is its maximal velocity.

In order to use interval analysis operators, the above con-
straint can be rewritten as follows,
{

[x1](t) = [[x1](t − 1) − [b1](t)] ∪ [[x1](t − 1) + [b1](t)]
[x2](t) = [[x2](t − 1) − [b2](t)] ∪ [[x2](t − 1) + [b2](t)]

(6)
where [b1](t) =

√

v2
max − ([x2](t) − [x2](t − 1))2 and

[b2](t) =
√

v2
max − ([x1](t) − [x1](t − 1))2.

The prior region is then contracted by the observed anchors
connectivity constraints given by,

([x1](t) − ai
1
)2 + ([x2](t) − ai

2
)2 = [0, r2], i ∈ I (7)

wherer is the communication range of the node,ai
1

and ai
2

are the coordinates of theith anchor andI is the set of all
one-hop anchors detected by the mobile node.
Explicit equations are also needed to implement the Waltz
algorithm. They are defined as follows,

{

[x1](t) = [ai
1
− [bi

1
](t)] ∪ [ai

1
+ [bi

1
](t)]

[x2](t) = [ai
2
− [bi

2
](t)] ∪ [ai

2
+ [bi

2
](t)]

, i ∈ I (8)

where [bi
1
](t) =

√

r2 − ([x2](t) − ai
2
)2 and [bi

2
](t) =

√

r2 − ([x1](t) − ai
1
)2.

The correct position of the mobile node is situated inside
the intersection of the mobility disk and the anchor disks.
Applying the interval analysis consists of minimizing the box
enclosing the disks intersection (see Fig.1).
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Fig. 2. Approximated schemes using square equations in the propagation
model in (a) and (b) and in the observation model in (b).

In order to reduce the computational cost, we also propose
two additional approximating schemes by relaxing the disk
equations to square equations. In the first scheme, only the
prior propagation equations are approximated as follows,

{

[x1](t) = [x1](t − 1) + [−vmax, vmax]
[x2](t) = [x2](t − 1) + [−vmax, vmax]

(9)

Fig.2a shows the resulting box obtained by relaxing the
propagation equations. In the second scheme, the connectivity
constraints are also approximated as follows,

{

[x1](t) ⊆ [ai
1
− r, ai

1
+ r]

[x2](t) ⊆ [ai
2
− r, ai

2
+ r]

, i ∈ I (10)

Fig.2b illustrates the box obtained using the approximations of
the propagation and observation equations. Note that relaxing
the constraints leads to larger positions intervals enclosing
those obtained when using the exact disk constraints.

The interval-based approach provides also a convenient
framework to deal with environment imperfections such as
anchors positions or the communication range imprecisions.
For instance, the GPS does not provide exact anchor positions.
In the GBL technique, the uncertainty about these values can
be incorporated by the use of intervals instead of approximated
values. The constraints equations are modified as follows,

([x1](t) − [ai
1
])2 + ([x2](t) − [ai

2
])2 = [0, max([r]2)], i ∈ I

(11)
where [ai

1
] and [ai

2
] are the coordinates intervals of theith

anchor and[r] is the communication range box.
The explicit equations are then defined as follows,

{

[x1](t) = [[ai
1
] − [bi

1
](t)] ∪ [[ai

1
] + [bi

1
](t)]

[x2](t) = [[ai
2
] − [bi

2
](t)] ∪ [[ai

2
] + [bi

2
](t)]

, i ∈ I (12)

where [bi
1
](t) =

√

[r]2 − ([x2](t) − [ai
2
])2 and [bi

2
](t) =

√

[r]2 − ([x1](t) − [ai
1
])2.

Remark 1:The proposed algorithm relies on contracting an
initial box in order to cover the intersection of the propagated
disk and the connectivity regions provided by the sensed
anchors. The propagated disk is determined by the prior model
maximal velocity whose value may affect the localization
performances. In fact, an erroneous maximal velocity may lead
to an inaccurate overlapping region: A small velocity (Fig.3a),
with respect to the real value, may cause an empty intersection;
while a larger value (Fig.3b) provides a vague information
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Fig. 3. Different values ofvmax (lower in (a) and larger in (b) than its real
value).

and thus, less contraction of the anchor overlapping region.
In case of empty intersection, the mobility model constraint
is relaxed and the Waltz algorithm is only applied on the
observations constraints. A larger box (less accurate position)
is thus obtained (see Fig.3b).

IV. SIMULATIONS

The performances of the proposed GBL localization tech-
nique in MANETs are tested using the reference point group
mobility model given in [11]. According to this mobility
model, the mobile nodes follow the same reference trajectory
with small independent stochastic deviations. We consider
300 nodes deployed in a square100m × 100m region. The
communication and sensing range are set to10m. The density
of anchors is set in such a way that each node has at least3
anchors in its vicinity. The reference trajectory is composed
of 2 sinusoids with an abrupt change in order to test the
capacity of the algorithm to track the nodes positions in
difficult situations (see Fig.4). As the localization technique
is only based on known anchor positions, the performances
can be illustrated by following only one mobile node.

The average real velocity is aroundv∗ = 2.035m per
second. The3 proposed boxed localization techniques (with
different prior and observations constraints types), are denoted
as follows: case 1 (square-square), case 2 (square-disk) and
case 3 (disk-disk). In order to compare the3 cases, the
maximal velocity parametervmax is set to its average real
value v∗. The computation times needed to accomplish the
localization for the 3 cases are respectively0.3590s, 0.6390s

and 0.7180s and the relative errors are respectively1.98%,
1.78% and1.78%. Fig.4 shows the estimated boxes obtained
in the first and second cases respectively. The boxes obtained
in case 2 are included in those of case 1 during the whole
observation period.

In Fig.5, we show the ratios of the boxes areas obtained
with the 3 cases. As can be expected, using the correct disk
equations for observations contracts more the boxes. However,
it is worth noting that relaxing the disk constraint to a square
constraint for the prior mobility does not affect the obtained
boxes (constant ratio equal to 1).

A. Variation of the maximal velocity

The estimated boxes result from the intersection of the
prior and the observations model regions. Here, we show the
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Fig. 5. Ratios of boxes areas for the considered 3 cases.

dependance of the localization outputs on the maximal velocity
parametervmax. In Fig.6, we report the average relative error
as function of the ratio ofvmax to its real value (from0.5 to
6). The figure shows that the optimal results are obtained at
the real maximal velocity value. After a certain value ofvmax,
the average error becomes constant. In fact, the prior region
encloses the intersection of observation regions and has then
no effect on contracting the boxes. This situation is equivalent
to the absence of the prior model information. Fig.7 shows
boxes obtained withvmax lower, equal and larger than its real
value. With a lower parameter, boxes are reduced but do not
contain the real positions at most of the time steps; while
a larger parameter leads to larger boxes and thus a loss in
estimation accuracy.

B. Comparison to Monte-Carlo boxed localization

The Monte-Carlo Boxed (MCB) localization algorithm [6]
consists of two steps: (i) The prediction of particles inside
the intersection of the mobility square and the observations
approximated squares, and (ii) the filtering of particles by
accepting only those respecting the disks constraints. These
two steps are repeated until a fixed number of particles is
kept. The estimated position is the mean of the particles. This
method requires saving all the particles in the memory at every
instant so that to be used in the next time step.

In order to compare the proposed Guaranteed Boxed Local-
ization (GBL) to the MCB method, we use the same simulation
conditions as above. The number of particles is set to50
particles. In Fig.8, we plot the estimated boxes obtained by
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the GBL technique. We plot also the50 particles obtained
by the MCB method. Fig.8 clearly illustrates that with50
particles, the real position can not be efficiently covered.The
average relative error is equal to2.25% with the MCB method
while it is around1.78% with the GBL method (with case 2).
The time needed to accomplish the localization algorithms is
around0.6550s for the GBL method and2.7720s for the MCB
method. Besides the gain in computation time, MCB requires
the storage of at least50 particles every time step while
GBL only needs to save the resulting endpoints coordinates
describing one estimated box.

C. Boxed anchors positions and communication range

All anchor-based localization methods assume exact anchor
positions and communication range information. Incertitude
about these values may lead to erroneous localization results.
In GBL method, using boxes instead of approximated values
for these parameters, enhances the robustness of the localiza-
tion technique. In order to illustrate this robustness, we com-
pare GBL to MCB method using uncertain anchors positions
and communication range. We put a2m × 2m box around
the true anchors positions and we vary the communication
range between9m and 11m while 10m is the exact value.
The average relative errors obtained are equal to1.97% and
3.02% for GBL and MCB respectively, showing the capacity
of the GBL technique to efficiently deal with uncertainty about
the input parameters.

V. CONCLUSION

In this paper, we proposed a Guaranteed Boxed Local-
ization (GBL) algorithm based on interval analysis for self-
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Fig. 8. Estimated boxes with GBL and estimated particles with MCB using
50 particles.

localization in MANETs. The dynamic localization, based on
a state space model, allows a more accurate localization than
running a repeated static localization. Associating boxesto
estimated positions, one is able to cover bounded areas where
solutions surely exist (guaranteed localization). Compared to
Monte Carlo-based algorithms, the computation time and the
needed memory are highly reduced while the total error is de-
creased. Future works will focus on the use of belief functions
in order to deal more efficiently with inaccurate environments
where erroneous information might be communicated between
nodes.
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