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Abstract—In many applications, such as brain network
connectivity or shopping recommendations, the underlying graph
explaining the different interactions between participating agents
is unknown. Moreover, many of these interactions may be based
on nonlinear relationships, rendering the topology inference
problem more complex. This paper presents a new topology
inference method that estimates a possibly directed adjacency
matrix in an online manner. In contrast to previous approaches
which are based on additive models, the proposed model
is able to explain general nonlinear interactions between the
agents. Partial-derivative-imposed sparsity is implemented, while
reproducing kernels are used to model nonlinearities. The impact
of the increasing number of data points is alleviated by using
dictionaries of kernel functions. A comparison with a previously
developed method showcases the generality of the new model.

Index Terms—topology inference, partial derivative sparsity,
brain connectivity, nonlinear interactions, kernels

I. INTRODUCTION

In analyzing networks such as gene regulation systems [1],
socio-economical interactions [2], or brain activity [3],
graphs have proven to be a useful tool, given their inherently
distributed nature. Most graph signal processing algorithms,
however, assume the graph topology as known beforehand.
Recently, significant interest has been dedicated to the
estimation of the graph topology from available data. Most of
these works assume linear dependencies between the agents,
e.g., brain regions, genes in a network, or sectors of a market
economy. However, the presence of nonlinear interactions in
real-world applications imposes the need of developing more
general algorithms. As such, the ability of reproducing kernels
to model nonlinear relationships between nodal signals makes
them a powerful tool to the graph inference process.

In this article, we consider a setting where online nodal
measurements are acquired and used in order to infer
the topology of the underlying network. In the developed
approach, it is desired to estimate a possibly directed adjacency
matrix while accounting for general nonlinear dependencies
between nodal signals, and to distribute it over the different
agents. Since many real world examples, such as social
graphs, show considerable edge sparsity, a sparsity-inducing
framework based on partial derivatives is employed.
Definitions: A graph G consists of a set N of (N + 1) nodes,
and a set E of edges such that if nodes m and n are linked,
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then (m,n) ∈ E . For undirected graphs, these node pairs
are unordered. At node level, we collect a real-valued signal
y(i) , [y1(i), . . . , yN+1(i)]>, where yn(i) is the sample of
the signal y(i) at node n and time instant i. The adjacency
matrix A [4], [5], is defined as an (N + 1)× (N + 1) matrix
whose entries anm are zero if (m,n) /∈ E and set to one
otherwise. Throughout the paper we consider ann = 0,∀n.
Prior works: Early advances in topology identification are put
forward in [6], where a covariance estimation based method
of inferring links is introduced. On the same line, in [7] the
graphical Lasso is employed in order to estimate the inverse
covariance matrix from data. In [8], the authors advocate
that connectivity can be recovered from estimated spectral
templates, while the authors in [9] propose an online adaptive
algorithm for learning the topology from streaming graph sig-
nals driven by a diffusion process. Another online and adaptive
algorithm is developed in [10], where the authors assume a
linear model. Linearity of interactions and signal stationarity
are assumed in [11], while developing an ADMM algorithm.

In modeling non-linear phenomena, works such as [12],
[13] focus on polynomial structural equation models, while
the authors of [14] use their nonlinear counterparts. They,
however, have some limitations, such as assuming knowledge
of certain connections or the form of the non-linear functions.
Reproducing kernels have seen widespread use in topology
inference problems. One of these works is [15] where kernels
model nonlinear relationships between nodes. In [16], a kernel-
based approach was considered in an online algorithm to deal
with dynamical settings. The multi-kernel approach in [17]
uses partial correlations to encode graph topology and `p-norm
regression to enhance performance. In [18], a thorough anal-
ysis of the kernel-based topology inference problem is given,
focusing on capturing non-linear and dynamic links. A review
of state-of-the art methods in topology inference is in [19]. All
these works, however, share a common limitation: the interac-
tions between the different nodes are restricted to be additive.

Encoding the graph topology with the adjacency matrix A
is ubiquitous in graph signal models. This operator describes
the interactions between entities and, by extension, it can be
considered as a tool for representing relationships between
data. In this work, we propose an online approach able to
estimate an adjacency matrix based on a general nonlinear
model. This model ensures a better representativity of nonlin-
ear interactions, without assuming a particular manner on how



agents in a network influence each other. Moreover, due to the
online nature of the method, the data acquisition process can
be stopped exactly when an estimate is obtained, a property
which can prove useful in domains such as medical research.
Notations: Normal font letters denote scalars, while boldface
lowercase and uppercase letters stand for column vectors and
matrices, respectively. Operator ‖ · ‖0 returns the number of
their non-zero entries. Uppercase calligraphic letters denote
sets, of cardinality |·|. Finally, E{·} is the expectation operator.

II. LOCAL PROBLEM FORMULATION

Consider an (N + 1)-node graph with adjacency matrix
A which models a system such as the brain network or a
power grid. In this setting, the electrical activity of different
brain-regions [20], [21], or the voltage angle per bus [17],
numbered from 1 through (N + 1), can be measured at
different time instants i ∈ N, leading to a dynamic graph
signal y(i). The signal at each node influences and is
influenced by the signals at the other nodes, with nonlinear
relationships being reported in many applications such as,
e.g., in the case of brain connectivity [22], [23].

The distributed nature of graphs allows for a local problem
formulation. As such, we focus on a single node n, while
keeping in mind that the following reasoning can be applied
for any other particular node. For ease of notation, we assume
that n ≡ (N+1) (i.e., we identify n with the (N+1)th node of
the graph), which allows us to denote N \{n} = {1, . . . , N}.
Recent methods have considered models of the form [16], [24]:

yn(i) =

N∑
m=1

anmgm(yLm(i)) + vn(i) , (1)

where vn(i) represents innovation noise, and anm is the
(n,m)th entry of the graph adjacency matrix A. This matrix
models how each function gm, m = 1, . . . , N influences the
signal observed at node n. Let gm : RLm → R be a nonlinear
function whose possibly vector-valued argument is yLm(i) =
[ym(i), . . . , ym(i − Lm + 1)]>, for Lm ≥ 1. Therefore, the
signal at each node depends non-linearly on the signals at
all the other nodes, up to the past Lm samples. Given nodal
measurements y(i) acquired online and model (1), the goal is
to estimate the adjacency matrix A locally at each node:

argmin
an,g1,...,gN

1

2
E
∥∥∥yn(i)−

N∑
m=1

anmgm(yLm(i))
∥∥∥2 + φ(an)

subject to anm ∈ {0, 1} , (2)

where an is the nth row of A, and function φ is a sparsity
promoting regularizer. However, models such as (1) do not
consider the nonlinear interactions between multiple nodes, as
they assume an additive model for yn(i) [25]. To overcome
this issue, we propose to consider the following general
nonlinear model:

yn(i) = fn(yL1
(i), . . . ,yLN (i)) + vn(i) . (3)

Model (3), compared to (1), captures much more complex
relationships between the different nodes without relying on an
assumed additive model, therefore rendering it more general.

A. Nonparametric sparsity

Although kernel-based and other nonlinear regression
frameworks can be applied to estimate the function fn de-
scribed in equation (3), there remains a challenge to relate fn
to the underlying graph topology A. Although the lack of an
additive model precludes a straightforward relationship such
as in (1), the influence of a certain variable can be quantified
by the norm of the corresponding partial derivative, i.e.:

node m does not influence n ⇐⇒
∥∥∥∥ ∂fn
∂yLm

∥∥∥∥ = 0 , (4)

under the assumption that fn is continuously differentiable.
If we do not assume the additive model, we can generalize

problem (2) as:

argmin
fn

1

2
E
∥∥∥yn(i)− fn(yL1

(i), . . . ,yLN (i))
∥∥∥2

subject to col
{∥∥∥∥ ∂fn

∂yLm

∥∥∥∥}N
m=1

being sparse . (5)

Let us denote ỹ(i) = [yL1
(i)>, . . . ,yLN (i)>]>. As thor-

oughly explained in [26], in order to define a nonparametric
notion of sparsity that leads to a convex optimization problem,
one can define the sparsity through the following functional:

ΩE(fn) =

N∑
m=1

∥∥∥∥ ∂fn
∂yLm

∥∥∥∥
E

=

N∑
m=1

√
Eỹ
{∥∥∥∥∂fn(ỹ)

∂yLm

∥∥∥∥2} . (6)

The expectation involving the derivatives in (6) can be
approximated by the empirical average on all the data samples
available up to instant i. Employing the `2-norm, as proposed
in the aforementioned paper, and approximating the expecta-
tion, we obtain the following sampled version functional:

Ω(fn) =

N∑
m=1

∥∥∥∥ ∂fn
∂yLm

∥∥∥∥
i

=

N∑
m=1

√√√√1

i

i∑
p=1

∥∥∥∥∂fn(ỹ(p))

∂yLm

∥∥∥∥2. (7)

By including Ω(fn) as an additive term in the cost function
of (5), we are able to obtain a convex optimization problem,
which allow us to obtain more efficient algorithms, and cater
to real-word graphs, which tend to be sparse.

B. Sparsity in Reproducing Kernel Hilbert Spaces

The penalty term proposed in the previous section allows
us to promote sparsity in the estimated topology without the
restrictive constraint of an additive model. However, there re-
mains a fundamental step to constrain fn to an adequate class
of functions that is flexible but allows for an efficient, finite di-
mensional implementation. Several solutions exist in the liter-
ature, including non-linear and polynomial Structural Equation
Models [27] and function selection from function sets defined
a priori [28]. In this work we will consider kernel methods,
which address the presence of nonlinearities in classification or
regression problems by applying linear algorithms to a high-
dimensional feature space obtained by mapping the input data
to a Reproducing Kernel Hilbert Space (RKHS) Hκ associated
with a positive definite reproducing kernel κ(·, ·). RKHS-based



solutions have been applied in the context of nonlinear additive
models for online topology estimation in, e.g., [16].

For simplicity, consider from now on Lm = 1, ∀m ∈ N ,
which means that yLm(i) = ym(i). Using the sparsity penalty
in (7), constraining fn to belong to an RKHS Hκ and
approximating the expectation in (5) by an empirical average
leads to the following optimization problem:

argmin
fn∈Hκ

1

2i

i∑
`=1

∥∥∥yn(`)− fn(ỹ(`))
∥∥∥2 (8)

+ηn

 N∑
m=1

√√√√1

i

i∑
p=1

(
∂fn(ỹ(p))

∂ym

)2

+ ψ
(
‖fn‖Hκ

) .

In (8), parameter ηn > 0 controls the relative importance
of respecting the constraint on fn, and ψ : R → [0,∞[ is a
monotonically increasing function.

Despite allowing us to introduce sparsity in fn without
constraining it to an additive model, the cost function in (8)
also contains a significant challenge to an RKHS-based
solution: the sparsity-promoting penalty term precludes the
direct application of traditional representation theorems to
obtain a finite dimensional representation. Fortunately, if we
suppose that the kernel κ(·, ·) is at least twice differentiable,
then the following relation holds [29]:

Hκ 3
∂fn(ỹ)

∂ym
= 〈fnn, κ∂m(·, ỹ)〉Hκ , (9)

where

κ∂m(·, ỹ(q)) =
∂κ(·, s)
∂sm

∣∣∣∣
s=ỹ(q)

. (10)

This means that for sufficiently smooth kernels, the derivative
of functions in Hκ also belong to Hκ, and can be evaluated in
the form of simple inner products. This makes it possible to
obtain a finite dimensional representation of the solution of (8),
as previously demonstrated in [26]. As such, the representer
theorem holds for our approach [26], and a solution of (8) is:

f∗n =

i∑
p=1

αpκ(·, ỹ(p)) +

N∑
m=1

i∑
q=1

βm,qκ∂m(·, ỹ(q)) , (11)

which can be substituted in (8) in order to obtain a finite
dimensional optimization problem.

III. AN ONLINE ALGORITHM

An immediate observation concerning solution (11) is that
the number of coefficients αp and βm,q can become prohibitive
as i increases, since each acquired measurement increases the
number of kernel functions. A solution to this problem is the
use of kernel dictionaries which can be defined a priori [30] or
which can admit a new candidate kernel function only if the
candidate function passes a certain sparsification rule based
on, e.g., the coherence criterion [31]. Under this framework,
each node n in the network creates, updates, and stores a
dictionary of kernel functions and their derivatives, Dn =
{{κ(·, ỹ(ωj)), κ∂1(·, ỹ(ωj)), . . . , κ∂N (·, ỹ(ωj))} : ωj ∈ Iin ⊂
{1, . . . , i − 1}}, where Iin represents the set of time indices

of elements selected for the dictionary, before instant i. This
entails the fact that, after a sufficient number of samples i has
been acquired, only a number |Iin| � i of coefficient couples
will be needed. A candidate kernel function κ(·, ỹ(i)) is added
to Dn if the following sparsification condition holds [31]:

max
ωj∈Iin

|κ(ỹ(i), ỹ(ωj))| ≤ ξn , (12)

where ξn ∈ [0, 1[ determines the level of sparsity and coher-
ence of the dictionary. The number of entries in the dictionary
satisfies |Iin| <∞ when i→∞ [31]. We rewrite (11) as:

f∗n =

|Iin|∑
p=1

αpκ(·, ỹ(ωp)) +

N∑
m=1

|Iin|∑
q=1

βm,qκ∂m(·, ỹ(ωq)) . (13)

Let vectors α = col{{αp}
|Iin|
p=1}, β = col{{βm}Nm=1},

with βm = col{{βm,q}
|Iin|
q=1}, group the coefficients in (13).

Considering the online version of the batch cost function (8)
with the instantaneous MSE estimate (measured only at
instant i), setting ψ = 0, and using the dictionary-based
representation of f∗n in (13), we obtain the following
finite-dimensional optimization problem:

argmin
γ

1

2

∥∥∥yn(i)− γ>s(i)
∥∥∥2 (14)

+ ηn

N∑
m=1

√√√√1

i

i∑
p=1

(
γ>tm(p)

)2
,

with s(i) =

[
z(i)
k(i)

]
,γ =

[
β
α

]
, tm(p) =

[
`m(p)
zm(p)

]
, and:

k(i) = col
{
κ(ỹ(i), ỹ(ωq))

}|Iin|
q=1

, (15)

z(i) =
[
z>1 (i), . . . ,z>N (i)

]>
, (16)

[zm(i)]q =
∂κ(ỹ(i), ỹ(ωq))

∂ym(ωq)

∣∣∣∣∣
q=1,...,|Iin|

,

`m(i) =
[
`>1,m(i), . . . , `>N,m(i)

]>
, (17)

[`m1,m2
(i)]q =

∂2κ(ỹ(i), ỹ(ωq))

∂ym1
(ωq)∂ym2

(ωq)

∣∣∣∣∣
q=1,...,|Iin|

.

The quantities (15), (16), and (17) can be computed in
closed form when an explicit expression of the continuously
differentiable kernel κ(·, ·) is chosen.

One difficulty with problem (14) is that the summation of
tm(p), p = 1, . . . , i in the regularization term grows linearly
with i, and is thus not scalable in this form. Note that we
can write the finite-dimensional regularizer in (14) as:

Ω(fn) =

N∑
m=1

√√√√1

i

i∑
p=1

(
γ>tm(p)

)2
(18)

=

N∑
m=1

√√√√γ>(1

i

i∑
p=1

Tm(p)

)
γ =

N∑
m=1

√
γ>Tm(i)γ ,

with Tm(p) = tm(p)t>m(p) and Tm(i) = 1
i

∑i
p=1 Tm(p), for



(a) EIER (b) Agt (c) RA (d) PA

Fig. 1. EIER, ground truth and estimates. White represents 0.

m = 1, . . . , N . Since the following relation is satisfied:

Tm(i) =
1

i
Tm(i) +

i− 1

i
Tm(i− 1) , ∀i ≥ 2 , (19)

we can compute Tm(i) recursively for all i with a fixed
complexity. Optimization problem (14) now becomes:

argmin
γ

1

2

∥∥∥yn(i)− γ>s(i)
∥∥∥2 + ηn

N∑
m=1

√
γ>Tm(i)γ . (20)

Cost function (20) can then be optimized iteratively using the
subgradient descent algorithm as:

γ̂(i+ 1) = γ̂(i) + µns(i)
(
yn(i)− s>(i)γ̂(i)

)
(21)

− µnηn
N∑
m=1

Tm(i)γ̂(i)

Λ̂m(i)
,

with Λ̂m(i) =

√
γ̂>(i)Tm(i)γ̂(i). In (20) and (21), each

Λm represents the estimate of the partial derivative of fn
with respect to ym. The proposed method, summarized
in Algorithm 1, has a per-iteration complexity of O(N2).
Approximate strategies can be considered to obtain a scalable
implementation. Parameter τn acts as an edge identification
threshold. It is used to identify the topology from the
estimated coefficients Λ̂m(i), determining whether there
exist links from each node m ∈ N \ {n} towards n. When
processing real data, τn can be set as to obtain an estimated
topology which realistically explains the studied process.

Algorithm 1: Kernel-based online graph inference
Inputs: For every node n: µn, ηn, κ(·, ·), ξn, and τn
Initialization: Set all entries of γ̂(0) to 0
Algorithm: At each time instant i ≥ 1
Update Dn if κ(·, ỹ(i)) satisfies condition (12)
Compute s(i) and Tm(i) with (15), (16), (17), (19)
Update γ̂(i) using (21)
Set ânm(i) to 1 if Λ̂m(i) ≥ τn, to 0 otherwise

IV. EXPERIMENTAL RESULTS

In this section, the performance of the proposed method is
evaluated by two experiments: one considering synthetic data,
and another considering real epilepsy data. The Gaussian ker-
nel κ(a, b) = exp

(
−‖a− b‖2/2σ2

n

)
was used in both cases.

Lorenz graph: Consider the first experiment in [16] (hereafter
called RA for reference algorithm), based on the discretized
version of the Lorenz attractor [32]. The system parameters
were set to the same values as in [33], with initial conditions
yn(0) = 10−10, ∀n, for both RA and the proposed algorithm
(PA). This system contains nonlinear interactions which cannot

(a) Preictal

(b) Ictal (c) Left: Preictal. Right: Ictal.

Fig. 2. (a) and (b): Estimated adjacency matrices. (c): Summed in- and
out-degrees for the estimated graphs. The larger the radius corresponding to
node n, the larger the summed degree of node n.

be completely characterized by additive models. We set µn
and τn as to achieve the fastest convergence. Parameters σn
and ξn were set as to obtain the same number of dictionary
entries per node, nine, in order to achieve a meaningful
comparison. Finally, τn were set as to achieve the best
performance in terms of edge identification error rate, EIER ,
‖Agt − Â‖0/(N(N − 1)) · 100%, where Agt is the ground
truth depicted in Fig. 1(b). Fig. 1(a) depicts the EIER of both
algorithms as a function of the iterations. In Fig. 1(c) and (d),
each entry represents the mean of the normalized Λ̂m(i), per n,
over i = 5000 iterations, which encodes the strength of a link
from node m towards n before thresholding. It is desired that
the amplitude of the elements for which anm = 1 be larger and
as separated as possible from the amplitude of the elements for
which anm = 0, since this makes distinguishing the active and
inactive links easier. On the first row, the more general model
of the current method is able to better differentiate between the
absence and presence of a link. This is seen through the larger
difference between Λ̂2 and Λ̂3 corresponding to â12 = 1 and
â13 = 0, respectively, in the case of PA, while for the RA the
strength of the link corresponding to â13 is much closer to that
of the active link. The lower performance of RA was expected
since it constrains the interactions to obey an additive model.
Real data: The data for this experiment come from a 39-year-
old female subject suffering from intractable epilepsy. The
data acquisition and pre-processing information is provided in
[3]. The data-set contains 8 instances of electrocorticography
(ECoG) time series, each instance representing one seizure and
contains voltage measurements from 76 different regions on
and inside the brain, during the 10 seconds before the epilepsy
seizure (preictal interval) and the first 10 seconds during the
seizure (ictal interval). We set µn = 10−3, ηn = 102, ξn = 0.8
for each n. Since there was no ground truth, parameters σn
and τn were set as to obtain coherent results.

Fig. 2(a) and (b) show the estimated connectivity of the
brain, for each interval, averaged over the 8 instances. Fig. 2(c)
depicts the degree (sum of in- and out-degree), encoded in the
radii of the circles, relative to each interval. Interestingly, our
online estimate reveals roughly the same behavior before and
during the seizure as the estimate obtained using the method
batch developed in [21] and the online method in [16]. More
precisely, the number of total connections decreases from one



interval to the other, especially due to the variation of in-
degrees for nodes 30 to 50. Further analyzing the connections,
nodes 75 and 76 have a small in-degree, however they present a
more important out-degree. Observe the decrease of the degree
of node 26 or the major increase for node 73. This behavior
is consistent with the findings of the aforementioned papers.

The algorithm is therefore able to obtain results similar
to those obtained in previous works, based on a general data
model. For reference, the number of kernel functions inserted
in the dictionaries was at most 9, after 4000 samples. These
results show how a small number of kernel functions are
actually needed in order to obtain a satisfactory topology
estimate. This fact, alongside the online approach and general
model, can translate in reduced computational complexity due
to the drastically reduced number of needed kernel functions.

V. CONCLUSION

In this paper, a new kernel-based online topology estimation
method was proposed accounting for general nonlinear
interactions between the agents in a network. Previous work
only considered models based on additive interactions between
the signals at the different nodes. However, such a simplifying
model is not entirely justified in many practical applications.
Following a more general approach, we consider arbitrary
nonlinear interactions between the nodes, which render our
model much more general. By encoding links as partial
derivatives of the nonlinear functions, we are able to benefit
from the kernel machinery framework to estimate a possibly
directed, sparse adjacency matrix. An online algorithm is pro-
posed, using kernel dictionaries and recursive computations of
the regularization terms to operate with bounded complexity.
Preliminary results indicate the proposed method can lead to
more accurate estimates for more general nonlinear systems.
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