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ABSTRACT

In graph signal processing, there are often settings where the graph
topology is not known beforehand and has to be estimated from data.
Moreover, some graphs can be dynamic, such as brain activity sup-
ported by neurons or brain regions. This paper focuses on estimating
in an online and adaptive manner a network structure capturing the
non-linear dependencies among streaming graph signals in the form
of a possibly directed, adjacency matrix. By projecting data into
a higher- or infinite-dimension space, we focus on capturing non-
linear relationships between agents. In order to mitigate the increas-
ing number of data points, we employ kernel dictionaries. Finally,
we run a series of tests in order to experimentally illustrate the use-
fulness of our kernel-based approach on biomedical data, on which
we obtain results comparable to state-of-the-art methods.

Index Terms— Topology inference, reproducing kernel, graph
signal processing, adaptive algorithm, brain connectivity estimation

1. INTRODUCTION

Graphs represent powerful mathematical objects able to model and
analyse any kind of network. Due to their inherently distributed na-
ture, they are also suited for big data analysis, since a distributed so-
lution can be easily applied on such an object. In applications such
as gene regulation systems [1], socio-economical interactions [2], or
brain activity [3], information about network structure is paramount.
Most graph signal processing algorithms assume the graph structure
as known beforehand. Among graph topology inference methods,
most assume linear dependencies between the agents (brain regions,
genes in a network, sectors of a market economy). Therefore, here
resides the need of developing algorithms capable of modeling non-
linear relationships, which are naturally present in real-world appli-
cations. Using reproducing kernels, through their ability to model
non-linear relationships between nodal signals, is hence motivated.

In this article, we consider a setting where online nodal mea-
surements are acquired and used in order to infer the topology of
the underlying network. In the developed approach, it is desired to
model non-linear dependencies, to be able to adapt to changes in
the network structure, and to be distributed over the different agents,
aiming at estimating a possibly directed adjacency matrix. Since
many real world examples, such as social graphs, show considerable
edge sparsity, the block `1-norm regularisation is used in this paper
due to its block sparsity-inducing properties.
Definitions: A graph G consists of a set N of N nodes, and a set E
of edges such that if nodesm and n are linked, then (m,n) ∈ E . For
undirected graphs, these node pairs are unordered. At the node level,
we collect a signal y , [y1, . . . , yN ]>, assumed to be real-valued,
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where yn is the sample of the signal y at node n. The adjacency
matrix A [4, 5], is defined as an N × N matrix whose entries anm
are zero if (m,n) /∈ E and set to one otherwise.
Prior works: In topology identification, several works have been
developed. An early proposition is in [6], where a covariance esti-
mation based method of inferring links is introduced. On the same
line, in [7] the graphical Lasso is employed in order to estimate the
inverse covariance matrix from data. In [8], the authors advocate
that connectivity can be recovered from estimated spectral templates,
while the authors in [9] propose an adaptive algorithm for learning
the topology from streaming graph signals driven by a diffusion pro-
cess. Under a graph signal smoothness assumption, a so-called pair-
wise distances matrix whose entries are pairwise squared-norm dis-
tances between nodal measurements is introduced in [10] to estimate
a weighted adjacency matrix.

In modeling non-linear phenomena, works such as [11, 12] fo-
cus on polynomial structural equation models, while the authors of
[13] use their non-linear counterparts. They, however, have some
limitations, such as assuming knowledge of certain connections or
the form of the non-linear functions. Reproducing kernels have seen
widespread use in topology inference problems. One of these works
is [14] where kernels, chosen to best fit the data, model nonlinear
relationships between nodes based on measurements at successive
time instants. The authors present an auto-regressive framework that
allows to track graph connectivity over time, proving useful in pro-
viding insights on brain connectivity. The multi-kernel approach in
[15] uses partial correlations to encode graph topology and `p-norm
regression to enhance performance. In [16], a thorough analysis of
the kernel-based topology inference problem is given. This work
focuses on capturing non-linear and dynamic links. A review of the
state of the art methods for graph topology inference is given in [17].

Encoding the graph topology with the adjacency matrix A is
ubiquitous in graph signal models. This operator describes the inter-
actions between entities and, by extension, it can be considered as
a tool for representing relationships between data. However, to the
best of our knowledge, a kernel-based online solution to the topol-
ogy inference problem has not yet been considered. In this work,
we propose an online approach that can sensibly reduce computa-
tional stress, as well as adapt to slow changes in the topology that
occur in dynamical environments. For the particular case of brain
connectivity estimation, the developed method has the advantage of
adaptability concerning data availability: due to its online nature, the
data acquisition process can be stopped exactly when the estimate is
obtained. This, in turn, can render the medical process of signal ac-
quisition less strenuous for both the patient and medical personnel.
Notations: Normal font letters denote scalars, while boldface low-
ercase and uppercase letters stand for column vectors and matrices,
respectively. Operator ‖ · ‖0 returns the number of their non-zero
entries. Uppercase calligraphic letters denote sets, of cardinality | · |.



2. NON-LINEAR MODEL AND CENTRALIZED PROBLEM

Consider an N -node graph with adjacency matrix A which models
a system such as the brain network. In this setting, the brain activity
in every considered region 1 throughN can be measured at different
time instants i, thus obtaining a signal y(i). Each of these regions
influences and is influenced by the other regions, and these links are
encoded in the matrix A. For the particular case of brain connec-
tivity, the existence of non-linear connections have been reported by
studies such as [18, 19]. This motivates modeling certain systems,
such as the brain, with non-linear connections. With these remarks,
we consider the following data model:

y(i) = Af(i) + v(i), (1)

where A is the adjacency matrix of the graph. This matrix models
how entries of f(i) , col{fm(yLm

(i))}Nm=1 influence every node.
We consider fm : RLm → R a non-linear function whose argu-
ment is yLm

(i) = [ym(i), . . . , ym(i−Lm + 1)]>. The signal v(i)
models innovation noise. The output at every node m is therefore
non-linearly dependent of all the other signals from the other nodes,
including the past. Given nodal measurements y(i) acquired online,
the goal is estimating the adjacency matrixA.

Under the least-mean-squares criterion, the optimization prob-
lem can be expressed as:

A∗ = argmin
A

1

2
E
∥∥∥y(i)−Af(i)

∥∥∥2 + Ψ(A)

subject to anm ∈ {0, 1},
(2)

where Ψ(A) is a regularization term to account for some prior
knowledge of A such as symmetry or sparsity. The constraint aims
at forcing the entries of the adjacency matrix to be binary. A relax-
ation of the constraint may be employed, by enforcing anm ∈ [0, 1].

Focusing on a single node n, model (1) becomes

yn(i) =
∑
m∈N

anmfm(yLm
(i)) + vn(i) (3)

and the local optimization problem is now

a∗n = argmin
an

1

2
E
∥∥∥yn(i)−

∑
m∈N

anmfm(yLm
(i))
∥∥∥2 + ψ(an)

subject to anm ∈ {0, 1}, (4)

where an is the nth row ofA, with entries anm,m = 1, . . . , N .
Problem (4) has to be solved based only on local measurements

y(`), ` ≤ i that are available at a certain instant i.

3. RKHS AND KERNEL DICTIONARIES

3.1. Reproducing Kernel Hilbert Spaces

Several solutions in modeling non-linearities exist, such as non-
linear and polynomial Structural Equation Models [20], as well as
function selection from an existing function set [21]. The focus in
this work is on kernel methods, which are able to deal with non-
linearities in classification or regression problems by applying linear
algorithms over a high-dimensional representation of the input data
on a Reproducing Kernel Hilbert Space (RKHS)Hk associated with
a positive definite reproducing kernel k(·, ·).

For the sake of clarity, consider Lm = 1 from now on, making
y1(i) ≡ ym(i). Let us denote φnm = anmfm, which allows us to

incorporate the binary variable anm and turn (4) into a problem that
is linear in φnm. Assuming that φnm belongs to a RKHS Hkm , for
m ∈ N , and approximating the expected value in (4) by empirical
averages computed over the available measurements for ` ≤ i, a
non-parametric version of the local optimization problem for node n
and time instant i can be written as:

{φ∗nm}Nm=1 = argmin
φnm∈Hkm

m=1,...,N

1

2i

i∑
`=1

∥∥∥yn(`)−
∑
m∈N

φnm(ym(`))
∥∥∥2

+
∑
m∈N

ψHkm
(‖φnm‖Hkm

), (5)

where ψHkm
: R→ [0,∞[ are non-decreasing functions. Since (5)

employs a convex loss function, the conditions of the linear repre-
senter theorem are satisfied [22]. Thus, the solution to (5) admits a
finite-dimensional representation of the form:

φ∗nm(·) =

i∑
p=1

αnmpkm(·, ym(p)), m = 1, . . . , N, (6)

where αnmp ∈ R and {ym(i), . . . , ym(1)} is the set of data avail-
able at node m and time instant i.

An important question is how to introduce sparsity in the graph
connections now that the problem is formulated in terms of φnm.
Since φnm = anmfm, anm = 0 implies that function φnm ≡ 0.
Thus, promoting sparsity over A is equivalent to promoting spar-
sity over the functions φnm, for m = 1, . . . , N . Fortunately, the
coefficient-based representation (6) means that this can be per-
formed equivalently by promoting sparsity of groups of variables
{αnmp}ip=1, for m ∈ N . This can be done very efficiently by using
a block-sparse regularization over the coefficients, which leads to
the following optimization problem for each time instant i:

α∗n = argmin
αn

1

2i

i∑
`=1

∥∥∥yn(`)−α>n k̃(`)
∥∥∥2 + ηn ‖αn‖B,1, (7)

where the Ni× 1 block vectors αn and k̃(`) are defined as:

k̃(`) =
[
k>1 (`), . . . ,k>N (`)

]>
,

αn =
[
α̃>n1, . . . , α̃

>
nN

]>
,

(8)

with

km(`) = col{km(ym(`), ym(p))}ip=1 ,

α̃nm = col{αnmp}ip=1 .
(9)

Constant ηn > 0 is a regularization parameter. Also, a block
sparsity-inducing regularisation on αn was added through the term
‖αn‖B,1, the block-wise `1-norm, i.e., ‖αn‖B,1 =

∑N
m=1 ‖α̃nm‖2.

This norm is known to promote group sparsity [23], favoring solu-
tions with entire blocks of variables α̃nm equal to zero, from which
it can be inferred that anm = 0 and thus there will be no connection
from node m towards n.

3.2. Optimization and kernel dictionaries

Solving (7) in batch mode is, however, impractical and com-
putationally costly. This is why we propose a stochastic gra-
dient descent-based solution in order to update αn every in-
stant i. Remark that a subgradient of the block-`1 regulariza-
tion ‖αn‖B,1 =

∑
m∈N ‖α̃nm‖2 is given by the block vector



Γn = [Γ>n1, . . . ,Γ
>
nN ]> [24, 25], where each block Γnm is:

Γnm =


α̃nm
‖α̃mn‖2

if ‖α̃mn‖2 6= 0

0 if ‖α̃mn‖2 = 0
. (10)

This entails the use of group zero-attracting LMS (GZA-LMS) [24],
leading to the following update rule, for every time instant i:

α̂n(i+ 1) = α̂n(i) + µn[rk̃y −Rk̃k̃α̂n(i)− ηnΓn(i)], (11)

where rk̃y = E{k̃(i)yn(i)},Rk̃k̃ = E{k̃(i)k̃
>

(i)}. Estimating
these second order moments can however prove to be unattainable or
computationally costly. This warrants for the use of approximations,
such as those based on instantaneous realisations:

rk̃y ≈ yn(i)k̃(i), Rk̃k̃ ≈ k̃(i)k̃
>

(i). (12)

The use of (12) leads to the stochastic GZA-LMS update:

α̂n(i+ 1) = α̂n(i) +µnk̃(i)[yn(i)− k̃>(i)α̂n(i)]−µnηnΓn(i).
(13)

An immediate observation concerning update (13) is that the size
of k̃(i) can become prohibitive as i increases, since each acquired
measurement increases the number of kernel functions. A solution
to this problem are kernel dictionaries which admit a new candi-
date kernel function only if the candidate function passes a certain
sparsification rule. Under this framework, each node m in the net-
work creates, updates, and stores a dictionary of kernel functions,
Dm = {km(·, ym(ωj)) : ωj ∈ Iim ⊂ {1, . . . , i − 1}}, where Iim
represents the set of time indices of elements selected for the dictio-
nary, before instant i. A candidate kernel function km(·, ym(i)) is
added in Dm if the following sparsification condition holds [26]:

max
ωj∈Iim

|km(ym(i), ym(ωj))| ≤ ξm, (14)

where ξm ∈ [0, 1[ determines the level of sparsity and coherence
of the dictionary [26]. Vector k̃(i) now only stores functions which
satisfy (14), leading to a rewriting of (9):

k̃(i) = [k>1 (i), . . . ,k>N (i)]>,

km(i) = col{km(ym(i), ym(ωj))}ωj∈Iim .
(15)

It is worth noting that using this approach, every time one kernel
function is added to a Dm, all the blocks α̃nm increase in size by
one new entry, ∀n ∈ N . Also, at each instant i, αn and k̃(i) are of
size

∑
m∈N |I

i
m| × 1. Most importantly, the number of entries in

the dictionary satisfy |Iim| <∞ when i→∞ [26].
Algorithm 1 summarizes the developed method. In the last step,

τn acts as an edge identification threshold. This parameter is used in
order to identify the topology from the estimated coefficients α̂n(i),
determining whether there exist links from each node m ∈ N to-
wards n. When processing real data, τn can be set as to obtain an
estimated topology which realistically explains the studied process.

4. EXPERIMENTS

Multiple experiments have been conducted, with the goal of show-
casing different characteristics of the developed algorithm. Firstly, a
simple 3-node graph is considered, where non-linearities are present
in node interactions. Secondly, on real biomedical data, the obtained
results are coherent with the results obtained in other works. Thirdly,
we take into consideration a dynamic graph setting in order to test the
adaptive capabilities of the algorithm. Along our experiments, we ei-
ther used the Gaussian kernel kGn (a, b) = exp

(
−‖a− b‖2/2σ2

n

)
or the exponential kernel kEn (a, b) = exp (−‖a− b‖/σn).

Algorithm 1: Kernel-based online topology inference
For every node n:
Inputs: Parameters µn, ηn, kn(·, ·), ξn, and τn
Initialization: Set all entries of α̂n(0) to 0
Algorithm: At each time instant i ≥ 1
Introduce kn(·, yn(i)) in Dn if (14) is verified
Receive and store the updated dictionaries Dm, m 6= n
Compute k̃(i) defined in (15)
Update α̂n(i) using (13)
Set ânm(i) to 1 if ‖α̂nm(i)‖ ≥ τn, to 0 otherwise

Fig. 1. Performance, as well as estimates at i = 50, 150, 250.

4.1. Discretized Lorenz Attractor

Consider the discretized version of the Lorenz attractor [27, 28]:yi+1
1

yi+1
2

yi+1
3

 =

yi1yi2
yi3

+ 0.01

 10(yi2 − yi1)
yi1(28− yi3)− yi2
yi1y

i
2 −

8

3
yi3

 , i ≥ 0, (16)

where exponents, for ease of notation, denote time instants, with
initial conditions [y01 , y

0
2 , y

0
3 ]> = [0.01, 0.01, 0.01]>. We used the

Gaussian kernel and set µn = 0.1, σn = 8, ξn = 0.8. Parameters
ηn and τn were set as to achieve the best performance in terms of
edge identification rate, EIER , ‖Agt − Â‖0/(N(N − 1))·100%,
whereAgt is the ground truth, whose binary entries encode direct in-
fluence, based on (16), between node couples, excluding self-loops.

Fig. 1 shows the EIER, and the estimates at iterations 50, 150,
250. These results, obtained after less than 300 samples with the dic-
tionaries containing only between 6 and 8 kernel functions per node,
show that the proposed method is able to infer links in a distributed
and online manner, even if they are based on non-linear interactions.

4.2. Tests on epilepsy seizure data

In this experiment, we aimed to show how the estimated topology
using the presented method is consistent with results presented in
other works. The used data come from a 39-year-old female subject
suffering from intractable epilepsy. The data acquisition and pre-
processing information is provided in [3]. The data-set contains 8
instances of electrocorticography (ECoG) time series, each instance
representing one seizure and contains voltage measurements from
76 different regions on and inside the brain, during the 10 seconds
before the epilepsy seizure (preictal interval) and the first 10 seconds
during the seizure (ictal interval). The Gaussian kernel was used, and
we set µn = 5 · 10−5, σn = 90, ξn = 0.9 for each n. Concerning
the choice of the ηn and τn, since there was no ground truth, they
were set as to obtain coherent results.

In Fig. 2 we show the estimated connectivity of the brain, dur-
ing both these intervals, averaged over the 8 instances. Fig. 3 depicts
the degree (sum of in- and out-degree), encoded in the radii of the
circles, relative to each interval. Interestingly, our online estimate
reveals roughly the same behavior before and during the seizure as



(a) Preictal interval (b) Ictal interval

Fig. 2. Estimated adjacency matrices for each interval

 (a) Preictal interval  (b) Ictal interval

Fig. 3. Summed in- and out-degrees for the estimated graphs for
both preictal and ictal intervals. The larger the radius corresponding
to node n, the larger the summed degree of node n.

the estimate obtained using the method developed in [29]. More
precisely, the number of total connections decreases from one in-
terval to the other, especially due to the variation of in-degrees for
nodes 30 to 50. Further analyzing the connections, nodes 75 and 76
have a small in-degree, however they present a more important out-
degree. Observe the decrease of the degree of node 26 or the major
increase for node 73. This behavior is consistent with the findings of
the aforementioned paper. The algorithm is therefore able to obtain
results similar to those obtained in previous works, while based on
kernel dictionaries. For reference, the number of kernel functions
inserted in the dictionaries varied between 15 to 30, after 4000 sam-
ples. These results show how only a reduced number of kernel func-
tions are actually needed in order to obtain a topology estimate. This
fact, alongside the online approach, can translate in reduced compu-
tational complexity, depending on the solver, due to the drastically
reduced number of needed kernel functions.

4.3. Real dynamic setting

The goal of this experiment is to analyze how the proposed method
adapts to slight dynamic changes in topology. Once again, we use
real data whose details are found in [30]. They represent electroen-
cephalography (EEG) measurements taken from a group of 81 sub-
jects in total, some of which are healthy and some of which suffer
from schizophrenia. A simple button-pressing task is set up, in three
separate settings where subjects either: 1 - pressed the button and
a tone was immediately played, 2 - listened to the tone without the
button press, and 3 - pressed the button and the tone was not played.
The goal of the experiment was to check how the subjects’ brains
respond to sensory consequences of their own actions, in healthy
and unhealthy subjects. This behavior arises when, for example, one
voluntarily moves their eyes from side to side and their brain knows
that the environment is not actually shifting. Patients suffering from
schizophrenia have difficulties in differentiating between internally
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Fig. 4. Estimated topologies per task, averaged per group.

and externally generated stimuli. During our experiment, we used
the measurements pertaining to three of the healthy subjects, namely
subjects 1, 2, 3, and three of the schizophrenia-suffering, namely 67,
68, 69. A total of 5000 measurements per task and per subject were
selected and fed to our algorithm, in order: task 1, task 2 and task
3, as if done one after the other. For both the healthy and unhealthy
sets we used the exponential kernel with σn = 1, µn = 9 · 10−2,
ξn = 0.1. In order to obtain comparable results, the same manner of
choosing parameters ηn and τn was used in both cases.

The estimated topologies, averaged over the three subjects in the
healthy and unhealthy groups respectively, are depicted in Fig. 4 for
each of the three tasks. For both the healthy subjects (first row) and
the unhealthy schizophrenia-suffering (bottom row), no important
changes appear in topology while moving from task to task. How-
ever, comparing the average healthy and unhealthy subjects, a rather
different network structure arises for each case. Some graph metrics
are given in Table 1. For each subject in the healthy group, 30 to
80 kernel functions were chosen for the dictionary, while for each
subject in the unhealthy group between 20 and 60.

Table 1. Metrics for the estimated topologies concerning the average
healthy and unhealthy subject

Metric Task Healthy Unhealthy

Network density
1 0.356 0.410
2 0.286 0.451
3 0.310 0.395

Average in- (and out-)degree
1 22.41 25.84
2 17.98 28.44
3 19.50 24.86

5. CONCLUSION

An online, kernel-based, and distributive graph topology inference
method was devised, which advocates the use of kernel dictionar-
ies as a sparsifying solution. The use of kernels allows for the in-
ference of connections when non-linear links are presumed. While
most state of the art methods rely on batch methods, which usually
come with a high computational cost, the developed online algo-
rithm comes with advantages such as adaptability. On the consid-
ered biomedical data, the method proved effective, paving the way
to further work and research, such as a thorough theoretical analysis
and the use of a multi-kernel approach.
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