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ABSTRACT

Modern data analysis and processing tasks usually involve large sets
of data structured by a graph. Typical examples include brain activ-
ity supported by neurons, data shared by users of social media, and
traffic on transportation or energy networks. There are often settings
where the graph is not readily available, and has to be estimated from
data. This paper focuses on estimating a network structure captur-
ing the dependencies among streaming graph signals in the form of
a possibly directed, weighted adjacency matrix. Several works pro-
posed centralized offline solutions to address this problem, without
paying much attention to the distributed nature of networks. We start
from a centralized setting and show how, by introducing a simple yet
powerful data model, we can infer a graph structure from stream-
ing data with a distributed online learning algorithm. Our algorithm
is tested experimentally to illustrate its usefulness, and successfully
compared to a centralized offline solution of the literature.

Index Terms— Network topology, graph signal processing, dis-
tributed learning, online learning

1. INTRODUCTION

In the last past years, data has become a raw resource that needs to be
collected and refined before becoming useful information. Data are
abundant and diverse, taking different forms, stemming from dif-
ferent sources: e-commerce, sporting events, entertainment media,
and social interactions, to name a few. Structured data, where each
component is linked in some way to others, are ubiquitous and gen-
erally evolve over time, making it difficult to process and analyze.
Since seminal works such as [1], graph signal processing (GSP) has
attracted great attention due to the potential applications it offers.
Typical examples include brain activity imaging, social media anal-
ysis, and transportation or energy networks monitoring.

Most graph signal processing algorithms introduced in the last
five years assume prior knowledge of the graph structure. However,
there are often settings where the graph is not readily available, and
has to be inferred from data by capturing the underlying relationship
between the characteristics of the observations at each node. This
paper focuses on estimating a network structure capturing the de-
pendencies among streaming graph signals in the form of a possibly
directed, weighted adjacency matrix.
Definitions: A graph G consists of a set N of N nodes, and a set E
of edges such that if nodes m and n are linked, then (m,n) ∈ E .
For undirected graphs, these node pairs are unordered. NotationNn

stands for the set of indices of nodes in the neighbourhood of node n,
i.e.,Nn = {m : (m,n) ∈ E}.

At the node level, we collect a signal x , [x1, . . . , xN ]>, as-
sumed to be real-valued, where xn is the sample of the signal x at
node n. We endow the graph G with a shift operator [1], defined as
an N ×N matrix S. Entries snm are non-zero if (m,n) ∈ E . This
matrix encodes the underlying graph connectivity. Valid choices for
this operator are the adjacency matrix (weighted or not) or Laplacian
matrix (and its variations) [2]. Operation Sx is called a graph shift
and can be performed locally at each node n by aggregating samples
in its neighborhood, i.e.,

∑
m∈Nn

snmxm. Also, Skx represents a
shift of order k that aggregates samples from k-hop neighbors.
Prior works: For topology identification, several works have been
put forward. A very early proposition is in [3], where a covariance
estimation based method of inferring links is introduced. On the
same line, in [4] the graphical Lasso is employed in order to estimate
the inverse covariance matrix from data. In [5], the authors advocate
that connectivity can be recovered from spectral templates, under
the assumptions that the graph signal x is stationary and generated
through a diffusion process. They estimate the shift operatorS under
a set of constraints that yields a matrix with desirable properties,
such as zeros on the diagonal, sparsity and symmetry. The authors
in [6] propose an adaptive algorithm for learning the topology from
streaming graph signals driven by a diffusion process.

Under a graph signal smoothness assumption, the so-called pair-
wise distances matrix Z with entries defined as zmn , ‖xm − xn‖2,
is introduced in [7] to estimate a weighted adjacency matrix W. The
problem is then solved by assigning smaller weights to far away
nodes, while reducing the number of less connected nodes and ex-
ceedingly large weights. Other solutions include the use of dictio-
naries. The authors in [8] devise a method for learning a dictionary
that is able to efficiently represent the signals as linear combina-
tions of atoms. Structural equation models are used in [9] to track
slowly time-varying networks, with application to contagion prop-
agation. Kernels have seen widespread use in topology inference
problems. One of these works is [10] where kernels, chosen to best
fit the data, model nonlinear relationships between nodes based on
measurements at successive time instants. The authors present an
auto-regressive framework that allows to track graph connectivity
over time, proving useful in providing insights on brain connectiv-
ity. The multi-kernel approach in [11] uses partial correlations to
encode graph topology and `p-norm regression to enhance perfor-
mance. A review of the state of the art methods for graph topology
inference is given in [12].

Encoding the graph topology with the shift matrix S is ubiqui-
tous in graph signal models. This operator describes the interactions
between entities and, by extension, it can be considered as a tool
for representing relationships between data. Unlike existing meth-



ods, this paper focuses on identifying the topology of a graph from
streaming graph signals in a distributed and online manner.
Notations: Normal font letters denote scalars, and boldface lower-
case and uppercase letters stand for column vectors and matrices,
respectively. Uppercase calligraphic letters denote sets. We denote
by supp{A} the support of A, and by |N | the cardinality of N .
λmax(·) stands for the largest eigenvalue of its matrix argument.

2. CENTRALIZED PROBLEM FORMULATION

2.1. Shift-invariant graph filtering

In this work, we focus on graph-based filtering framework. A graph
filter takes a signal on graph x(i) as input, and outputs a signal y(i)
given by y = Hx indexed by the same graph [13]. Different forms
have been considered forH in the literature. For example, the K-th
order linear shift invariant graph filter is defined as [14, 15]:

y(i) =

K−1∑
k=0

hkS
kx(i), i ≥ 0, (1)

with S a shift matrix and {hk}K−1
k=0 the filter coefficients. Observe

that the previous model assumes the instantaneous diffusion of infor-
mation, which may appear as a limitation of this model. A dynamical
model was introduced to overcome this restriction [16, 17]:

y(i) =

K−1∑
k=0

hkS
kx(i− k), i ≥ K − 1. (2)

Assuming that the shift matrix S is known, the authors in [16, 18]
show how diffusion adaptation strategies can be applied to estimate
the filter coefficients {hk}K−1

k=0 from streaming data {x(i),y(i)}.

2.2. Network topology inference

One possible tool for causal network topology inference is the mul-
tivariate autoregressive model defined as:

y(i) =

K−1∑
k=0

Skx(i− k) + v(i), i ≥ K − 1 (3)

whereSk , {snm,k} in the above power series contains autoregres-
sive coefficients that describe the influence of nodem on node n at a
distance of k hops, and v(i) is innovation noise. This model is help-
ful to asses Granger causality, where xm is said to Granger-cause x`
if knowledge of the former improves the prediction of the latter [19].

Consider a connected network with N nodes. We assume that
each node ` knows the set of its neighbors N` with which it com-
municates. We however assume that the support of S is unknown.
The problem is to estimate S from streaming data {x(i),y(i)}.
We assume that signal x(i) is zero-mean wide-sense stationary, i.e.,
correlation sequence Rx(k) = E{x(i)x>(i − k)} is a function
of the time lag k only. The noise v(i) = [v1(i), . . . , vN (i)]> is
assumed zero-mean, i.i.d., with covariance Rv = diag{σv,n}Nn=1.
Under these assumptions, estimating matrix S in (3) can be per-
formed by solving the following mean-square-error problem:

S∗ = argmin
S

E
∥∥∥y(i)−

K−1∑
k=0

Skx(i− k)
∥∥∥2 + ηΦ(S)

subject to snm = 0 if m /∈ Nn, n = 1, . . . , N

(4)
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Fig. 1. Data paths toward node n. Links are depicted as directed
edges in order to illustrate the flow of weighted data. In order to
estimate its own snm, node n receives from its neighbour m the
(K−1)-element vector [xm(i−1), smpxp(i−2)+sm`x`(i−2)]>.

with η > 0. The objective function in (4) includes a regulariza-
tion term Φ(S) to account for some prior knowledge of S such as
symmetry or sparsity. The constraints aim at forcing to zero the en-
tries snm of S corresponding to node pairs (n,m) /∈ E .

Formulation (4) is non-convex, due to the matrix polynomial.
This leads any resolution algorithm to possibly converge toward a
local minimum rather than a global one. Reference [17] considers
a similar problem in a centralized setting where the data across the
network are collected and processed by a fusion center. In the next
section, we shall show how the entries of S can be estimated in
a distributed manner where nodes perform local computations and
exchange information only with their neighbors.

3. DISTRIBUTED SOLUTION

3.1. Problem reformulation

The following strategy allows each node to locally estimate its own
non-zero entries in S. According to (3), the output yn(i) at each
node n is given by:

yn(i) =

K−1∑
k=0

[
Skx(i− k)

]
n

+ vn(i) (5)

This can be rewritten as:

yn(i) = xn(i) + s>n [x(i− 1)]m∈Nn + . . .+

s>n [SK−2x(i−K + 1)]m∈Nn + vn(i),
(6)

with
sn = col{snm : m ∈ Nn} (7)

the |Nn| × 1 vector aggregating all non-zero entries of the n-th row
of S. By subtracting xn(i) from yn(i), (6) can be expressed as:

ȳn(i) , yn(i)− xn(i) = z>n (i)sn + vn(i), (8)

where zn(i) is a |Nn| × 1 column vector defined as:

zn(i) = col

{
K−2∑
k=0

[
Skx(i− k − 1)

]
m

: m ∈ Nn

}
. (9)

Reformulating (6) in the form (8) has the following rationale.
Consider node n. At time instant i, this node weights the incoming
data from its neighbors with the corresponding entries of the n-th



row of S. The same reasoning holds for any neighboring node m
of n, as illustrated in Fig. 1, which weights its own incoming data
with entries of them-th row of S. This means that two-hop data sent
by node ` at time instant i−2, passing through nodem at time instant
i − 1, and received by node n at time instant i, are successively
weighted by sm` and snm. Therefore, when estimating S, node n
can simply focus on its own weights stored in the n-th row of S
provided that every other node in the network does the same with its
own weights.

Reformulation (7)–(9) comes along with several benefits com-
pared to the centralized solution in [17]. The main one concerns
computational efficiency since only one-hop regressors zn(i) are
considered at each node n. These one-hop transfers also translate
into lower communication costs.

3.2. Algorithm

We reformulate problem (4) by introducing the following aggregate
cost function:

J(S) =

N∑
n=1

Jn(sn) (10)

where Jn(sn) denotes the mean-square-error cost at node n, namely,

Jn(sn) , E‖ȳn(i)− z>n (i)sn‖2 + ηnΦ(sn). (11)

This form allows each node n to estimate its known entries sn of S,
and to possibly account for some prior knowledge of S via Φ(sn).

For illustration purpose, we shall impose a symmetry constraint
on S. Following the strategy in [20], we address this problem by
considering the following local cost function:

Jn(sn) , E‖ȳn(i)− z>n (i)sn‖2 + ηn
∑

m∈Nn

(snm − smn)2 (12)

where parameter ηn > 0 controls the relative importance of respect-
ing the symmetry constraint on S [21]. To minimize (12), we pro-
pose an incremental solution based on gradient descent, namely,

sn(i+ 1) = sn(i) + µn[rzny −Rznsn(i)− ηnδ(i)] (13)

where δ(i) = sn(i)− s̃n(i) with s̃n = col{smn : m ∈ Nn}, µn a
sufficiently small positive step-size, and:

Rzn , E
{
zn(i)z>n (i)

}
and rzny , E {zn(i)ȳn(i)} . (14)

Step-sizes µn in (13) must satisfy 0 < µn < 2/λmax(Rzn + ηnI)
in order to guarantee stability in the mean under certain indepen-
dence conditions on the data [22]. However, since second-order mo-
ments are rarely available beforehand, a stochastic gradient descent
strategy has to be devised. It consists of choosing instantaneous ap-
proximations such as:

Rzn ≈ zn(i)z>n (i) and rzny ≈ zn(i)ȳn(i). (15)

We used the adapt-then-penalize approach introduced in [23] to
implement the algorithm (13) with (15). Setting εn(i) , ȳn(i) −
z>n (i)sn(i), and introducing the intermediate estimate φn(i), this
strategy translates (13) into:

φn(i+ 1) = sn(i) + µnεn(i)zn(i), (16a)

sn(i+ 1) = φn(i+ 1)− µnηn[φn(i+ 1)− φ̃n(i+ 1)] (16b)

with φ̃n(i + 1) , col
{

[φm(i+ 1)]n : m ∈ Nn

}
the column vec-

tor that aggregates all partial estimates related to node n in partial
estimates of its neighboring nodes. The algorithm is synthesized
hereafter.

Algorithm 1: Local estimation of graph topology
For every node n:
Inputs: Parameters µn and ηn
Initialization: Randomly set all entries of sn(0)
Algorithm: At each time instant i ≥ 1
Get weighted data

[
Sk−1x(i− k)

]
m∈Nn

from neighbors
Compute the regressor zn(i) with (9)
Update the local estimate sn with (16)

4. EXPERIMENTS

Multiple synthetic experiments were conducted with the goal of esti-
mating sn at each node n using the proposed algorithm. The result-
ing estimates were then aggregated into an estimate of S. Next, this
estimated matrix S was used in the context of spectral clustering for
illustration purpose only. This particular application was chosen for
its simplicity to illustrate how estimates obtained with our algorithm
can provide useful insight into the topology of the graph.
Setting: An undirected community graph was generated using
GSPBOX [24], with N = 32 nodes forming two communities. The
adjacency matrix is shown in Fig. 2(a). The graph shift operator S
was chosen to be W /[1.1 · λmax(W )], the normalized weighted
adjacency matrix. Weights wmn were set to exp(−γ ‖cm − cn‖2),
where cn are the coordinates of the 2D embedding for node n.
In order to illustrate the adaptation abilities of the method, we
changed the shift operator during the experiment. Parameter γ
was set to 0.1 during the first part of the experiment, and then
changed to 0.6 for the second part. We considered an i.i.d. zero-
mean Gaussian signal x(i) with covariance matrixRx chosen to be
the solution of the Lyapunov equation SRxS

> − Rx + I = 0.
Noise v(i) was also zero-mean Gaussian with covariance matrix
Rv = diag{σ2

v,n}Nn=1. Variances σ2
v,n were generated from the

uniform distribution U(0.1, 0.15). We set the filter order to K = 3.
Output data y(i) were generated with model (3). We used a constant
step-size µ for all nodes and parameters ηn were set to 300. For each
experiment, estimates were averaged over 50 Monte-Carlo runs.
Experiment 1: Learning algorithm (16) was run to estimate S. The
estimated mean squared deviation (MSD) learning curve, defined as:

MSD(i) =
1

N

N∑
n=1

E‖s∗n − sn(i)‖2 (17)

is depicted in Fig. 2(c). It shows that the algorithm converged mono-
tonically to a reasonably low MSD, and succeeded in adapting to the
change in S at time i = 50000.
Experiment 2: Data were generated as in Experiment 1, with a new
shift matrix S′ such that supp{S′} ⊆ supp{S}. This allowed us to
consider a new setting where, even if a nodem is linked to a node n,
i.e., (m,n) ∈ E , the output signal yn(i) at node n does not necessar-
ily depend on the input signal xm(i−1) at nodem via model (3). To
design S′, we selected a subset of nodes in one of the two communi-
ties of the initial community graph, and we divided their connection
weights in S with all other nodes by 100. The resulting shift ma-
trix S′ is depicted in Fig. 2(b). In this way, we obtained two clusters
according to the adjacency matrixA, and three clusters according to
the shift matrix S′.

Learning algorithm (16) was run to estimate S′. The learning
curve represented in Fig. 2(c) shows that the algorithm converged
to a reasonably low MSD, at a slower rate than in Experiment 1
possibly because of the larger number of clusters. To check this



(a) Adjacency matrix (b) Shift matrix S′

(c) MSD

Fig. 2. (a) Adjacency matrix considered for the two experiments. (b)
Shift matrix S′ used in Experiment 2. (c) MSD learning curves.

assumption, we computed the eigen-decomposition of the estimated
shift matrix to infer the number of clusters [25]. It was numerically
found to be equal to 3. Finally, we performed a spectral clustering
of the nodes with a k-means algorithm based on the first k = 3
eigenvectors. The result depicted in Fig. 3 is in accordance with the
experimental setup.
Experiment 3: Comparisons were conducted with the centralized
batch algorithm derived in [17], called benchmark algorithm (BA).
We considered the same experimental setup as in Experiment 1, ex-
cept that the number of nodes was set to N = 20. No regularization
term Φ(·) was used. Since it deals with a more complex polynomial
model than our algorithm, we simplified the BA model by setting its
extra coefficients to 0. As BA is a batch-mode algorithm which esti-
mates model parameters from training data, we successively set the
size of the training set to T1 = 105, T2 = 7.5 ·104, and T3 = 5 ·104

samples. In each case, parameters of BA were set to achieve the
best possible MSD. Next we set the step-sizes µn of our algorithm
to achieve the same MSD at steady-state as BA. The results are pre-
sented in Fig. 4. We observe that our algorithm was able to achieve
the same MSD with half of the training samples. From a compu-
tational point of view, note that our method needs to process every
sample only once, whereas the BA processes the whole training set
many more times, depending on the chosen solver.

Fig. 3. Spectral clustering performed during Experiment 2. Two
communities can be observed in the graph topology. At the graph
signal level, three clusters are identified.

Fig. 4. Comparison of our algorithm with BA for 3 training set sizes:
T1 = 105, T2 = 7.5 · 104 and T3 = 5 · 104 samples.

5. CONCLUSION

In this paper, we proposed a distributed online strategy for topology
identification based on graph signals. This framework allows to es-
timate a weighted adjacency matrix based on local one-hop compu-
tations. Since most of state-of-the-art topology inference algorithms
work in a batch mode, this online approach represents a step for-
ward. A second step forward is that our algorithm can adapt in an
online way to changes in the graph shift operator.

For future work, multiple directions of research can be followed.
A first one would be using other regularizers in the optimization
problem, such as Lasso or group-Lasso in order to control the num-
ber of estimated connections. Another option would be to extend our
method by considering a kernel-based framework in order to cope
with nonlinear relationships between agents.
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