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Abstract

Due to the limited energy supplies of nodes in wireless sensor networks (WSN), optimizing their

design under energy constraints, reducing their communication costs, and securing their aggregated

data are of paramount importance. To this goal and in order toefficiently solve the problem of target

tracking in WSN with quantized measurements, we propose to jointly estimate the target position, the

relay location, select the secure sensor nodes and the best communication path. Firstly, we select the

appropriate group in order to balance the energy dissipation and to provide the required data of the

target in the WSN. This selection is also based on the transmission power between a single sensor and

a cluster head (CH). Secondly, we detect the malicious sensor nodes based on the information relevance

of their measurements. Thirdly, we select the best communication path between the candidate sensor and

the CH. Then, we estimate jointly the target position and therelay location using Quantized Variational

Filtering (QVF) algorithm. The selection of candidate sensors is based on multi-criteria function, which

is computed by using the predicted target position providedby the QVF algorithm, the malicious sensor

nodes detection is based on Kullback-Leibler distance between the current target position distribution

and the predicted sensor observation, while the best communication path is selected as well as the

highest signal-to-noise ratio (SNR) at the CH. The efficiency of the proposed method is validated by

extensive simulations in target tracking for wireless sensor networks.

Index Terms

Wireless sensor networks, target tracking, quantized variational filtering, relay localization, best
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communication path, malicious sensor.

I. INTRODUCTION

The WSN is defined as highly distributed networks of small andlightweight wireless nodes,

which are deployed in large numbers to mentor the environment or system by measuring physical

parameters such as temperature, pressure, or relative humidity [1].Due to small dimension,

sensor nodes are typically operated by lightweight batteries, which are difficult to be replaced or

recharged. So WSN is a typical energy-restricted network. As observed in almost applications,

the communication power consumption accounts for about 70%of the total power in WSNs[2],

], i.e. most energy of sensor nodes is spent in the exchange ofrouting information and data. A

direct consequence is that sensor nodes will use up their energy quickly, which is uneconomical.

Recently, researchers have proposed a special type of node called a ”relay node” which is

responsible for routing data packets. By using relay nodes,each sensor node would be able to

send only its own data without a need to relay traffic from others [3].

To this goal, minimizing the communication costs between sensor nodes is critical to extend

the lifetime of sensor networks. Another important metric of sensor networks is the accuracy of

the sensing result of the target in that several sensors in the same cluster can present redundant

data. Because of physical characteristics of sensor networks, such as distance, modality, or noise

model of individual sensors, data from different sensors can have various qualities. Hence, the

accuracy depends on the selection achieved by the cluster head on sensors and communication

links.

In this chapter, we address the problem of secure target tracking, relay localization and sensors

selection using a WSN based on quantized proximity sensors.Target tracking using quantized

observations is a nonlinear estimation problem that can be solved using estimation solutions such

as unscented Kalman filter (KF) [4], particle filters (PF) [5]or variational filtering (VF) [6].

Recently, a VF has been proposed as efficient solution for solving the target tracking problem

since: (i) it respects the communication constraints of sensor, (ii) the online update of the filtering

distribution and its compression are simultaneously performed, and (iii) it has the nice property

to be model-free, ensuring the robustness of data processing.
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There has already been a certain amount of research in the area of relay node placement

estimation, sensors selection, and secure target trackingfor wireless sensor networks. Li et al.

[7] have proposed a Voronoi-based relay node placement scheme to balance energy consumption

of each sensor node spent in communication. Bari et al. [8] have studied the relay node placement

with a mobile data collector. Iranly et al.[9] have addressed the joint problem of energy provi-

sioning and relay node placement. Hou et al. [10] have formulated the issues discussed above as

a mixed-integer nonlinear programming problem. In [11], Ergen and Varaiya have proposed an

approximation algorithm where the location of each relay node is restricted to a square lattice. An

energy-constrained relay node placement problem has been explored by Wang et al. [12] aiming

at minimizing the network cost with constraint on the network lifetime. The work in [13] has

explored a topic similar to tracking security by proposing aprotocol to verify securely the time of

encounters in multi-hop networks. However, [13]did not address the security issue in the context

of Bayesian tracking. Sensor selection based on expected information gain was introduced for

decentralized sensing systems in [14]. The mutual information between the predicted sensor

observation and the current target location distribution was proposed to evaluate the expected

information gain about the target position attributable toa sensor in [15]–[17]. On the other hand,

without using information theory, Yao et al. [18] found thatthe overall localization accuracy

depends not only on the accuracy of individual sensors but also on the sensor locations relative

to the target position during the development of localization algorithms. In addition, sensor

selection can be discussed within the framework of optimal estimation, where the estimation

error is normally used as the cost function of the optimization. In previous works [19]–[21]], the

problem of sensors selection is formulated as a constrained0-1 integer programming problem,

where the estimation error is minimized.

Most of these previous works do not consider a tradeoff between the quality of sensed data,

the transmit power and the power stored in candidate nodes toselect the candidate sensors.

Moreover, they have simplified or ignored the security issuein the context of Bayesian tracking

and the communication costs through a sensors-cluster headpath.

Our contribution lies in the following aspects: 1) we improve the use of variational filtering algo-

rithm (VF), which perfectly fits the highly non-linear conditions and eliminates the transmission

error; 2) we jointly estimate the target position and relay location by using QVF algorithm; 3)

we jointly select the best group of sensors that participates in data collection and detect the
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malicious sensor nodes; 4) we explore the impact of the communication path selection on the

QVF algorithm performances and introduce an adaptive quantization algorithm.

The remainder of the chapter is organized as follows. Section II presents both the observation

model and the general state evolution models. Section III isdevoted to the technique aimed

at adaptively estimating the target position and the relay node location. The appropriate group

of sensors selection is presented in Section IV. The malicious sensor nodes detection method is

presented in Section V. Then, Section VI presents the best communication path selection scheme.

Section VII gives some numerical results. Finally, SectionVIII concludes the chapter.

II. PROBLEM FORMULATION

The variational filtering (VF) algorithm for target tracking inherits many desirable properties

from the Bayesian Inference framework. An important step inthe Bayesian target tracking is

the recursive estimation of the predictive distribution described as follows,

p(Xt|Z1:t−1) =

∫
p(Xt|Xt−1)p(Xt−1|Z1:t−1)dXt−1, (1)

Where,p(Xt|Xt−1) is the distribution used to model the prior time evolution ofthe target state.

By incorporating the observation modelp(Zt|Xt), the new estimate of the targets stateXt is

updated using the following predictive distributionp(Xt|Z1:t−1):

p(Xt|Z1:t) =
p(Zt|Xt)p(Xt|Z1:t−1)

p(Zt|Z1:t−1)
, (2)

where p(Zt|Z1:t−1) =

∫
p(Zt|Xt)p(Xt|Z1:t−1)dXt.

The observation modelp(Zt|Xt) depends on the sensing mode employed by the sensors, while

the state evolution modelp(Xt|Xt−1) is always described by a parametric model.

A. General State Evolution Model

In this chapter, we use a General State Evolution Model (GSEM) described in [22]–[25],

which is more adaptive to practical situations and has no restriction on velocity or moving

direction of the target. As defined above, at instantt, the joint hidden stateXt = {xt, Rt} to

be estimated contains the target positionxt, a set of activated relays locationsRt = {ri
t}mt

i=1,

wheremt denotes the number of activated relays. Take relayi for example,ri
t is assumed to be

a Gaussian variable, whose expectation is its latest estimate valuer̂i, and the precision matrix
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νi indicates its position offset due to deployment error and other spatial factors. The targetxt

is assumed to follow an extended Gaussian model, where the expectationµt and the precision

matrix λt are both random, with a Gaussian distribution and a Wishart distribution respectively:






ri
t ∼ N (r̂i, νi)

xt ∼ N (µt, λt)

µt ∼ N (µt−1, λ)

λt ∼ Wn(V , n)

, (3)

whereλ is the initial precision matrix to reflect the uncertainty ofthe target location estimation

at instantt with respect to the previous one. The target state precisionmatrix λt is modeled by

a d dimensional Wishart distribution (n = 2 in this work), with V andn denote the precision

matrix and the degrees of freedom, respectively. Notice that · denotes the initial fixed parameter.

Assuming random mean and covariance for the statext leads to a probability distribution covering

a wide range of tail behaviors, which allows discrete jumps in the target trajectory. In fact, the

marginal state distribution is obtained by integrating over the mean and precision matrix (Eq.

(4)):

p(xt|xt−1) =

∫
N (µt, λt)p(µt, λt|xt−1)dµtdλt, (4)

In (4), the integration with respect to the precision matrixleads to the known class of scale

mixture distributions given by Barndorff-Nielsen [26]. The low values of the degrees of freedom

n reflects the heavy tails of the marginal distributionp(xt|xt−1).

B. Quantized Proximity Observation Model QPOM

Consider a wireless sensor network, in which the sensor locations, for an activated sensori

are given bysi = (si
1, s

i
2), i = 1, 2, ..., Ns. Taking the activated sensori (the activation procedure

is explained in section IV), their observations are modeledby:

γi,x
t = C‖xt − si‖η + ǫt, (5)

Similarly,

γi,r
t = C‖rt − si‖η + ǫt, (6)

whereǫt, is a Gaussian noise with zero mean and varianceσ2
ǫ andη andC are a known constants.

The observation for target tracking problem is quantized, before being transmitted, by partitioning
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the observation space intoN i
t intervalsRk = [τk(t), τk+1(t)], wherej ∈ {1, . . . , N i

t}. Similarly,

where the sensor collects information to estimate the relaylocation, it partitions the observation

space intoM i
t regionsRj = [τj(t), τj+1(t)], wherej ∈ {1, . . . , M i

t}.

The equations (7) and (7) show the quantized signals,

yi,x
t = dk,x if γi,x

t ∈ [τk(t), τk+1(t)], (7)

Similarly,

yi,r
t = dj,r if γi,r

t ∈ [τj(t), τj+1(t)], (8)

wheredk,x (resp.dj,r) is the centroid ofk-th cell during the target tracking problem (resp. the

centroid ofj-th cell during the relay localization). Then, the signals received by the cluster head

from the sensori at the sampling instantt are written as,

zi,x
t = βiy

i,x
t + nt; (9)

Similarly,

zi,r
t = αiy

i,r
t + nt; (10)

wherent is a random Gaussian noise sensor with a zero mean and a variance σ2
n, andβi is the

i-th sensor channel attenuation coefficient.

1) Formulation of the Observation Modelp(zt|Xt):

As illustrated above, the Bayesian filtering involves the construction of the observation model

p(zt|xt, Rt). To track the targetx, the available observations at the activated CH are denoted

by z
s,x
t =

{
zi,x

t

}m′
t

i=1
, wherem′

t is the number of sensors in the activated cluster. Assuming that

the noise samplesǫt are independently distributed, we have,

p(zs,x
t |xt) =

m′
t∏

i=1

N i
t−1∑

j=0

p(τj(t) < γ
s,x
t < τj+1(t))N (βidj , σ

2
ǫ ) (11)

where

p(τj(t) < γ
s,x
t < τj+1(t)) =

∫ τj+1(t)

τj(t)

N (ργ
s,x
t

(xt), σ
2
n)dγ

s,x
t (12)

is computed according to the quantization rule defined in (7), in which

ργ
s,x
t

(xt) = K‖xt − s‖η (13)
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Similarly,

p(zs,r
t |rt) =

mt∏

i=1

nt−1∑

k=0

p(τk(t) < γs,r
t < τk+1(t))N (αidk, σ

2
ǫ ) (14)

Explicitly, zi,r denotes the observations collected during the relay localization phase. At sampling

instantt, the observation of the targetzi,x
t is incorporated together withzi,r to help refining the

localization of the relayi.

C. Overview of the proposed algorithm

Generally, in order to ensure a precise target tracking, therelay locations need to be known a

priori. Initially, we suppose that relays are placed in roughly known positions. The true position

ri of the relayi is Gaussian distributed around its initial setting valueri with precisionνi. This

initial assignment results in a node layout that resembles an unfolded and scaled version of the

actual deployment, roughly preserving the topological ordering of nodes. After the deployment,

sensors proceed to exchange information with neighboring relays in their communication range.

The observations between them can thus be detected, and stored in the corresponding sensors.

Then, a localization phase is launched locally by incorporating only the observations between

sensors and relays, in the aim to improvea priori information on the relay locations. Consider

the relayi for example,

p(r̂i|zi,r) ∝ N (ri, νi)p(zi,r|ri). (15)

Thus, the estimation of the relay position is refined by incorporating the observationzi,r accord-

ing to the prior distributionri ∼ N (ri, νi). After having localized all the relays, much more

precise information on their locations is provided, which is incorporated as the prior information

r̂i for the adaptive scheme.

Once an intrusion in the WSN is identified, a cluster of sensors around the phenomenon of in-

terest is activated. Note that, as mentioned above, the adaptive scheme procedure is distributively

executed on a cluster head in order to minimize energy and bandwidth consumption. The sensors

that have detected the presence of the target in their sensing ranges broadcast their residual

energy level. The one with the maximum residual energy is elected as the cluster head (CH) to

take charge of signal processing. The other clustered detecting sensors transfer to the CH their

timely observation of the target, and the observations between their neighboring relays which

are stored during the pre-localization phase. Note that, the information concerning the detection
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of relay locations and the estimations of the target are simultaneously updated in the CH by the

adaptive scheme algorithm based on these observations. According to the Bayesian framework,

the adaptive scheme algorithm works in a recursive way, where the filtering distribution is

transferred to the next CH for further use.

III. ADAPTIVE SCHEME ALGORITHM

The classical Bayesian framework is adopted by the adaptivescheme algorithm adopts to

estimate the unknown state over time by using incoming observations. As mentioned in section

II, two distinct phases compose the Bayesian filtering framework: Prediction and Update. The

prediction phase uses the state estimated from the previoussampling instant to produce an

estimate of the state at the current instant according to Eq.(1). In the update phase of Eq. (2),

measurement information at the current instant is used to refine this prediction to arrive at a

new and hopefully more accurate state estimate. In a distributed context, the estimations of the

detecting sensors are updated and stored locally, whereas the filtering distribution of the target

needs to be transferred for future use. Concerning energy and bandwidth efficiency, the variational

approach compresses the filtering distribution of the target to a single Gaussian distribution

between successive clusters in a consistent manner [6]. Thus distributed signal processing is

achieved effectively. The details of the adaptive scheme algorithm are illustrated in what follows.

A. Variational Filtering Approximation

The variational approach is employed here to approximate the posterior probabilityp(αt|Z1:t)

by a separable distributionq(αt), which minimizes the Kullback-Leibler (KL) divergence error:

DKL(q||p) =

∫
q(αt) log

q(αt)

p(αt|Z1:t)
(dαt), (16)

where q(αt) =
∏

i

q(αi
t) = q(xt)q(µt)q(λt)q(Rt),

and q(Rt) =

mt∏

i=1

q(ri
t).

With variational computation, the following approximate distribution yields [6],

q(αi
t) ∝ exp〈log p(Z1:t, αt)〉∏

j 6=i q(αj
t )
, (17)
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where〈.〉q denotes the expectation operator relative to the distribution q. Taking into consideration

the separable approximate distribution at timet−1, that is,p̂(αt−1|Z1:t−1) = q(αt−1), the filtering

distribution at timet is deduced,

p̂(αt|Z1:t) =
p(zt|αt)

∫
p(αt|αt−1)q(αt−1)dαt−1

p(zt|Z1:t−1)
(18)

∝ p(zt|xt, Rt)p(xt|µt, λt)p(λt)p(Rt)qp(µt),

with qp(µt) =

∫
p(µt|µt−1)q(µt−1)dµt−1.

Therefore, the filtering distributionp(αt|Z1:t) can be sequentially updated, through a simple

integral with respect toµt−1. Considering the general state evolution model proposed in(3),

the evolution ofµt−1 is Gaussian, namelyp(µt|µt−1) = N (µt−1, λ). Defining q(µt−1) =

N (µ∗
t−1, λ

∗
t−1), qp(µt) is also Gaussian [27], with the following parameters,

qp(µt) = N (µp
t , λ

p
t ), (19)

where µ
p
t = µ∗

t−1 and λ
p
t = (λ∗

t−1
−1 + λ

−1
)
−1

.

Hence, the temporal dependence is hence reduced to the incorporation of only one Gaussian

component approximationq(µt−1). The update and the approximation of the filtering distribution

p(αt|z1:t) are jointly performed, yielding a natural and adaptive compression [6], [28]. According

to the equation (17) and taking into account (18) and (19), variational calculus leads to closed-

form expressions ofq(µt) andq(λt):




q(µt) = N (µ∗

t , λ
∗
t )

q(λt) = W2(V
∗

t , n∗)
, (20)

where the parameters are iteratively updated until convergence, according to the following

scheme: 




µ∗
t = λ∗

t
−1(〈λt〉〈xt〉 + λ

p
t µ

p
t )

λ∗
t = 〈λt〉 + λ

p
t

n∗ = n + 1

V ∗
t = (〈xtx

T
t 〉 − 〈xt〉〈µt〉T − 〈µt〉〈xt〉T + 〈µtµ

T
t 〉 + V

−1
)−1

. (21)

Notice that〈·〉 designates the expectation relative to the distributionq(·). The mean state and the

precision matrix distributions represented respectivelyby q(µt) and q(λt) have closed forms,
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such that their expectations are easily derived:





〈µt〉 = µ∗
t

〈µtµ
T
t 〉 = λ∗

t
−1 + µ∗

t µ
∗T
t

〈λt〉 = n∗V ∗
t

. (22)

Nevertheless, the target statext and the activated relay positionsRt do not have closed forms.

Combining the equations (17) and (18),q(xt) andq(ri
t) have the following expressions:





q(xt)∝N (〈µt〉, 〈λt〉)

∏m
′

t

i=1 p(zi,x
t |xt),

q(ri
t) ∝N (r̂i, νi)

∏mt

i=1 p(zi,r
t |rt),

(23)

Hence, the general state evolution model (3) and the observation model (5) and (6) are nat-

urally incorporated to updateq(xt) and q(ri
t). Their distribution forms immediately suggest

an Importance Sampling (IS) procedure, where samples are drawn from Gaussian distributions

N (〈µt〉, 〈λt〉) andN (r̂i, νi) respectively, and are weighted according to their likelihoods (taking

into account the observation model):




x

(k)
t ∼ N (〈µt〉, 〈λt〉), w

(k)
t ∝∏m

′

t

i=1 p(zi,x
t |x(k)

t ),

r
i,(k)
t ∼ N (r̂i, νi), w

i,(k)
t ∝ ∏mt

i=1 p(zi,r
t |r(k)

t ),
(24)

Therefore,q(xt) andq(ri
t) can be approximated by the Monte Carlo method:





〈xt〉=

∑N
k=1 w

(k)
t x

(k)
t

〈ri
t〉 =

∑N
k=1 w

i,(k)
t r

i,(k)
t

. (25)

As mentioned above, the standard adaptive scheme solution includes both prediction and

update steps. Besides the update of the filtering distribution p(αt|Z1:t), the predictive distri-

bution p(αt|Z1:t−1) can also be efficiently calculated by the variational approach. In fact, by

incorporating the separable approximate distributionq(αt−1) in the place ofp(αt−1|Z1:t−1), the

recursive adaptive scheme algorithm calculates the predictive distributionp(αt|Z1:t−1) in the

following form:

p̂(αt|Z1:t−1) ∝
∫

p(αt|αt−1)q(αt−1)dαt−1 ∝ p(xt|µt, λt)p(λt)p(Rt)qp(µt). (26)

The exponential form solution, which minimizes the Kullback-Leibler divergence between the

predictive distributionp(αt|Z1:t−1) and the separable approximate distributionqt|t−1(αt), yields
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Gaussian distributions for the predicted expectations, and a Wishart distribution for the target

precision matrix: 




qt|t−1(xt) ∝ N (〈µt〉qt|t−1
, 〈λt〉qt|t−1

),

qt|t−1(µt) ∝ N (µ∗
t|t−1, λ

∗
t|t−1),

qt|t−1(λt) ∝ W2(V
∗
t|t−1, n

∗
t|t−1),

qt|t−1(Rt) ∝ N (R̂, ν),

(27)

where the parameters are updated according to the same iterative schemes (21) and (22). The

target state and the activated relays are now evaluated by the following expressions:

〈xt〉qt|t−1
= 〈µt〉qt|t−1

, 〈xtx
T
t 〉qt|t−1

= 〈λt〉qt|t−1

−1 + 〈µt〉qt|t−1
〈µt〉Tqt|t−1

,

〈Rt〉qt|t−1
= 〈R̂〉. (28)

In the next section, we present a technique aiming at adaptively (and jointly) selecting the

appropriate group of candidate sensors that participate indata collection for tracking the target.

IV. OPTIMAL GROUP OF CANDIDATE SENSORS SELECTION BASED ON MULTI-CRITERIA

FUNCTION (MCF)

Since the predicted target positionxp(t) = 〈xt〉qt+1|t
at timet is available, it could be used to

select sensors. Sensors inside the disk centered atxp(t) with radiusRmax are pre-selected. After

the pre-selection of sensors withinRmax range, the CH divides the pre-selected sensors into

M =
∑Ns

j=4 Cj
Ns

groupsGt (at least four sensors are needed to sense the target within their range

[13]). Then, it computes for each group of sensors the MCF (detailed in IV-A) and activates the

appropriate group which has the highest MCF value to participate in data aggregation.

In the next subsection, we detail the MCF function with the used parameters permitting to select

the appropriate group of sensors that participate in data collection for tracking the target.

A. Multi-criteria function

The multi-criteria function for sensors selection aims is to define the main parameters that

may influence the relevance of the participation in cooperation, which are: 1) (MI(xt, z
Gt)):

the information that can be transferred from the group of candidate sensors, 2)Gt (D(i)): the

transmitting distance between the sensori and the CH in group, and 3) (E(i)): the energy
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stored in candidate sensor. The problem is how to formulate the criteria for the CH to select the

appropriate group of sensors that provide relevant data andbalances the energy level among all

sensors. We define a combinative measurement for the group ofcandidate nodesGt, denoted as

F , which is given by:

F (Gt) = n1MI(xt, z
Gt) − n2

M∑

i=1

R2
t (i). (29)

WhereR(i) = E(i)
D(i)

, n1 and n2 are the importance factor for the Mutual Information(MI)

function and the ratio between the energy stored in the sensor (E) and the transmit distance

(D). In order to select the best group of candidate sensors basedon equation (29), the objective

is to choose the appropriate group of sensorsGt so that,

Ĝt = arg max
Gt⊂C

F (Gt) (30)

The efficiency measurement of given information is often achieved by the mutual information

function. This later is a quantity measuring the amount of information that the observable variable

zGt carries about the unknown parameterxt. The mutual information between the observations

zGt and the sourcext is proportional to:

MI(xt, z
Gt) ∝ p(zGt | xt) log(p(zGt | xt)) (31)

The likelihood function(L) is expressed as,

L(sGt) = p(zGt |xt) =
M∏

i=1

N i
t−1∑

j=0

p
(
τj(t) < γi < τj+1(t)

)
N
(
dj , σ

2
ǫ

)
(32)

where,

p
(
τj(t) < γi

t < τj+1(t)
)

=

∫ τj+1(t)

τj(t)

N
(
ργi

t
(si), σ2

n

)
dγt (33)

=
1√
π

[
erfc

(
τj(t) − ργi

t
(xt)√

2σ2
n

)
− erfc

(
τj+1(t) − ργi

t
(xt)√

2σ2
n

)]

using the quantization rule defined in (7), in which

ργi
t
(si) = K‖xt − si‖η, (34)

It is worth noting that the expression of theMI given in (31) depends on the target position

xt at the sampling instantt and on the group of candidate sensorsGt. However, as the target
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position is unknown, theMI is replaced by its expectation according to the predictive distribution

p(xt|zGt

1:t−1) of the target position:

< MI(sGt) >= E
p(xt|zGt

1:t−1
)

[
MI(sGt)

]
(35)

The computation of the above expectation is analytically untractable. However, as the VF

algorithm yields a Gaussian predictive distributionN (xt; xt/t−1, λt/t−1), the expectation (35)

can be efficiency approximated by a Monte Carlo scheme:

< MI(sGt) >≃ 1
J

∑J
j=1 MI(x̃j

t , s
Gt),

x̃
j
t ∼ N (xp(t); xt/t−1, λt/t−1)

(36)

wherex̃
j
t is thej-th drawn sample at instantt, andJ is the total number of drawn vectors̃xt.

The next section presents the malicious sensor nodes detection based on the Kullback-Leibler

distance (KLD) between the current target position distribution and the predicted sensor obser-

vation.

V. M ALICIOUS SENSOR NODE DETECTION BASED ONKULLBACK -LEIBLER DISTANCE

(KLD)

A. Problem definition

The following are the assumptions made to resolve the malicious sensor detection problem:

1) We assume that malicious nodes can successfully authenticate with the sensor network, and

their data can be collected with other nodes in the network. Otherwise, the CHs are assumed to

well-behave and not malicious. 2) We assume a centralized scenario, in which a CH processing

unit collects tracking reports from sensor nodes, determines which of them are malicious and

removes them from sensor networks. 3) The purpose of the fictitious path is to allow the enemy

to avoid surveillance. However, the fictitious path does notgo beyond the sensing range of the

nodes. 4) We assume that sensor nodes have unlimited communication bandwidth among each

other. Meanwhile, an unknown number of the nodes are malicious and they are injecting false

tracking reports into the network. The problem is how to detect those malicious nodes, and to

provide a correct target trajectory.
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B. The computing of the Kullback Leibler distance (KLD)

The measurement of the distance between two statistical models is needed to resolve certain

problems. For example, this distance can be used in evaluating the training algorithm or clas-

sifying the estimated models [29]. The Kullback-Leibler distance or the relative entropy arises

in many contexts as an appropriate measurement of the distance between two distributions. The

KLD between the two probability density functionsp and p̂ is defined as [30]:

KLD(p||p̂) =

∫
p log

p

p̂
(37)

The computation of the distribution function is very complex for hidden Markov models, and

practically it can be only computed via a recursive procedure; the ”forward/backward” or ”up-

ward/downward” algorithms [31], [32]. Thus there is no simple closed form expression for the

KLD for these models. Commonly, the Monte-Carlo method is used to numerically approximate

the integral in (37) as

KLD(p||p̂) = Ep(log(p) − log(p̂)) (38)

Hereafter, we detail the two proposed schemes for the detection of malicious sensors.

C. Case 1: Reactive cluster formation

At every sampling instant, the cluster (CH and candidate secure sensors) is dynamically

formed. The candidate sensors are activated in a manner explained in Section IV. The cluster

headCHt is chosen to be the nearest sensor to〈xt〉qt|t−1
i.e :

CHt = arg min
i=1,...,|Bt|

{‖〈xt〉qt|t−1
− sm

t ‖ m ∈ Bt} (39)

where|.| denotes the cardinality, andBt is the set of activated sensors.

Let’s assume that sensorsi, j and k are activated and the sensorsj and k can overheari’s

transmission. At time stept, the sensorsj and k compute their predictive target distributions

p(xt|zj
t+1|t) andp(xt|zk

t+1|t) by executing the QVF algorithm. At time step (t+1), they overhear

thei’s transmitted value, and compare thei-th sensor predictive distributionp(xt|zi
t+1|t) to the two

predictive distributionsp(xt|zj
t+1|t) andp(xt|zk

t+1|t) by computing the Kullback Leiber distances

(detailed in V-B)Ki,j andKi,k. If the Ki,j andKi,k are larger thanK0 (a predefined threshold),

as shown in Fig. 1, then the sensorsj and k estimate that the sensori is malicious and send
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a notification to the CH. This later compares thep(xt|zi
t+1) to the p(xt|zi

t+1|t) distribution by

computing the distanceKi,i, if this latter is also large thanK0, then, it deletes thei-th fictitious

path from the sensor network.
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Fig. 1. A simple example for KLD computing

.

The major advantages of this algorithm can be summarized as follows. i) The accuracy of

tracking is guaranteed by choosing the most potential sensors to dynamically form a cluster.

ii) Sensors Kullback Leibler distance (KLD) Kullback?Leibler distance (KLD) (a predefined

threshold). ii) This scheme is much more robust to external attacks. iii) As the lifetime of WSN

is defined as the time elapsed until the first sensor depletes its energy [33], it is essential to

evenly distribute the energy consumption over the whole WSN. By dynamically forming the

clusters, CHs performing series of energy-intensive functions are changing frequently in order

to balance the energy expenditure. However, since the signal processing task is assigned to all

the slave sensors, all these advantages cited above are at the expense of homogeneous high

hardware configuration.

The scheme discussed previously will be referred to as Re-QVF; its procedure is described in

Algorithm 1.
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Algorithm 1:
— Initialization:

1) Determine the CH by using the equation (39).

2) Select the appropriate group of sensors according to Section IV

3) Quantize the sensors’ measurements according to Sub.II-B.

4) Execute the QVF algorithm.

— Iterations:

1) Compute the multi-criteria function by using the equation (29).

2) Select the appropriate group of sensors according according to Section IV

3) Determine the CH by using the equation (39).

4) Detect the malicious sensors according to Sub.V-C.

5) Delete the fictitious path according to Sub.V-C.

6) Quantize the sensors’ measurements according to Sub.II-B.

7) Execute the QVF algorithm.

D. Case 2: Proactive cluster formation

For this second case, we suppose that CHs are statically selected at the time of sensors

deployment. At sampling instantt, the QVF provides at the sampling instantt, the predicted

target positionxt/t−1 = 〈xt〉qt|t−1
. As shown in Fig.2, based on this predicted information, the

cluster headCHt−1 at sampling instantt− 1 selects the next cluster headCHt. If the predicted

target position〈xt〉qt|t−1
remains in the vicinity ofCHt−1, which means that at least four of its

slave sensors can detect the target, thenCHt = CHt−1. Otherwise, if〈xt〉qt|t−1
is going beyond

the sensing range of the current cluster, then a newCHt is activated based on the target position

prediction〈xt〉qt|t−1
and its future tendency.

CHt = arg max
k=1,...,K

{cos θk
t

dk
t

} (40)

where dk
t = ‖〈xt〉qt|t−1

− LCHk
t
‖

and θk
t = angle(

−−−−−−−−−−→〈xt−1〉〈xt〉qt|t−1
,
−−−−−−−−→〈xt−1〉LCHk

t
)
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Fig. 2. Prediction-basedCHt activation.

whereK is the number of CHs in the neighborhood ofCHt−1 andLCHk
t

is the location of the

k-th neighboringCHt.

The initial distribution of the target position;p(x0), at the instantt = 0, is assumed to be

known and stored in CH unit. Then, at time step t, the activated sensori sends its quantized

observationyi
t to theCHt. When, theCHt receiveszi

t, which is corrupted by an additive white

Gaussian noisent, it executes the QVF algorithm, which provides in addition to the estimated

target distribution̂p(zt|xt), the predictive target distribution for thei-th sensorp(xt|zi
t+1|t). The

CHt sends this predicted information to theCH(t+1), which receives also a measurement from

the i-th sensor. Based on this information, theCH(t+1) computes fori-th sensor, the Kullback

Leiber distanceKi,i between the predictive distributionp(xt|zi
t+1|t) received fromCHt and the

distributionp(xt|zi
t+1). In the similar way, theCH(t+1) calculates similarly,Ki,j and Ki,k and

compares them with the constraintK0, if the differences are greater than0, then it estimates

that thei-th sensor node is malicious. Finally, the CH deletes the fictitious path corresponding

to the malicious sensor from the sensor networks.

In summary, our proposed scheme includes many several advantages. Firstly, the consumed

energy and the required bandwidth in communication are considerably reduced. The tracking

process is performed only by the activated CH, while the slave sensors are unable to take over
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this task. The candidate slave sensors are required to collect and transmit their measurements over

short distances to the CH. Secondly, the cost of hardware configuration drops sharply owing to

the low-cost of slave sensors. Furthermore, avoiding CH competition puts an end to unnecessary

resource and energy consumption. Only when the hand-off operation occurs does the active CH

need to communicate the temporal dependence information tothe subsequent CH. However, the

occurrence of hand-off operations is reduced by the non-myopic selective CH activation rule. In

addition, the QVF algorithm reduces the dependence of temporal informations to only statistic

parameters of a Gaussian distribution. We refer to the approach described in this section by

Pro-QVF summurized by the following steps (Algorithm 2).

Algorithm 2:
— Initialization:

1) Determine the cluster head by using the equation (40).

2) Select the best group of candidate sensors according to Section.IV.

3) Quantize the sensors’ measurements according to Sub.II-B.

4) Execute the QVF algorithm.

— Iterations:

1) Compute the predictive target distribution.

2) Compute the multi-criteria function by using the equation (29).

3) Select the appropriate group of sensors according to Section.IV.

4) Determine the CH by using the equation (40).

5) Detect the malicious sensors according to Sub.V-C.

6) Delete the fictitious path according to Sub.V-C.

7) Quantize the sensors’ measurements according to Sub.II-B.

8) Execute the QVF algorithm.

The next section is devoted to the method aimed at adaptivelyselecting the best communication

path between the candidate sensor and the cluster head.
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Fig. 3. Illustration of the diversity network with the best communication path selection scheme.

VI. BEST COMMUNICATION PATH SELECTION METHOD

This section aims at selecting the best communication path as well as the highest SNR at the

CH. In what follows, we assume that the relay placement is already estimated.

A. System model

Fig. 3 illustrates the idea of the proposed model. The communication is established between

a sensor node and the cluster head through the selected relayincluding direct and indirect links.

The selected relay is achieved according to the best communication procedure. The cluster head

can get the best copy of the source signal transmitted by the source sensor S, via the best

communication path selection scheme allows. The first one isfrom the source sensor (direct

link), while the second one is from the best path as shown in Fig. 3. The parameterαi shown

in Fig. 3 is the channel coefficient between the source sensorS and thei-th sensor.αi andαj,

βi andβj are flat Rayleigh fading coefficients and mutually independent and non identical for

all i andj.

The signal is simply amplified, at the relay sensori, the signal is simply amplified using the

gain g = 1/
√

Esαi
2 + Nǫ, whereEs is the transmitted signal energy of the source. It is easy to

prove that the source to cluster head SNR of the indirect path, S 7−→ i −→ CH can be written

as

γS→i→CH =
γαi

γβi

γαi
+ γβi

+ 1
(41)
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whereγαi
= α2

i
Es

Nǫ
is the instantaneous SNR of the source signal at the sensori, γβi

= β2
i

Ei

E0

is the instantaneous SNR of the sensor signal (sensori) measured at the cluster head, andEi is

the signal transmitted energy of the relayi.

The best communication path will be selected as the one that achieves the highest source-to-end

SNR of indirect and direct paths. The SNR for the best path is given by,

γb = max(γβ0
, γS→i→CH)i=1...M (42)

where γβ0
= β2

0
Es

Nn
is the instantaneous SNR between the source and the cluster head and

M is the total number of links inside cluster. The upper-boundof γS→i→CH is given by [34].

Computing the above expression is analytically untractable. However, (42) can be efficiency

approximated [35] by

γS→i→CH ≤ γi = min(γαi
γβi

), (43)

this approximation simplifies the derivation of the SNR statistics: Cumulative Distribution

Function (CDF), Probability Distribution Function (PDF) and Moment Generating Function

(MGF).

B. Error performance analysis

The error probabilitype of the best path is given as

pe(γβ0
, γb) = Aerfc

(√
B max(γβ0

, γb

)
(44)

Whereerfc(x) = 2√
π

∫∞
x

exp(−t2)dt, andA andB are dependent on the modulation type. Over

the random variables representing the SNR values of the bestcommunication path the average

error probability is given by

PE =

∫ ∞

0

pe(γb)fγb
dγb (45)

using the alternative definition of theerfc(x) function as [36]

erfc(x) =
2

π

∫ π
2

0

exp

(
− x2

sin2 θ

)
dθ (46)

and by substituting (46) into (45) we obtain

PE =

∫ ∞

0

2

π

∫ π
2

0

exp

(
− Bγb

sin2 θ

)
fγb

(γb)dγb =
2

π

∫ π
2

0

Mγb

(
B

sin2 θ

)
dθ (47)

where,Mγb
=
∫∞
0

fγb
(γb) exp(−sγb)dγb is the MGF ofγb andfγb

is PDF ofγb.
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In order to find thePE, it is necessary to find the PDF and MGF ofγb. We can write the

CDF of γb as follows,

Fγb
(γ) = P (γb 6 γ) = P (γi 6 γ)P (γβ0

6 γ)i=1...M =

[
M∏

i=1

(
1 − e−γ/γi

)
]
(
1 − e−γ/γβ0

)
(48)

In the aim of giving a coherent analytic form, we assumeγM+1 = γβ0
, the PDF can be found

by taking the derivative of (48), with respect toγ, and after doing some manipulations,fγb
(γ)

can be written as

fγb
(γ) =

M+1∑

n=1

(−1)(n+1)

M−n+2∑

k1=1

M−n+3∑

k2=k1+1

M+1∑

kn=kn−1+1

n∏

j=1

(e
−γ/γkj )

n∑

j=1

(
1

γkj

)

(49)

by using the PDF in (49), the MGF can be written as

Mγb
(s) =

∫ ∞

0

e−sγ
M+1∑

n=1

(−1)(n+1)
M−n+2∑

k1=1

M−n+3∑

k2=k1+1

M+1∑

kn=kn−1+1

n∏

j=1

(e
−γ/γkj )

n∑

j=1

(
1

γkj

)

dγ (50)

and the integral can be evaluated in a closed form as

Mγb
(s) =

M+1∑

n=1

(−1)(n+1)
M−n+2∑

k1=1

M−n+3∑

k2=k1+1

M+1∑

kn=kn−1+1

Ψn

s + Ψn

(51)

whereΨn =
∑n

j=1(1/γkj
). Substituting (51) in (47) and finalizing the integration using [37],

we can writePE in a closed form as follows,

PE = A

M+1∑

n=1

(−1)(n+1)
M−n+2∑

k1=1

M−n+3∑

k2=k1+1

M+1∑

kn=kn−1+1

(

1 −
√

B/Ψn

1 + 1/Ψn

)

(52)

VII. RESULTS

In this section, we evaluate the proposed algorithm based ona synthetic example, which

involves the mobile target tracking, the relay localization, the secure sensor node detection and

the optimal communication path selection. The purpose of the synthetic example is to establish

a baseline performance comparison on a relatively difficultproblem.

In what follows, we proceed to compare the tracking accuracyof the adaptive quantized

variational filtering (AQVF) algorithm, with the binary variational filtering (BVF) algorithm

[28], and the centralized quantized particle filter (QPF) algorithm [38]. In the simulation, we

have considered the following parameters:η = 2 for free space environment, the constant

characterizing the sensor range is fixed for simplicity toC = 1, the cluster head noise power is
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σ2
n = 10−3, the sensor noise power isσ2

ǫ = 10−4, the maximum sensing rangeRmax (resp. the

minimum sensing rangeRmin) is fixed to10 m (resp.0 m) and 200 particles were used in QVF,

BVF and QPF algorithms. All sensors have equal initial battery energies ofEi = 1 Joule. All

the simulations shown in this chapter are implemented with Matlab version 7.1, using an Intel

Pentium CPU 3.4 GHz, 1.0 G of RAM PC.

The quantized proximity observation model, formulated in equation (7), was adopted for the

QPF algorithm.

Fig. 4 and Fig. 5 show the performances comparison of AQVF andBVF, we can observe from

Fig. 4.a) and Fig. 5.a) that, even with sudden changes in the target trajectory, the desired quality

is achieved by AQVF algorithm and outperforms the BVF algorithm. Their tracking accuracies

are compared in Fig. 4.b) and Fig. 5.b), in terms of Mean Square Error (MSE) where the sensors

number varying in{200, ..., 600}.

MSE = E
(
(x − x̂)2

)
. (53)

Wherex (resp.x̂) is the true trajectory (resp. the estimated trajectory).

The proposed method shows performances that demonstrate the effectiveness of the adaptive

quantization and the impact of neglecting the information relevance of sensor measurements,

when we used binary proximity sensors. As can be expected, with the increase in the amount

of particles, QPF algorithm demonstrates much more accurate tracking at the cost of a higher

computation complexity. Particularly, the computation time grows proportionally to the increment

of the number of particles. The tracking accuracy of QPF algorithm is compared to that of the

proposed method in Fig. 6 and Fig. 7. The simulation results obtained by the comparison of the

smaller MSE of the proposed method to that of QPF method confirms the effectiveness of the

the proposed method in terms of tracking accuracy and efficiency in a non-Gaussian context.

As can be expected, the MSE decreases for all the algorithms when the nodes density increases,

as shown in Fig. 4, Fig. 5, Fig. 6 and Fig. 7). These figures showclearly that the proposed

AQVF technique outperforms all other techniques when varying the nodes density

Concerning the precision of relay localization, Fig. 8.a) compares MSE of initial relay deploy-

ment and that of relay localization in the proposed scheme. One can notice that the proposed

algorithm accomplishes a significant improvement in the precision of relay localization. Owing

to including quantized measurements between activated relays, the proposed algorithm has much
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Fig. 4. a) Tracking accuracy between BVF and AQVF algorithms. b) Mean Square Error comparison between QPF and AQVF

algorithms where the sensors number=200.

Comparison Mean of MSE (MMSE) Execution time

AQVF algorithm 0.2511m 1.5938s

BVF algorithm 2.69 m 1.5163s

QPF algorithm 2.832m 1.1273s

TABLE I

COMPARISON OFTARGET TRACKING ALGORITHMS

more information for localization at every sampling instant. As shown in Tab. I, the proposed

algorithm outperforms the classical algorithms by interdependently and continuously improving

the estimation of both relays and target where the number of sensors is fixed to 400. The

tracking accuracy and the localization precision are evaluated by their Mean of Mean Square

Error (MMSE). The results illustrate that BVF and QPF outperform the proposed algorithm,

with respect to the execution time,, since our algorithm jointly detects the secure sensor node

and terminates the relay re-localization phase during the target.

Fig. 9 shows the bit error rate for BPSK with different numbers of paths sensors-CH (M). As
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Fig. 5. a) Tracking accuracy between BVF and AQVF algorithms. b) Mean Square Error comparison between QPF and AQVF

algorithms where the sensors number=300.
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Fig. 6. a) Tracking accuracy between QPF and AQVF algorithms. b) Mean Square Error comparison between QPF and AQVF

algorithms where the sensors number=200.
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Fig. 7. a) Tracking accuracy between QPF and AQVF algorithms. b) Mean Square Error comparison between QPF and AQVF

algorithms where the sensors number=600.
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Fig. 8. a) Relay nodes estimation. b) MSE before and after estimation.
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Fig. 9. Error performance for the best path selection schemeover Rayleigh fading channels.

can clearly observed in a high SNR regime, the improvement ofbit error rate is proportional to

the number of sensors-CH links (M).

The evaluation of the energy consumption is done following the model proposed in [39]. We

can observe from Fig. 10 that our that our model successfullybalances the trade-off between the

energy consumption even with several abrupt changes in the trajectory where the bits quantization

number is fixed to3.

Hereafter, we evaluate the performance of the malicious sensor node detection schemes pre-

sented in Section V in terms of ROC curves. The evaluation of amalicious sensor detection

technique for WSNs depends on whether it can satisfy the mining accuracy requirements while

maintaining the resource consumptions of WSNs to a minimum [40]. While keeping the false

alarm rate low, the techniques of malicious sensor nodes detection are required to maintain a high

detection rate. The detection rate represents the percentage of vulnerable sensor that are correctly

considered as malicious, and the false positive rate, represents the percentage of normal sensor

that are incorrectly considered as malicious. ROC curves [41] ] is frequently used to represent

the trade-off between the detection rate and the false positive rate. The larger the area under the

ROC curve, the better the performance of the corresponding techniques. An example of ROC
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Fig. 10. Energy consumption comparison where the quantization level is fixed to3.

curves is illustrated in Fig. 11.

VIII. C ONCLUSION AND PERSPECTIVES

In this chapter, a distributed variational filtering solution to simultaneously localize relays,

track mobile target, select the secure candidate sensor andselect the best communication path

is proposed in the context of WSN. Without any a priori information on the target motion, the

proposed adaptive scheme algorithm aims at continuously updating and improving the estimation

of the activated relay locations and the target trajectory,and optimizing the routing by selecting

the best communication path. As the target can travel arbitrarily and the location information of

the activated relays is rather coarse, a general state evolution model is proposed in this chapter

to describe the hidden state, which is more adaptable to the non-linear / non-gaussian situation

than other kinematic parameter models. The adaptive schemealgorithm is executed on a fully

distributed cluster scheme In addition, which permits to minimize the resource consumption

in WSN. The variational method allows an implicit compression of the exchanged statistics

between clusters. This method permits not only to reduce inter-cluster communication, but also

it terminates the error propagation problem, which is always unavoidable in other approxima-

tion methods. Furthermore, by incorporating the quantizedproximity observation model, the
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Fig. 11. ROC curves for the proposed malicious sensors detection techniques.

energy and bandwidth consumed by intra-cluster communication are dramatically reduced. In

conclusion, as the target moves freely in WSN, a large numberof quantized measurements are

generated, which facilitates both the activated relays localization and the target tracking. The

promising results obtained by simulations and presented inthis chapter have shown clearly that

the estimation of relay locations and that of the target are interdependently and continuously

improved on-line.
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