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Abstract

Due to the limited energy supplies of nodes in wireless senstworks (WSN), optimizing their
design under energy constraints, reducing their commtiaitaosts, and securing their aggregated
data are of paramount importance. To this goal and in ordefficiently solve the problem of target
tracking in WSN with quantized measurements, we proposeitdly estimate the target position, the
relay location, select the secure sensor nodes and the @shunication path. Firstly, we select the
appropriate group in order to balance the energy dissipatitd to provide the required data of the
target in the WSN. This selection is also based on the trasssom power between a single sensor and
a cluster head (CH). Secondly, we detect the malicious serstes based on the information relevance
of their measurements. Thirdly, we select the best comnatinit path between the candidate sensor and
the CH. Then, we estimate jointly the target position andréiay location using Quantized Variational
Filtering (QVF) algorithm. The selection of candidate sesss based on multi-criteria function, which
is computed by using the predicted target position provigethe QVF algorithm, the malicious sensor
nodes detection is based on Kullback-Leibler distance &etwthe current target position distribution
and the predicted sensor observation, while the best corncation path is selected as well as the
highest signal-to-noise ratio (SNR) at the CH. The efficjent the proposed method is validated by

extensive simulations in target tracking for wireless semetworks.

Index Terms

Wireless sensor networks, target tracking, quantizedatiarial filtering, relay localization, best
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communication path, malicious sensor.

. INTRODUCTION

The WSN is defined as highly distributed networks of small hgltweight wireless nodes,
which are deployed in large numbers to mentor the environimesystem by measuring physical
parameters such as temperature, pressure, or relativedityrfii]. Due to small dimension,
sensor nodes are typically operated by lightweight batsefivhich are difficult to be replaced or
recharged. So WSN is a typical energy-restricted netwoskoBserved in almost applications,
the communication power consumption accounts for about @D#e total power in WSNs[2],

], i.e. most energy of sensor nodes is spent in the exchangauthg information and data. A
direct consequence is that sensor nodes will use up theigeeickly, which is uneconomical.
Recently, researchers have proposed a special type of raltkel @ "relay node” which is
responsible for routing data packets. By using relay nodash sensor node would be able to
send only its own data without a need to relay traffic from H8].

To this goal, minimizing the communication costs betweensee nodes is critical to extend
the lifetime of sensor networks. Another important metficensor networks is the accuracy of
the sensing result of the target in that several sensorseisdme cluster can present redundant
data. Because of physical characteristics of sensor nk$wsuch as distance, modality, or noise
model of individual sensors, data from different sensors ltave various qualities. Hence, the
accuracy depends on the selection achieved by the clusher dre sensors and communication
links.

In this chapter, we address the problem of secure targekitigacrelay localization and sensors
selection using a WSN based on quantized proximity sen3arget tracking using quantized
observations is a nonlinear estimation problem that carol#ed using estimation solutions such
as unscented Kalman filter (KF) [4], particle filters (PF) [&] variational filtering (VF) [6].
Recently, a VF has been proposed as efficient solution fairgplthe target tracking problem
since: (i) it respects the communication constraints oéser{ii) the online update of the filtering
distribution and its compression are simultaneously peréal, and (iii) it has the nice property

to be model-free, ensuring the robustness of data progessin
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There has already been a certain amount of research in thecareelay node placement
estimation, sensors selection, and secure target trad&mgireless sensor networks. Li et al.
[7] have proposed a Voronoi-based relay node placementreekbe balance energy consumption
of each sensor node spent in communication. Bari et al. (8 Btudied the relay node placement
with a mobile data collector. Iranly et al.[9] have addresHee joint problem of energy provi-
sioning and relay node placement. Hou et al. [10] have foaedl the issues discussed above as
a mixed-integer nonlinear programming problem. In [11]gétr and Varaiya have proposed an
approximation algorithm where the location of each relaglenis restricted to a square lattice. An
energy-constrained relay node placement problem has bqpdored by Wang et al. [12] aiming
at minimizing the network cost with constraint on the netwbfetime. The work in [13] has
explored a topic similar to tracking security by proposingratocol to verify securely the time of
encounters in multi-hop networks. However, [13]did notr@dd the security issue in the context
of Bayesian tracking. Sensor selection based on expectednation gain was introduced for
decentralized sensing systems in [14]. The mutual infaonabetween the predicted sensor
observation and the current target location distributicas eroposed to evaluate the expected
information gain about the target position attributabla ensor in [15]-[17]. On the other hand,
without using information theory, Yao et al. [18] found thhe overall localization accuracy
depends not only on the accuracy of individual sensors gt @h the sensor locations relative
to the target position during the development of local@atalgorithms. In addition, sensor
selection can be discussed within the framework of optinséil@ation, where the estimation
error is normally used as the cost function of the optimaatin previous works [19]-[21]], the
problem of sensors selection is formulated as a constréirkdnteger programming problem,
where the estimation error is minimized.

Most of these previous works do not consider a tradeoff betwthe quality of sensed data,
the transmit power and the power stored in candidate node®lert the candidate sensors.
Moreover, they have simplified or ignored the security issuthe context of Bayesian tracking

and the communication costs through a sensors-cluster fregthd

Our contribution lies in the following aspects: 1) we impedie use of variational filtering algo-

rithm (VF), which perfectly fits the highly non-linear cotidns and eliminates the transmission
error; 2) we jointly estimate the target position and relagation by using QVF algorithm; 3)

we jointly select the best group of sensors that particgpatedata collection and detect the
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malicious sensor nodes; 4) we explore the impact of the camgation path selection on the

QVF algorithm performances and introduce an adaptive @gegidgn algorithm.

The remainder of the chapter is organized as follows. Sedtipresents both the observation

model and the general state evolution models. Section Iexgoted to the technique aimed

at adaptively estimating the target position and the relagenlocation. The appropriate group

of sensors selection is presented in Section IV. The maigcgensor nodes detection method is
presented in Section V. Then, Section VI presents the bestamication path selection scheme.

Section VII gives some numerical results. Finally, Sectiii concludes the chapter.

[I. PROBLEM FORMULATION

The variational filtering (VF) algorithm for target trackinnherits many desirable properties
from the Bayesian Inference framework. An important stephi@ Bayesian target tracking is

the recursive estimation of the predictive distributiorsetéed as follows,

p(Xt|let—1):/p(Xt|Xt—1)p(Xt—1|let—1)dXt—17 (1)

Where,p(X,;|X,_1) is the distribution used to model the prior time evolutiortlué target state.
By incorporating the observation mode(Z,|X,), the new estimate of the targets stXe is
updated using the following predictive distributiphX,|Z;., +):
p(Z| X)p(X:| Z14-1)
P(Zi|Zyr)

where p(Zy|Zy:-1) = /p(Zt‘Xt)p(Xt‘let—l)dXt-

p(Xi|Z1) (2

The observation model(Z;| X;) depends on the sensing mode employed by the sensors, while

the state evolution model( X,;| X, ;) is always described by a parametric model.

A. General State Evolution Model

In this chapter, we use a General State Evolution Model (GBHE®&&cribed in [22]-[25],
which is more adaptive to practical situations and has ntricéen on velocity or moving
direction of the target. As defined above, at instgrthe joint hidden stateX, = {x;, R;} to
be estimated contains the target position a set of activated relays locatiod®, = {r}},,
wherem,; denotes the number of activated relays. Take relmy example,r! is assumed to be

a Gaussian variable, whose expectation is its latest estinsuer’, and the precision matrix
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V' indicates its position offset due to deployment error arftkospatial factors. The target
is assumed to follow an extended Gaussian model, where thece@tionu, and the precision

matrix A; are both random, with a Gaussian distribution and a Wishattiloution respectively:

ri o~ N(,V)

~ A
T N(Hta t)_ 7 3)
pe o~ N, A)

At ~ Wn (V, ﬁ)

\

where is the initial precision matrix to reflect the uncertaintytbé target location estimation
at instantt with respect to the previous one. The target state precisiatmnix A\; is modeled by
a d dimensional Wishart distributiom(= 2 in this work), with V' and@ denote the precision
matrix and the degrees of freedom, respectively. Noticethdenotes the initial fixed parameter.
Assuming random mean and covariance for the stateads to a probability distribution covering
a wide range of tail behaviors, which allows discrete jumpshie target trajectory. In fact, the
marginal state distribution is obtained by integrating rotlee mean and precision matrix (EQ.
(4)):
plafeis) = [ Ao A)pl Mg, @

In (4), the integration with respect to the precision mataads to the known class of scale
mixture distributions given by Barndorff-Nielsen [26]. &lhow values of the degrees of freedom

n reflects the heavy tails of the marginal distributiefa;|z;_;).

B. Quantized Proximity Observation Model QPOM

Consider a wireless sensor network, in which the sensotitotsaa for an activated sensor
are given bys' = (si,s%),i = 1,2, ..., N,. Taking the activated senso(the activation procedure

is explained in section 1V), their observations are moddigd
W =Cllx,— 8" + e, (5)

Similarly,
W =Clre — 8"+ e, (6)

wheree;, is a Gaussian noise with zero mean and variarfcandn andC' are a known constants.

The observation for target tracking problem is quantizedote being transmitted, by partitioning
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the observation space infg; intervalsR; = [ (t), 721(t)], Wwherej € {1,..., N/}. Similarly,
where the sensor collects information to estimate the relegtion, it partitions the observation
space intoM; regionsR; = [r;(t), 7;+1(t)], wherej € {1,..., M}}.

The equations (7) and (7) show the quantized signals,

= dkz,w if WZ@ € [Tk(t)v Tk-l—l(t)]a (7)

Similarly,
gt =dj, it T € [(t), T ()], ®

whered,, , (resp.d; ) is the centroid oft-th cell during the target tracking problem (resp. the
centroid ofj-th cell during the relay localization). Then, the signaseived by the cluster head

from the sensof at the sampling instantare written as,
® = By® + ny; 9

Similarly,

)

2" = oy 4 s (10)

wheren, is a random Gaussian noise sensor with a zero mean and acesignand 3; is the
i-th sensor channel attenuation coefficient.

1) Formulation of the Observation Modg(z;| X ):
As illustrated above, the Bayesian filtering involves thestauction of the observation model
p(zi|xs, Ry). To track the targetr, the available observations at the activated CH are denoted
by 27" = {zi“’}ztl wherem; is the number of sensors in the activated cluster. Assunfiag t

the noise samples are independently distributed, we have,

mt Ni—l
PPl =[] D] p(ri(t) < 49 < 7 (8)) N (Bid;, 02) (11)
i=1 j=0
where
o Tj+1(t) ) o
p(7(t) <% < 74a(t) = / o N (pyp= (@), 07,)dyy (12)
Tj t

is computed according to the quantization rule defined ini¢vyvhich

pyre (@) = Kl — 8" (13)
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Similarly,

me TLt—l

S =11 D0 p(re(®) < 42" < miesa ()N (asdy, 07) (14)

i=1 k=0
Explicitly, 2™ denotes the observations collected during the relay loatidin phase. At sampling
instantt, the observation of the targe;t‘D is incorporated together with" to help refining the

localization of the relay.

C. Overview of the proposed algorithm

Generally, in order to ensure a precise target trackingrelay locations need to be known a
priori. Initially, we suppose that relays are placed in rolydknown positions. The true position
ri of the relayi is Gaussian distributed around its initial setting vaiievith precision.?. This
initial assignment results in a node layout that resembhesrdolded and scaled version of the
actual deployment, roughly preserving the topologicakardy of nodes. After the deployment,
sensors proceed to exchange information with neighboetays in their communication range.
The observations between them can thus be detected, ard $tothe corresponding sensors.
Then, a localization phase is launched locally by incorplogaonly the observations between
sensors and relays, in the aim to impravepriori information on the relay locations. Consider
the relay: for example,

P 27) o N7, 1)p( ). (15)

Thus, the estimation of the relay position is refined by ipooating the observatiog™ accord-
ing to the prior distributionr® ~ A/ (7, %). After having localized all the relays, much more
precise information on their locations is provided, whishricorporated as the prior information
7 for the adaptive scheme.

Once an intrusion in the WSN is identified, a cluster of sepsoound the phenomenon of in-
terest is activated. Note that, as mentioned above, thaiadacheme procedure is distributively
executed on a cluster head in order to minimize energy andvindth consumption. The sensors
that have detected the presence of the target in their gemamges broadcast their residual
energy level. The one with the maximum residual energy isteteas the cluster head (CH) to
take charge of signal processing. The other clustered tilegesensors transfer to the CH their
timely observation of the target, and the observations éeitwtheir neighboring relays which

are stored during the pre-localization phase. Note thatjrtformation concerning the detection
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of relay locations and the estimations of the target are kameously updated in the CH by the
adaptive scheme algorithm based on these observationsrdieg to the Bayesian framework,
the adaptive scheme algorithm works in a recursive way, &hbke filtering distribution is

transferred to the next CH for further use.

[1l. ADAPTIVE SCHEME ALGORITHM

The classical Bayesian framework is adopted by the adagtheme algorithm adopts to
estimate the unknown state over time by using incoming easiens. As mentioned in section
I, two distinct phases compose the Bayesian filtering fraor&: Prediction and Update. The
prediction phase uses the state estimated from the prewanmpling instant to produce an
estimate of the state at the current instant according to(Bqln the update phase of Eq. (2),
measurement information at the current instant is used finere¢his prediction to arrive at a
new and hopefully more accurate state estimate. In a disérdbcontext, the estimations of the
detecting sensors are updated and stored locally, wheneafdlitering distribution of the target
needs to be transferred for future use. Concerning enejpamdwidth efficiency, the variational
approach compresses the filtering distribution of the tatgea single Gaussian distribution
between successive clusters in a consistent manner [6f Whatributed signal processing is

achieved effectively. The details of the adaptive schergerdhm are illustrated in what follows.

A. Variational Filtering Approximation

The variational approach is employed here to approximaetsterior probability(ca; | Z; ;)

by a separable distributiof(a,), which minimizes the Kullback-Leibler (KL) divergence err

Dalally) = [ ate) log%uaa, (16)

where ¢(ay) = Hq<ai>ZQ(wt)Q(Nt)Q<)‘t)Q(Rt)7

and g(R;) = [[a(r).
=1
With variational computation, the following approximatestdbution yields [6],

Q(ai) X exp(log p(Z1:t7 at»l’[#iq(a{)’ (17)
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where(.), denotes the expectation operator relative to the distdbyt Taking into consideration
the separable approximate distribution at titnd , that is,p(c;_1|Z1.4-1) = q(a,_1), the filtering
distribution at timet is deduced,

oc p(zi|xe, Be)p(xe| e, A )p(Ae) p(Be)gp(pay),

with CJp(Nt) = /p(Ht|Ht—1)Q(Nt—1)dHt—1-

Therefore, the filtering distributiop(a;|Z;.;) can be sequentially updated, through a simple
integral with respect tqu,_,. Considering the general state evolution model propose@)in

the evolution of , , is Gaussian, namely(u,|p,_) = N (i, A). Defining ¢(p,_,) =

N1, A1), ¢(p,) is also Gaussian [27], with the following parameters,

%7(/1%) = N(l"'?? A?)? (19)

— 1. -1

where p? =p' , and A= (X, 7'+ X 1)

Hence, the temporal dependence is hence reduced to thedmation of only one Gaussian
component approximatiof(u, ). The update and the approximation of the filtering distiiut
p(ay|z1.) are jointly performed, yielding a natural and adaptive caespion [6], [28]. According
to the equation (17) and taking into account (18) and (19jatianal calculus leads to closed-

form expressions of(u,) andg(\;):

{ o) = N A)

, (20)
q(A) = Wa(Vy,n7)

where the parameters are iteratively updated until coeverg, according to the following

scheme: )
B = A:_1(<At><mt> + AT 1y)
)\: = <>\t> + )\? 21)
n* = n+1
Ve = (@al) — (@) ()" — () (@)™ + (popd) + V)

\
Notice that(-) designates the expectation relative to the distribugioh The mean state and the

precision matrix distributions represented respectiv®lyg(p,) and ¢(A;) have closed forms,
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10

such that their expectations are easily derived:

() = W
(popel) = N7+ (22)
A) =V

Nevertheless, the target state and the activated relay positiod®;, do not have closed forms.

Combining the equations (17) and (18)z;) and¢(r}) have the following expressions:

i

{«@nmvmmx&»nﬁw@?w»

q(ry) oc N (7, 1) [12 p(2" )
Hence, the general state evolution model (3) and the obsemvenodel (5) and (6) are nat-

(23)

urally incorporated to update(x;) and ¢(r). Their distribution forms immediately suggest
an Importance Sampling (IS) procedure, where samples arendirom Gaussian distributions
N (), () and N (7%, ") respectively, and are weighted according to their likadith® (taking

into account the observation model):

{ 2~ N (), (), 0l o T ple =), o
e~ N ), wp® o T p(p ™),
Therefore,q(x;) andq(r!) can be approximated by the Monte Carlo method:
(@) = Zk 17~Uti "L‘tl)(k). (25)
(rf) = Soily wpr

As mentioned above, the standard adaptive scheme solutdades both prediction and
update steps. Besides the update of the filtering distdbut{c|Z,..), the predictive distri-
bution p(a|Z1.,-1) can also be efficiently calculated by the variational apghhodn fact, by
incorporating the separable approximate distribution, ;) in the place ofp(a;_1|Z1..—1), the
recursive adaptive scheme algorithm calculates the preelidistribution p(a;|Z1.;—1) in the

following form:

Peu] Ziamn) ox / plevlonr)g(on1)de—1 o plailpn A)pAp(R) (). (26)

The exponential form solution, which minimizes the Kullkdaibler divergence between the

predictive distributiorp(a,|Z1..—1) and the separable approximate distributign , (o), yields
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11

Gaussian distributions for the predicted expectationd, aWishart distribution for the target
precision matrix:

Qt\t—l(wt) X N((Mt)qt\t,la (At>qt\t,1)a
Qt\t—l(ﬂt) X N(H:\t_p A:\t—l)u
Ge—1(Ae) WQ(‘/;Tt—D n:|t—1>7

| qe-1(Ry) o N(R,v),

where the parameters are updated according to the samivéesahemes (21) and (22). The

(27)

target state and the activated relays are now evaluatedebfoliowing expressions:

-1
<mt>qt\t71 = <I"l't>(It\t717 <wtmg—‘>%\t71 = <At>(k\t71 + <I"l't>(It\t71<l"l't>(j]—;‘t,17

(Ry) (R). (28)

qt|t—1

In the next section, we present a technique aiming at addptfand jointly) selecting the

appropriate group of candidate sensors that participatiata collection for tracking the target.

V. OPTIMAL GROUP OF CANDIDATE SENSORS SELECTION BASED ON MULTCRITERIA
FUNCTION (MCF)

Since the predicted target positiaf)(t) = (x:) at timet is available, it could be used to

Q41|
select sensors. Sensors inside the disk centereg(&t with radiusR,,,,,, are pre-selected. After
the pre-selection of sensors withi®,,., range, the CH divides the pre-selected sensors into
M = Z;.V;l C{VS groupsg; (at least four sensors are needed to sense the target withirrange
[13]). Then, it computes for each group of sensors the MCRa{l@el in IV-A) and activates the
appropriate group which has the highest MCF value to ppsdtei in data aggregation.

In the next subsection, we detail the MCF function with theduparameters permitting to select

the appropriate group of sensors that participate in ddtaction for tracking the target.

A. Multi-criteria function

The multi-criteria function for sensors selection aimsasdefine the main parameters that
may influence the relevance of the participation in coopamatwhich are: 1) §/1(x;, z9)):
the information that can be transferred from the group ofdadate sensors, ), (D(i)): the

transmitting distance between the sensand the CH in group, and 3)F{(i)): the energy
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12

stored in candidate sensor. The problem is how to formulegectiteria for the CH to select the
appropriate group of sensors that provide relevant datebalahces the energy level among all
sensors. We define a combinative measurement for the grooanolidate node§;, denoted as

F', which is given by:

F(G) = mMI(z;, 2%) — ny Z R2(i) (29)

Where R(i) = f)((’l)) ny; andn, are the importance factor for the Mutual Informatioh7)

function and the ratio between the energy stored in the sgi#8b and the transmit distance
(D). In order to select the best group of candidate sensors lmseduation (29), the objective

is to choose the appropriate group of sensgrso that,

G, = argmax F'(Gy) (30)
GgiCC

The efficiency measurement of given information is oftenieddd by the mutual information
function. This later is a quantity measuring the amount tdrimation that the observable variable
29 carries about the unknown parametgr The mutual information between the observations

29 and the source, is proportional to:
MI(x,29) o< p(29 | x;)log(p(z9 | z)) (31)
The likelihood function(L) is expressed as,

L(s%) = p( @mtjnﬁjwn ) <7 < 1)V (d5,02) (32)

i=1 j=0

where,

() <5t < ea®) = [ N (5902 (39

75 (1)

_ b [erfc 7i(t) — pyi () erfe Ti+1(t) — pyi (@) ]
o VE Ve N

using the quantization rule defined in (7), in which

pyi(s’) = K@, — s, (34)

It is worth noting that the expression of tlié/ given in (31) depends on the target position

x,; at the sampling instant and on the group of candidate sensgrs However, as the target
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position is unknown, thé/ [ is replaced by its expectation according to the predictig&itution

p(x,|27_,) of the target position:

<MI(s%)>= E o )[Ml(sgt)] (35)

(®e|z75 1

The computation of the above expectation is analyticallyragtable. However, as the VF
algorithm yields a Gaussian predictive distributidf(x;; /1, A¢/i—1), the expectation (35)
can be efficiency approximated by a Monte Carlo scheme:
< MI(s9) >~ 357 MI(&], s%),

- (36)
x] ~ N(wp(t)§ Ty/t—1, }‘t/t—l)

where? is the j-th drawn sample at instant and.J is the total number of drawn vectos.
The next section presents the malicious sensor nodes idetdzised on the Kullback-Leibler
distance (KLD) between the current target position distitn and the predicted sensor obser-

vation.

V. MALICIOUS SENSOR NODE DETECTION BASED ONKULLBACK -LEIBLER DISTANCE
(KLD)

A. Problem definition

The following are the assumptions made to resolve the noalicsensor detection problem:
1) We assume that malicious nodes can successfully authentivith the sensor network, and
their data can be collected with other nodes in the netwotke@vise, the CHs are assumed to
well-behave and not malicious. 2) We assume a centralizedasio, in which a CH processing
unit collects tracking reports from sensor nodes, detezmiwhich of them are malicious and
removes them from sensor networks. 3) The purpose of th&didipath is to allow the enemy
to avoid surveillance. However, the fictitious path does gmteyond the sensing range of the
nodes. 4) We assume that sensor nodes have unlimited corationi bandwidth among each
other. Meanwhile, an unknown number of the nodes are mabkcand they are injecting false
tracking reports into the network. The problem is how to detbose malicious nodes, and to

provide a correct target trajectory.
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B. The computing of the Kullback Leibler distance (KLD)

The measurement of the distance between two statisticaéiniagl needed to resolve certain
problems. For example, this distance can be used in evadu#tie training algorithm or clas-
sifying the estimated models [29]. The Kullback-Leiblestdnce or the relative entropy arises
in many contexts as an appropriate measurement of the distagtween two distributions. The

KLD between the two probability density functiopsandp is defined as [30]:

R P
KLD(pllp) = / plog; (37)

The computation of the distribution function is very compfer hidden Markov models, and
practically it can be only computed via a recursive procegdtine "forward/backward” or "up-

ward/downward” algorithms [31], [32]. Thus there is no sleplosed form expression for the
KLD for these models. Commonly, the Monte-Carlo method isdud numerically approximate

the integral in (37) as

KLD(pl|p) = E,(log(p) — log(p)) (38)

Hereafter, we detail the two proposed schemes for the detect malicious sensors.

C. Case 1: Reactive cluster formation

At every sampling instant, the cluster (CH and candidataurgesensors) is dynamically
formed. The candidate sensors are activated in a manneaieaglin Section IV. The cluster
headC H, is chosen to be the nearest sensofao ie:

qt|t—1

CH; = arg min{||(x;)
i=1,...,|By|

—s'|| me B} (39)

dt|t—1

where|.| denotes the cardinality, an, is the set of activated sensors.
Let's assume that sensoisj and k£ are activated and the sensgrsand & can overhear's

transmission. At time step, the sensorg and £ compute their predictive target distributions

Z§+1|t) andp(wt\zt’fﬂ‘t) by executing the QVF algorithm. At time step (t+1), they dwaar

p(e:
thei's transmitted value, and compare thth sensor predictive distributigr(z;|2;, , ) to the two
predictive distributionsy(:ct\zfﬂ‘t) andp(wt|zf+1|t) by computing the Kullback Leiber distances

(detailed in V-B)K; ; and K, ;.. If the K, ; and K ;, are larger thark, (a predefined threshold),
as shown in Fig. 1, then the sensgrand k estimate that the sensoris malicious and send
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a notification to the CH. This later compares ther;|z;,,) to thep(:ct|z§+1|t) distribution by
computing the distanck; ;, if this latter is also large thai, then, it deletes théth fictitious

path from the sensor network.

120

=—3— Kullback-Leibler distance (KLD)
r K0 (a predefined threshold)

100

80

Kullback Leibler distance (KLD)

i CRINE K WG 3k % %
0 20 40 60 80 100
Sensors

Fig. 1. A simple example for KLD computing

The major advantages of this algorithm can be summarizedlésnvE. i) The accuracy of
tracking is guaranteed by choosing the most potential sserntsodynamically form a cluster.
i) Sensors Kullback Leibler distance (KLD) Kullback?L&b distance (KLD) (a predefined
threshold). ii) This scheme is much more robust to exterttatks. iii) As the lifetime of WSN
is defined as the time elapsed until the first sensor depletesnergy [33], it is essential to
evenly distribute the energy consumption over the whole WB dynamically forming the
clusters, CHs performing series of energy-intensive fionst are changing frequently in order
to balance the energy expenditure. However, since the Ispgnaessing task is assigned to all
the slave sensors, all these advantages cited above are akpense of homogeneous high
hardware configuration.

The scheme discussed previously will be referred to as RE:Qfg procedure is described in
Algorithm 1.
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Algorithm 1:
— Initialization:

1) Determine the CH by using the equation (39).

2) Select the appropriate group of sensors according taddeldt
3) Quantize the sensors’ measurements according to S&b.lI-
4) Execute the QVF algorithm.

— lterations:

1) Compute the multi-criteria function by using the equat{@9).

2) Select the appropriate group of sensors according aiogptd Section IV
3) Determine the CH by using the equation (39).

4) Detect the malicious sensors according to Sub.V-C.

5) Delete the fictitious path according to Sub.V-C.

6) Quantize the sensors’ measurements according to S&b.lI-

7) Execute the QVF algorithm.

D. Case 2: Proactive cluster formation

For this second case, we suppose that CHs are staticallgtesgtlat the time of sensors
deployment. At sampling instarit the QVF provides at the sampling instantthe predicted
target positionz,/,_, = (mt>qt‘t71. As shown in Fig.2, based on this predicted information, the
cluster head” H,_, at sampling instant — 1 selects the next cluster he&d,. If the predicted

target position(x;) remains in the vicinity ofC' H,_;, which means that at least four of its

qt|t—1

slave sensors can detect the target, théhy = C H;_,. Otherwise, if(x;) is going beyond

qt|t—1

the sensing range of the current cluster, then a @éyy is activated based on the target position

prediction (x;) and its future tendency.

qt|t—1

CH; = argmax{ (40)
k=1

where dy = |[(z)q,,_, — Lo |

and 95 = a'ngle(<mt—1><mt>lh\t717 <wt—1>LCHf)
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Fig. 2. Prediction-base@H; activation.

where K is the number of CHs in the neighborhood©@#{;_; and LCH# is the location of the
k-th neighboringC H;.

The initial distribution of the target positioni(x,), at the instant = 0, is assumed to be
known and stored in CH unit. Then, at time step t, the actd/atensori sends its quantized
observationy to the C'H,. When, theC'H, receives:!, which is corrupted by an additive white
Gaussian noise,, it executes the QVF algorithm, which provides in additiontlie estimated
target distributiorp(z;|x,), the predictive target distribution for theth sensorp(wt|z§+1|t). The
CH, sends this predicted information to ta&d,, ), which receives also a measurement from
the i-th sensor. Based on this information, thd/, ;) computes fori-th sensor, the Kullback
Leiber distancey;; between the predictive distributiqﬂmt\zjﬂ‘t) received fromC H, and the
distribution p(x,|z{,,). In the similar way, the”'H ;) calculates similarlyX; ; and K, and
compares them with the constraifi,, if the differences are greater th@n then it estimates
that thei-th sensor node is malicious. Finally, the CH deletes thé&ifias path corresponding
to the malicious sensor from the sensor networks.

In summary, our proposed scheme includes many several @de Firstly, the consumed
energy and the required bandwidth in communication areiderably reduced. The tracking

process is performed only by the activated CH, while theeskansors are unable to take over
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this task. The candidate slave sensors are required tatahd transmit their measurements over
short distances to the CH. Secondly, the cost of hardwarBgtwation drops sharply owing to
the low-cost of slave sensors. Furthermore, avoiding CHpmidition puts an end to unnecessary
resource and energy consumption. Only when the hand-offatipa occurs does the active CH
need to communicate the temporal dependence informatitretsubsequent CH. However, the
occurrence of hand-off operations is reduced by the nonpmeyselective CH activation rule. In
addition, the QVF algorithm reduces the dependence of temhjpaformations to only statistic
parameters of a Gaussian distribution. We refer to the agpralescribed in this section by

Pro-QVF summurized by the following step&l@orithm 2).

Algorithm 2:
— Initialization:

1) Determine the cluster head by using the equation (40).
2) Select the best group of candidate sensors accordingctin84V.
3) Quantize the sensors’ measurements according to Jb.ll-
4) Execute the QVF algorithm.

— lterations:
1) Compute the predictive target distribution.
2) Compute the multi-criteria function by using the equat{@9).
3) Select the appropriate group of sensors according taddest.
4) Determine the CH by using the equation (40).
5) Detect the malicious sensors according to Sub.V-C.
6) Delete the fictitious path according to Sub.V-C.
7) Quantize the sensors’ measurements according to Sub.llI-
8) Execute the QVF algorithm.

The next section is devoted to the method aimed at adapseddgting the best communication

path between the candidate sensor and the cluster head.
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Fig. 3. lllustration of the diversity network with the besinomunication path selection scheme.

VI. BEST COMMUNICATION PATH SELECTION METHOD

This section aims at selecting the best communication pathedl as the highest SNR at the

CH. In what follows, we assume that the relay placement isadly estimated.

A. System model

Fig. 3 illustrates the idea of the proposed model. The comeation is established between
a sensor node and the cluster head through the selectednelagting direct and indirect links.
The selected relay is achieved according to the best conuatiom procedure. The cluster head
can get the best copy of the source signal transmitted by dbecs sensor S, via the best
communication path selection scheme allows. The first orfeois the source sensor (direct
link), while the second one is from the best path as shown gn i The parametet; shown
in Fig. 3 is the channel coefficient between the source sefisord thei-th sensora; and«;,
B; and 3; are flat Rayleigh fading coefficients and mutually indepedad non identical for
all i andj.

The signal is simply amplified, at the relay sengothe signal is simply amplified using the
gaing = 1/ E,a;2 + N., whereE; is the transmitted signal energy of the source. It is easy to
prove that the source to cluster head SNR of the indirect path— i — C'H can be written

as
Yea; VB

_ W5 41
Ve + 7 ; +1 ( )

VS—i—CH =
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2E;

whereq,, = o?£: is the instantaneous SNR of the source signal at the seénser = 3 B

% Ne
is the instantaneous SNR of the sensor signal (sefsoeasured at the cluster head, ardis
the signal transmitted energy of the relay
The best communication path will be selected as the one thég\aes the highest source-to-end

SNR of indirect and direct paths. The SNR for the best pathvisngby,

Vo = Max(Ygy, VS—imCH )i=1..M (42)

whereyg, = ﬂgﬁz is the instantaneous SNR between the source and the clusier and

M is the total number of links inside cluster. The upper-boohds_.; .cx IS given by [34].
Computing the above expression is analytically untraetablowever, (42) can be efficiency
approximated [35] by

Ys—imcH < Y = min(va,73,); (43)
this approximation simplifies the derivation of the SNR istats: Cumulative Distribution
Function (CDF), Probability Distribution Function (PDFhca Moment Generating Function
(MGF).

B. Error performance analysis

The error probabilityp, of the best path is given as

Pe(Vp0, 1) = Aer fe (\/ B max(vs,, %) (44)

Whereer fc(x) = 2= [~ exp(—t?)dt, andA and B are dependent on the modulation type. Over
the random variables representing the SNR values of thedoesinunication path the average
error probability is given by N

Pe= [ nn iy (45)

using the alternative definition of the fc(x) function as [36]

ety = 2 [" e (— 5y ) 0 (46)
erjclr) = — X ——5

T Jo P sin? 6
and by substituting (46) into (45) we obtain

©92 [3 B, 2/% B
E /0 W/O exp ( Sin2 9> f%('yb) Yo ™ /o T <Sin2 9> (47)

where,M,, = [° f,, (1) exp(—s7)d7s is the MGF of+, and f,, is PDF of,.
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In order to find thePg, it is necessary to find the PDF and MGF @f We can write the

CDF of ~, as follows,
M

F,(v)=Plw<vy) =Pl <v)P(Ovs <V)ict.m = [H (1 — 6—7/%)] (1 _ e—v/wo) (48)

=1
In the aim of giving a coherent analytic form, we assumge.; = ~3,, the PDF can be found
by taking the derivative of (48), with respect 10 and after doing some manipulations, ()

can be written as

M4+1 M-—-n+2 M—n+3 M4+1 n - n 1
IFOED DECI S S S H<e””‘”>2<—_> 49)
n=1 ki=1 ko=k1+1kpn=kn—1+17j=1 7j=1 J

by using the PDF in (49), the MGF can be written as

M+1 M—n+2 M—n+3 M+1 n

M., (s) = /Oooe‘”;—l)("*” > > H</>§<%> dy  (50)

klzl k2:k1+1 kn:knfl'i'l .7:1

and the integral can be evaluated in a closed form as

M+1 M—n+2 M—n+3  M+1 o
M) =D 30 3 3 oy =
n=1 ki=1 ko=ki+1kn=Fkn_1+1 n

whereV,, = Zyzl(l/%)- Substituting (51) in (47) and finalizing the integratiorings[37],

we can writePE in a closed form as follows,
M+1 M-—-n+2 M—n+3 M+1 B/\I’
o _1\(n+1) _ n
Peeay e TS S (1B e
n=1 k1=1 ko=ki1+1kn=kn_1+1

VII. RESULTS

In this section, we evaluate the proposed algorithm base@ sgnthetic example, which
involves the mobile target tracking, the relay localizatithe secure sensor node detection and
the optimal communication path selection. The purpose @fsimthetic example is to establish
a baseline performance comparison on a relatively diffiptdblem.

In what follows, we proceed to compare the tracking accuraicyhe adaptive quantized
variational filtering (AQVF) algorithm, with the binary vational filtering (BVF) algorithm
[28], and the centralized quantized particle filter (QPF)oathm [38]. In the simulation, we
have considered the following parameters:= 2 for free space environment, the constant

characterizing the sensor range is fixed for simplicity’te= 1, the cluster head noise power is
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o2 = 1073, the sensor noise power i€ = 10~*, the maximum sensing range,.... (resp. the
minimum sensing rangg&,,,;,) is fixed to10 m (resp.0 m) and 200 particles were used in QVF,
BVF and QPF algorithms. All sensors have equal initial bgtEnergies ofE; = 1 Joule. All
the simulations shown in this chapter are implemented widtl&b version 7.1, using an Intel
Pentium CPU 3.4 GHz, 1.0 G of RAM PC.

The quantized proximity observation model, formulated quaion (7), was adopted for the
QPF algorithm.

Fig. 4 and Fig. 5 show the performances comparison of AQVFBWH, we can observe from
Fig. 4.a) and Fig. 5.a) that, even with sudden changes iratigett trajectory, the desired quality
is achieved by AQVF algorithm and outperforms the BVF althon. Their tracking accuracies
are compared in Fig. 4.b) and Fig. 5.b), in terms of Mean Sg&aror (MSE) where the sensors
number varying in{200, ..., 600}.

MSE = E ((z — 2)?). (53)

Wherex (resp.x) is the true trajectory (resp. the estimated trajectory).

The proposed method shows performances that demonsteatdféittiveness of the adaptive
guantization and the impact of neglecting the informatielevance of sensor measurements,
when we used binary proximity sensors. As can be expectdd, tive increase in the amount
of particles, QPF algorithm demonstrates much more aceuratking at the cost of a higher
computation complexity. Particularly, the computationgigrows proportionally to the increment
of the number of particles. The tracking accuracy of QPF rdlgm is compared to that of the
proposed method in Fig. 6 and Fig. 7. The simulation resuitained by the comparison of the
smaller MSE of the proposed method to that of QPF method eosfthe effectiveness of the
the proposed method in terms of tracking accuracy and effigien a non-Gaussian context.
As can be expected, the MSE decreases for all the algorithmes whe nodes density increases,
as shown in Fig. 4, Fig. 5, Fig. 6 and Fig. 7). These figures sbiearly that the proposed
AQVF technique outperforms all other techniques when vayyhe nodes density
Concerning the precision of relay localization, Fig. 8.ajnpares MSE of initial relay deploy-
ment and that of relay localization in the proposed schenm& €an notice that the proposed
algorithm accomplishes a significant improvement in thesigien of relay localization. Owing

to including quantized measurements between activatagigethe proposed algorithm has much
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Fig. 4. a) Tracking accuracy between BVF and AQVF algorithm)sMean Square Error comparison between QPF and AQVF

algorithms where the sensors number=200.
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Comparison Mean of MSE (MMSE)| Execution time

AQVF algorithm | 0.2511m 1.5938s

BVF algorithm 2.69m 1.5163s

QPF algorithm | 2.832m 1.1273s
TABLE |

COMPARISON OFTARGET TRACKING ALGORITHMS

more information for localization at every sampling ingtafss shown in Tab. I, the proposed
algorithm outperforms the classical algorithms by intpetfedently and continuously improving
the estimation of both relays and target where the numberen$as is fixed to 400. The
tracking accuracy and the localization precision are atelll by their Mean of Mean Square
Error (MMSE). The results illustrate that BVF and QPF outpen the proposed algorithm,
with respect to the execution time,, since our algorithnmtjgi detects the secure sensor node
and terminates the relay re-localization phase during dnget.

Fig. 9 shows the bit error rate for BPSK with different nunef paths sensors-CH (M). As
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Fig. 5. a) Tracking accuracy between BVF and AQVF algorithm)sMean Square Error comparison between QPF and AQVF
algorithms where the sensors number=300.
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Fig. 6. a) Tracking accuracy between QPF and AQVF algorittihdlean Square Error comparison between QPF and AQVF
algorithms where the sensors number=200.
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Fig. 7. a) Tracking accuracy between QPF and AQVF algorith#lean Square Error comparison between QPF and AQVF
algorithms where the sensors number=600.
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Fig. 9. Error performance for the best path selection schewee Rayleigh fading channels.

can clearly observed in a high SNR regime, the improvemehbitadrror rate is proportional to
the number of sensors-CH links (M).

The evaluation of the energy consumption is done followimg todel proposed in [39]. We
can observe from Fig. 10 that our that our model succesdballgnces the trade-off between the
energy consumption even with several abrupt changes imdjeztory where the bits quantization

number is fixed tc3.

Hereafter, we evaluate the performance of the malicious@emode detection schemes pre-
sented in Section V in terms of ROC curves. The evaluation ofadicious sensor detection
technique for WSNs depends on whether it can satisfy thengiaccuracy requirements while
maintaining the resource consumptions of WSNs to a minimdi@). [While keeping the false
alarm rate low, the techniques of malicious sensor nodextien are required to maintain a high
detection rate. The detection rate represents the pegeenfasulnerable sensor that are correctly
considered as malicious, and the false positive rate, septe the percentage of normal sensor
that are incorrectly considered as malicious. ROC curvé$ J[4s frequently used to represent
the trade-off between the detection rate and the falseip®sdte. The larger the area under the

ROC curve, the better the performance of the correspondidgniques. An example of ROC
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Energy Consumption Comparison
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Fig. 10. Energy consumption comparison where the quardizdével is fixed to3.

curves is illustrated in Fig. 11.

VIIl. CONCLUSION AND PERSPECTIVES

In this chapter, a distributed variational filtering sotutito simultaneously localize relays,
track mobile target, select the secure candidate sensoseladt the best communication path
is proposed in the context of WSN. Without any a priori infation on the target motion, the
proposed adaptive scheme algorithm aims at continuouslgituy and improving the estimation
of the activated relay locations and the target trajectanyg optimizing the routing by selecting
the best communication path. As the target can travel arilitrand the location information of
the activated relays is rather coarse, a general stateterolmodel is proposed in this chapter
to describe the hidden state, which is more adaptable todhdinear / non-gaussian situation
than other kinematic parameter models. The adaptive scladgoeithm is executed on a fully
distributed cluster scheme In addition, which permits taimize the resource consumption
in WSN. The variational method allows an implicit compressiof the exchanged statistics
between clusters. This method permits not only to reduea-itister communication, but also
it terminates the error propagation problem, which is alvapavoidable in other approxima-

tion methods. Furthermore, by incorporating the quantigeakimity observation model, the
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Fig. 11. ROC curves for the proposed malicious sensors fifae@chniques.

energy and bandwidth consumed by intra-cluster commuaoitare dramatically reduced. In
conclusion, as the target moves freely in WSN, a large nurabguantized measurements are
generated, which facilitates both the activated relayslipation and the target tracking. The
promising results obtained by simulations and presentatdisnchapter have shown clearly that
the estimation of relay locations and that of the target aterdependently and continuously

improved on-line.
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