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ABSTRACT

This work deals with the problem of target tracking in wireless
sensor networks where the observed system is assumed to evolve
according to a probabilistic state space model. We propose to im-
prove the use of the variational filtering (VF) by quantizing the
data collected by the sensors to higher levels respecting the trade-
off between the information relevance of sensor measurements and
the energy costs. In fact, VF has been shown to be suitable to the
communication constraints of sensor networks. Its efficiency re-
lies on the fact that the online update of the filtering distribution
and its compression are simultaneously performed. But till now,
it has been used only for binary sensor networks. In this paper,
we propose an adaptive quantization algorithm taking benefit from
the VF properties. At each sampling instant, by minimizing the
Cramér-Rao bound, the adaptive quantization technique provides
the optimal number of quantization bits per observation. The com-
putation of this criteria is based on the target position predictive
distribution provided by the VF algorithm. The simulation results
show that the adaptive quantization algorithm, for the same sen-
sor transmitting power, outperforms both the VF algorithm using
a fixed optimal quantization level (minimizing the MSE) and the
VF algorithm based on binary sensors.

1. INTRODUCTION

The problem of target tracking using wireless sensor networks has
attracted considerable attention in both literature and application
domains. Wireless nodes are highly resource constrained; i.e. they
operate on limited battery power that needs to be sustained so as
to prolong the operational lifetime of the network. Due to these
factors, the observations are quantized before transmission. The
problem is how to adapt the quantization level in order to minimize
the error of the target trajectory estimate.

Generally, the problem of quantizing observations to estimate a pa-
rameter, either the target position or any other physical field (tem-
perature, humidity, ...), is different from the problem of quantizing
a signal for later reconstruction [1]. Instead of reconstructing a
signal, our objective is rather finding an optimal estimator using
quantized observations.

Target tracking using quantized observations is a nonlinear estima-
tion problem that can be solved using e.g., unscented Kalman filter
(KF) [2], particle filters [3] or variational filtering (VF) algorithm.
In this paper, we consider the variational approach algorithm for
solving the target tracking problem since: (i) it respects the com-
munication constraints of sensor, (ii) the online update of the filter-
ing distribution and its compression are simultaneously performed,
and (iii) it has the nice property to be model-free, ensuring the ro-
bustness of data processing. The VF approach was only extended
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to Binary Sensor Network (BSN) considering a cluster-based
scheme [4]. The BSN is based on the binary proximity observation
model which consists of making a binary decision according to the
strength of the perceived signal. Then, only on bit is transmitted
for further processing if a target is detected. This work was done
considering a cluster-based scheme, where sensors are divided into
clusters. At each sampling instant, only one cluster of sensors is
activated according to the prediction made by the variational fil-
tering algorithm. Resource consumption is thus restricted to the
activated cluster, where intra-cluster communications are dramat-
ically reduced. For its power efficiency, the cluster-based scheme
is also considered in this paper.

As only a part of information is exploited, tracking in binary sensor
networks suffers from poor estimation performances. Assuming
a fixed sensor transmitting power, we propose an online filtering
algorithm that simultaneously provides the optimal quantization
level and the Bayesian filtering distribution of the target position
at each sampling instant. The Cramér-Rao bound (CRB) provides
a consistent theoretic criteria in order to optimize the quantization
level by maximizing the sensor data content relevance. As the
target position x; is unknown, the CRB is averaged according to
the target position predictive distribution provided online by the
VF algorithm.

The remainder of this paper is organized as follows. Section 2
presents the quantized observation model, the general state evolu-
tion model, the overview of the VF algorithm and the prediction-
based cluster activation using VF algorithm. Then, the adaptive
quantization algorithm is presented in section 3 after deriving the
CRB expression based on the predicted target position. Section 4
gives some numerical results. Finally, section 5 concludes the pa-
per.

2. MODELING AND PROBLEM STATEMENT

2.1. Quantized observation model

Consider a wireless sensor network, in which the sensor locations
are known s° = (si,s%), ¢ = 1,2,...,Ns. We are interested
in tracking a target position @; = (x1,,%2,+)” at each instant ¢
(t =1,..., N, where N denotes the number of observations). Con-
sider the activated sensor ¢ (the activation procedure is explained
in section 2.4), its observation ~y; is modeled by:

Vi = K|z — si]|" + e 4))

where €; is a Gaussian noise with zero mean and a variance U?-
n and K are known constants. The sensor transmits its observa-
tion if and only if Rimin < |2t — 8i|| < Rmas Where Rmax
denotes the maximum distance at which the sensor can detect the



target, and R,,in is the minimum distance from which the sen-
sor can detect the target. Before being transmitted the observation
is quantized by partitioning the observation space into /N, inter-
vals R; = [75(t), 7j+1(t)], where j € {1,..., N;}. N, presents
the quantization level (N; = 2"* where n; denotes the number
of quantization bits per observation) which is to be determined.
The quantization level N, is sub-indexed by the sampling instant
t since it will be optimized online jointly with the target position
online estimation. The quantizer, assumed uniform, is specified
through: (i) the thresholds {7; (t)}jif’*“, where (if n > 0):
n(t) = KRy, 7i(t) < 7j41(t) and 75, 41(t) = KRj00:
and (ii) the quantization rule:

yi =d; if ~f € [r5(t), 711 (t)] @

_mi+ige — Tri®-n®)
TNy +1 () —T1(2) and § = N¢ :
Then, the signal received by the cluster head is written as,

where d; =

zi =B *yi +ne, 3)

where (3% is the i*" sensor channel attenuation coefficient (in this
work (3* is assumed the same for all sensors) and n; is a random
Gaussian noise with a zero mean and a variance o2.

2.2. General state evolution model

In this paper, we employ a General State Evolution Model
(GSEM) [5] instead of the kinematic parameter model [6] usu-
ally used in tracking problems. In fact, the GSEM model, intro-
duced in [5] for visual tracking, is more practical to non-linear and
non-gaussian situations where no a priori information on the tar-
get velocity or its acceleration is available. Considering a planar
geometry, the target position x. at instant ¢ is assumed to follow a
Gaussian model, where the expectation g, and the precision ma-
trix A; are both random. Gaussian distribution for the expectation
and whishart distribution for the precision matrix form a practical
choice for these distributions. The hidden state x; is extended to
an augmented state oy = (@, 4, A¢), yielding an hierarchical
model as follows,

Hy o~ N(p, ‘/J't—lvj‘)

A o~ Wi (A | ) 4)

T o~ N (g, Ae)

where the fixed hyperparameters X, 72 and S are respectively the
random walk precision matrix, the degrees of freedom and the pre-
cision of the Wishart distribution. Note that assuming random
mean and covariance for the state a+ leads to a prior probability
distribution covering a wide range of tail behaviors allowing dis-
crete jumps in the target trajectory.

2.3. Overview of the VF algorithm

According to the model (4), the augmented hidden state is now
a: = (x4, 1y, A¢). The distribution of interest for target track-
ing takes the form of marginal posterior distribution p(c: | z1:¢),
where z1.+ = {z1, 22, ..., 2:} denotes the collection of observa-
tions gathered until time ¢. The variational approach consists in
approximating p(a; | z1:t) by a separable distribution g(c;) =

II;q( ) that minimizes the Kullback-Leibler (KL) divergence be-
tween the true filtering distribution and the approximate distribu-
tion,

Dxu(qllp) = /q(at)log %dat 5)

To minimize the KL divergence subject to constraint [ g(c:)do =
IL; [ g(ai)da; = 1, the Lagrange multiplier method is used,
yielding the following approximate distribution [5]

(o) o< exp (log p(2t, ar)) (6)

Hj#i‘?(o"z)

where (.) denotes the expectation operator relative to the dis-

a(a])
tribution g(a).

Skipping all the details of the VF for space limitation, the updated
separable distribution () has the following form:

q(me) o< plze | )N (e | (py), (Ae))
a(pme) o N(py | i, AY)
q(Ae) o Wax(Ae | ST)

where the parameters are iteratively updated according to the fol-
lowing scheme:

BE=AT T (=) + AT b))
A=) + AP
n*=n+1
S:=((@eT) -
My =Ry
AP=(\ 2+ A7)

(@) ()™ = () ()™ + (i) + 5771

@)

2.4. Prediction-based cluster activation using the VF algorithm

The main advantage of the variational approach is the compres-
sion of the statistics required for the update of the filtering distri-
bution between two successive instants. This implicit compression
makes the variational algorithm adapted to be distributively imple-
mented through the network. In other words, it can be executed on
a cluster-base which is considered in this paper. The cluster head is
here determined based on the predicted target position given by the
VF algorithm. Indeed, after updating the VF distribution, the role
of the cluster head C' H, (at the sampling instant t) is to calculate
the predictive distribution. The predictive distribution can be effi-
ciently updated by the VF approach. In fact, taking into account
the separable approximate distribution at time ¢ — 1, the predictive
distribution is written,

p(at‘zl:tfl)ocp(mtv)‘t“‘/t)fp(l-“t [ pe—1)a(py_1)dpy_y

The exponential form solution, which minimizes the Kullback-
Leibler divergence between the predictive distribution p(cv¢|z1:¢—1)
and the separable approximate distribution g;¢—1 (¢ ), yields Gaus-
sian distributions for the state and its mean and Wishart distribu-
tion for the precision matrix:

Grje—1(ze) oo N(ze | (1), (Ae))
Grje—1(ky) o< N(py | pi A7)
Qeje—1(At) o< Whr(Ae | SF)

where the parameters are updated according to the same iterative
scheme as (7) and the expectations are exactly computed as fol-
lows:

{ (wt@m

(xixy >‘11,\t—1 =

</Lt>‘h|t—1’ T
<:u‘t>(1f,|f,_1 + <:u’t>(h|f,—1 <:u’t>qﬂt,1 .



Based on the predicted target position (@) <1 the head cluster
at sampling instant ¢, C' H, is chosen to be the nearest sensor to

<mi>%u—1 ie:

CH; = argmin;—1,. .5, {|[{x¢) —si'|| me B} (8

dt|t—1

where |.| denotes the cardinality, and B; is the set of cluster heads.

3. CRAMER-RAO BOUND AND ADAPTIVE
QUANTIZATION ALGORITHM

3.1. Cramér-Rao Bound

The Cramér-Rao expresses a lower bound on the variance of esti-
mators of a parameter. In its simplest form, the bound states that
the covariance of any estimator is at least higher as the inverse of
the Fisher Information (FI) matrix. The FI matrix is a quantity
measuring the amount of information that the observable variable
z carries about the unknown parameter x. The FI matrix elements
at the sampling instant ¢ are given by:

FI@)lix = By, | 2080E2)) Olog@(zlzy)),
dw(l,t) d:l?(k,t)

(I,k) € {1,2} x {1,2} (10)

where z; denotes the observation at the sampling instant ¢, x; =
[z1,22]" is the unknown 2x 1 vector to be estimated, and E., |, [

denotes the expectation with respect the likelihood function p(z¢|x+),

which is given by

N¢—1
pzilme) = Y p(r(t) <y < 7 (O))N(Bdy, 02) (1)
7=0
where
Tj+1(t) 5
p(15(8) <70 < 3 (0)) = [ N @od ol
Tj t
(12)

is computed according to the quantization rule defined in (2), in
which
pye(@e) = Kllzy — s¢*||",m = 1,..., Ns (13)

Then, the derivative of the log-likelihood function can be expressed
as,

dlog(p(ztlze)) _  2mK (1t — stom)l|Ts — stm]|" 2
oz ¢ V/2m02 it 1,m) || %,t Lm
Ne—1 B B
x Z [erfc(%':(mt)) *Ech(mlTl;:yt(mt))]
k=0 n n
_ 2
X cxp(*%w) (14)

Substituting expression (14) in (9), the FI matrix is easily com-
puted by integrating over the likelihood function p(z¢|z:).
It is worth noting that the expression of the FI given in ( 9) de-
pends on the target position x; at the sampling instant ¢ and on the
quantization level N;. However, as the target position is unknown,
the FI is replaced by its expectation according to the predictive
distribution p(x¢|z1.¢—1) of the target position:

< FI(xe) >= Epy|z1,_) [F1(20)] (15)

Computing the above expectation is analytically untractable. How-
ever, as the VF algorithm yields a Gaussian predictive distribution

N(xt; Tiji—1, Aeji—1), expectation (15) can be efficiency approx-
imated by a Monte Carlo scheme:

L
1 - -
< Fl(x) >~ - SOFI(E), & ~N(@p(t);Tri—1, Arji—1)
=1

(16)
where &; is the [ — th drawn observation at the sampling instant ¢,
and L is the total number of drawn vectors .

3.2. Adaptive quantization algorithm

The key idea behind the quantized optimization is that under con-
stant transmitting power, a higher quantization level could affect
the estimation performances. In fact, if the quantization level in-
creases, the quantized values d; are very close and the distance be-
tween the symbols decreases. A small noise could then decrease
the information content relevance of measured data, thus the esti-
mation error increases (see the Fig.??).

The adaptive quantization algorithm is summarized in Fig.1. At
sampling time ¢ — 1, the selected cluster head C'H:_1 executes
the VF algorithm and provides the Gaussian predictive distribu-
tion N (@p(t);@¢/t—1,Aes¢e—1). The predicted position allows the
selection of the cluster to be activated as described in section 2.4.
Furthermore, this target position predictive distribution is used by
the C'H,_1 to give the optimal quantization level N, minimizing
the predicted CRB. This optimal quantization level is then trans-
mitted to the C'H; before being diffused to the activated cluster
sensors so that they use it to quantize their observations. These
quantized observations are then used by the C'H; to execute the
VF algorithm at the sampling instant ¢.
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Fig. 1. Adaptive quantization algorithm diagram explaining how
the optimal quantization is determined based on the predictive dis-
tribution.

4. NUMERICAL EXAMPLES

The performance of the tracking algorithm can be essentially quan-
tified by the tracking accuracy, which is evaluated by the distance
between the estimated trajectory and the true target trajectory. In
the following, we compare the tracking accuracy of the VF al-
gorithm using different quantizing strategies. All the simulations
shown in this paper are implemented with Matlab version 7.1, us-
ing an Intel Pentium CPU 3.4 GHz, 1.0 G of RAM PC.



For the evaluation purpose, the target motion is simulated by a
random walk mobility (RWM) model. The RWM model, referred
to as Brownian Motion and described first by Einstein in 1926 [7],
mimics the erratic movement of a target in extremely unpredictable
ways.

In the region under surveillance, sensors were randomly deployed
with a density A\ = 0.1 sensor/m?. The system parameters con-
sidered in the following simulations are: n = 2 for free space
environment, the constant characterizing the sensor range is fixed
for simplicity to K = 1, the cluster head noise power o2 = 0.5,
the total number of sensors N, = 100, the total sampling instants
N = 100, the sensor noise power o2 = 0.1 and the channel fading
coefficient 8 = 1.

To investigate the impact of the choice of a fixed (in time) quan-
tization level on the VF algorithm performances, we run the VF
algorithm for different number of bits per observation and com-
pute the error estimation over all the target trajectory. Fig.2 plot
the MSE versus the number of bits per observation varying in
{1,2,...,8}. We note that for SNR = 3, the MSE is minimum
for Nop: = 3bits.

——— MSE vs Number of bits (SNR=3) |
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Fig. 2. MSE versus the number of quantization bits (fixed in time)
varying in {1, 2, ...,8} for SNR = 3.

Then, the tracking performances of the adaptive quantization VF
algorithm are compared to both the VF algorithm based on BSN
and the VF algorithm using the optimal fixed number of bits per
observation Nop: = 3 (minimizing the MSE as shown in Fig.2.
One can notice from Fig.3 and Fig. 4 that the best tracking quality
is ensured by the adaptive quantization VF algorithm compared to
the two other algorithms.

5. CONCLUSION

In this paper, the problem of target tracking in wireless sensor net-
works is investigated when using an adaptive quantization varia-
tional filtering algorithm. At each time instant, the algorithm pro-
vides the optimal quantization level which minimizes the predicted
Cramér-Rao Bound. It has been shown that, for the same transmit-
ting power per sensor, this adaptive scheme outperforms the VF
algorithm using a fixed (optimally set) quantization level. Further-
more, the proposed algorithm has a low computation complexity
since it is directly based on the Gaussian predictive distribution of
target position.
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Fig. 3. True (blue) and estimated trajectories using the adaptive
quantization algorithm (green), using VF algorithm (red) and using
VF based on BSN (yellow).
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Fig. 4. Estimation error between the original and the estimated
trajectories.
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