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ABSTRACT 
Within the framework of fuzzy logic for pattern 

recognition, we propose a neural network based 
membership function procedure. The estimate is obtained 
as the output of a multilayer network trained to minimize a 
fuzziness measure of the concept to be learnt. This method 
is shown to be able to deal with probabilistic, resolutional 
and fuzzy uncertainty. Fuzziness estimation is also made 
possible in a better way than using predefined membership 
functions. We have successfully applied this approach to 
car behavior evaluation, where fuzzy classes are built on 
the basis of numerical information in relation with 
subjective expert evaluations. 

1. INTRODUCTION 

In system supervision applications, one has to make 
decisions on the basis of measurements. When a 
probabilistic model of observations is available, classical 
statistical decision methods can be applied. On the 
contrary, a solution can consist in elaborating the decision 
system from a data set labeled by experts using, for 
example, statistical pattern recognition methods. Within 
these approaches, it is often assumed that the expert 
evaluation is performed with certainty so that the problem 
is to estimate a regression of the decision (given by the 
expert) as a function of the measurements (or features 
extracted from the measurements). However, in various 
applications, resolutional and/or fuzzy uncertainty can be 

 encountered. As an example, this phenomena appear for 
slowly time varying systems supervision, where locations 
of boundaries between stationary states may depend on 
experts judgements. Examples of such applications can be 
found in physiological signal analysis (event detection, 
automatic sleep staging), for which experts conflict or 
vagueness is often observed. We propose in this paper a 
neural network based membership function estimation 
procedure. The universal approximator property of 
multilayer networks, coupled with the minimization of a 
fuzziness measure, is used to determine the network 
parameters. The fuzziness of classes can be automatically 
determined via analysis of the network output. 
Furthermore, we show that the neural network also 
performs gradual fusion of each expert decision from the 
disjunctive mode (disagreement between experts) to the 
conjunctive mode (agreement between experts). The 
method is successfully applied to car behavior estimation. 

2. SUBJECTIVE AND FUZZY INFORMATION 

Uncertain information can be partitioned into three 
major categories. The next paragraph give some 
description of these categories, according to [1]. 

2.1 Kinds of uncertainty 

Probabilistic uncertainty is related to randomness of 
observations. It is often associated to measurement noise 
or random fluctuation of the observed system. 
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Resolutional uncertainty corresponds to the limitations 
which make the observation not exactly perceptible. This 
kind of uncertainty is, up to some extent, responsible for 
the possible conflict between experts. 

Fuzziness is the part of uncertainty which comes from the 
information coding scheme. As an example, in Section 4, 
fuzziness is associated with the language used by experts 
to characterize observations. Examples of fuzziness in an 
expert judgement are: “possible apparition of …”, “high 
level of …”, “weak presence of…”. 

We now remind some basic elements of fuzzy logic. 

2.2 Fuzzy logic principles 

Let X  be the reference universe. First, consider the 
classical set (crisp set) theory. In this case, every subset 

XA⊂  is uniquely defined by its membership function 
)(xAµ  defined as: 
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)(xAµ is a map from X into 1}{0, . When the membership 
function )(xAµ is a map into ]1,0[ , A is called fuzzy 
subset of X . References on fuzzy sets theory can be easily 
found in the literature, see for example [2], [3]. We only 
remind here the main definitions and properties used in 
this paper. 

Definitions: 

)()(,iff xxxBA BA µµ ≤∀⊂ , (2) 
)()(,iff xxxBA BA µµ =∀= , (3) 

)(1)( xx AA µµ −= , (4) 

})(),({min)( xxx BABA µµµ =∩ , (5) 
})(),({max)( xxx BABA µµµ =∪ . (6) 

Other functions than min and max have been proposed to 
define conjunction and disjunction operators. However, 
these two functions are the most commonly used because 
of their desirable properties. 

Properties: 

The properties of conjunction, disjunction and negation 
operators are generally maintained (commutativity, 
associativity, distributivity, Morgan’s laws, …). However, 
if min and max are used as ∩  and ∪ , respectively, the 
properties ∅=∩ AA  and XAA =∪  do not still hold. 
They must be replaced by 2/1)( ≥∪ xAAµ  and 

2/1)( ≤∩ xAAµ . 

Fuzziness measures H  using only membership 
functions were proposed ([4], [2]), and Ebanks [5] listed 
some desirable properties for such measures. For example, 
Kaufmann [2] proposed: 
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where N  is the cardinality of X , [,1[ ∞+∈q  and 2/1A is 
the A cut−α  of level ½ defined by: 
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This fuzziness measure is a distance between 
)(xAµ and a crisp membership function of A . Due to the 

similarity between )2,(AH  and the usual mean squared 
error minimized during the training process of a neural 
network, the fuzziness measure )2,(AH  was used in this 
work. This will be explained later. 

2.3 Classification, learning and neural networks 

Let n)},{( nn tx  denotes a training set of labeled data, 
where nx  is the feature vector associated to the target nt . 
Within the framework of statistical pattern recognition, 
classification can be achieved by estimating the target 
)(xt  for every Xx∈ . When the joint probability function 
( )txp ,  is ignored, one must optimize performance 

measured by a criterion c  which depends only on the 
training set n)},{( nn tx . One must answer several 
questions. 

1- Which model can be used for the decision function ? 

2- Which criterion one must optimize ? 

3- Is the resulting performance close to the minimal 
achievable probability of error BayesP  given by the 
Bayes decision rule. 

4- Is the solution of the optimization problem achievable 
in a reasonable time ? 

Before answering these questions, consider a decision 
rule )(xt  which is a member of a family T . Let optt  be 
the decision rule resulting from the optimization of any 
given criterion c which depends only on n)},{( nn tx . Let 

)( opte tP  denote the error probability of the decision rule 
optt , and let )( opttε be defined as: 

Bayesopteopt PtPt −= )()(ε , (9) 



 

 

which can be rewritten as 
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In Eq. 10, one observes that the first term depends only on 
the criterion c and on its optimization process. This will be 
called estimation error. The second term, usually called 
approximation error, depends only on T . In [6], Vapnik 
and Chervonenkis have shown that the minimization of 

)( opttε  leads to a compromise between these terms: an 
increase in the size (formally defined as the Vapnik-
Chervonenkis dimension) of T  yields an increment of the 
estimation error and a decrement of the approximation 
error, and conversely. 

Another point of view of the approximation/estimation 
error dilemma can be found in the statistical literature as 
the bias-variance tradeoff. Assuming that the joint 
probability density function ),( txp  is known, the criterion 
c  to be minimized is usually chosen as the mean squared 
error between the target t and the decision rule )(xt : 

( )2)(xttEc −= . (11) 

Eq. 11 can be rewritten as: 

( ) ( )22 )/()()/( xtExtExtEtEc −+−= . (12) 

The first term is the smallest reachable squared error. It 
depends only on the problem encountered. The second 
one, which depends on )(xt  estimation accuracy, has to be 
minimized. It can be rewritten as follows: 
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The first term is recognized as a bias term, and the second 
as a variance one. Again, if we consider that the decision 
rule )(xt  is a member of a given family T , an increase in 
the size of T  induces a decrement of the bias term and an 
increment of the variance term, and conversely. Hence, 
minimization of c  results in making a compromise 
between these antagonistic terms. 

Optimization of the squared error was shown to be of 
major interest, in particular when decision functions are 
implemented via multilayer networks. Let t  be a M-
dimensional vector, with M the number of classes, and 
consider the one bit encoding defined as follows: 
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where it  denotes the ith component of t. Then, 
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According to universal properties of multilayer neural 
networks (see for example [7], [8]), convergence of )(xt  
to )/( xtE can be guaranteed when the cardinality N  of 
the learning set tends to infinity. In our case, the ith 
component of the network output tends to )/( xp iω . 
Therefore, decision that consists in classifying the 
observation x  into iω  if it  is the largest network output 
is recognized as the maximum a posteriori probability rule 
(also known as the Bayes decision rule). This decision rule 
minimizes the probability of error. Hence, when N  is 
finite, such a decision rule is an estimate of the Bayes one. 

In order to deal with the bias variance tradeoff, the 
network architecture has to be chosen to optimize an 
estimate of performance. This is usually done with an 
independent test set (cross validation) or via resampling 
methods (Jackknife, Bootstrap, for example).  

3. APPLICATION TO FUZZY MEMBERSHIP 
ESTIMATION 

3.1 Subjective probabilities and fuzzy membership 

In Section 2, it was assumed that labels nt available in 
the training set were unambiguously known. However, it 
often arises that expert judgements are expressed as fuzzy 
valuations. As an example, this often occurs when 
expertise is subject to resolutional uncertainty because 
experts express their valuation using vague concepts. It 
may also appear disagreement between different experts. 
Such problems are frequently encountered in many areas 
including non stationary complex systems monitoring, 
biomedical signal analysis and recognition, etc. An 
example is given in Section 4. 

In order to perform estimation of fuzzy membership 
functions from numerical data using a multilayer network, 
one has to define a coding scheme from the fuzzy 
valuation made by experts to a numerical value. 
Remember that multilayer networks perform a posteriori 
probability estimation (see Eq. 15). Probability of an event 
can be defined as (the limit when the number of 
experiments tends to infinity of) the relative frequency of 
its occurrence. Hence, probability estimation requires that 
event occurrences are unambiguously known. In the 
application considered in this paper, experts disagreement 
may be present. This can result from a different perception 



 

 

of phenomena by different experts, and also because 
expert may not agree on the generating process of the 
events considered. Within this context, it becomes 
impossible to evaluate the relative frequencies (they even 
may have no sense). We must only deal with the 
perception made by experts, which was called subjective 
probabilities in the literature (see for example [9], [10]). 
The following example illustrates this notion: in 
application described in Section 4, if 3 experts out of 4 say 
that a given car has the “pumping defect”, we shall 
conclude that the subjective probability for this car to be a 
member of the “pumping defect” class equals 0,75. This 
should not be confused with the (classical) probability that 
a given car has this defect. Subjective probabilities have 
been related to fuzzy membership functions. In [11] and 
[12], for example, authors suggested that the number of 
positives answers to the question “does x belong to A?” 
must be (linearly) related to )(xAµ . 

Now, we show that using a crisp coding of the experts 
valuation enables a neural network to estimate subjective 
probabilities and, with this coding scheme, that a 
multilayer network performs gradual fusion from the 
conjunctive mode (agreement between experts) to the 
disjunctive mode. 

3.2 Membership function estimation and gradual 
fusion 

The criterion usually minimized by the output of a 
multilayer network is the squared error Q defined as: 
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where ),( θnxg and θ are the output and the weights of 
the network, respectively. If a pool of experts is used, this 
error can be rewritten as: 
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where K  is the number of experts and knt ,  the label of the 
nth observation for the kth expert. Note that this function is 
minimized when 

∑
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Hence, a crisp (0,1) coding of experts judgements and the 
universal approximator property of multilayer networks 
allows to estimate the subjective probabilities 

(membership functions) via the minimization of Eq. 17. 
Note that Eq. 16 (so does Eq. 17) is of the form of Eq. 7 in 
which the )(

2/1
xAµ  crisp coding has been replaced by a 

binary coding of experts judgements. Therefore, 
minimizing Eq. 16 (or Eq. 17) is equivalent to minimizing 
a fuzziness measure of the concept to be learnt. The 
gradual fusion property is now illustrated. In the following 
experiment, observations ),( 21 xx are assumed to be 
members of the set 10},1,{0,10},1,{0, …… × . For each 
observation ),( 21 xx , one supposes that 1x  experts vote in 
favor of class 1 and 2x  in favor of class 2. Each 
observation is presented to the network 1x  times as an 
observation from class 1 and 2x  times as an observation 
from class 2. Obviously, according to Eq. 18, the network 
output is an estimation of the membership functions 
defined by: 
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with 

2/1)0,0()0,0( 11 == µµ . (19’) 

Figure 1 shows interpolated theoretical and estimated 
membership functions obtained with a one hidden layer 
(10 neurons) network. 

 
Figure 1 (a). Theoretical membership functions. 

As can be seen, the estimated membership functions 
closely resembles the theoretical ones. The diagonal line 
represent the most disjunctive case when equal number of 
experts have chosen class 1 and class 2. As expected, 
membership estimates are very close to 0,5 on this line. 
The most conjunctive case can be seen for observations 



 

 

(0,10) or (10,0). 

 
Figure 1 (b). Estimated membership functions. 

As can be seen, the estimated membership functions 
closely resemble the theoretical ones. The diagonal line 
represents the most disjunctive case when equal number of 
experts have chosen class 1 and class 2. As expected, 
membership estimates are very close to 0,5 on this line. 
The most conjunctive case can be seen for observations 
(0,10) or (10,0). For example, the observation (0,10) for 
which no expert chose class 1 and 10 experts chose class 2 
has estimated membership degrees very close to 0 for class 
1 and 1 for class 2, respectively. 

4. APPLICATION TO CAR BEHAVIOR 
EVALUATION 

The objective is to perform an automated diagnosis of 
6 possible behavior defects of a car: 

1- engine or wheel vibration; 

2- on seat compression; 

3- pumping; 

4- transversal movements (high roll); 

5- copying (low roll in relation with the road 
transversal profile); 

6- on seat movements. 

During an on-road experiment, experts give on-line 
impressions. The training data set is composed of time 
intervals during which experts evaluate their impressions 
using usual vocabulary (linguistic variables). The absence 
of synchronicity between phenomena and expert 
judgements implied a manual synchronization of signals. 
For the characterization of defects, several accelerometers 

were set up into the car. The resulting signals were 
judiciously combined in order to compress information. 
Then representative features, mainly related to the time-
frequency power content, were extracted from these 
synthetic signals. Experts valuations were crisply coded as 
indicated previously. 

A major difference between usual classification and 
our application is that more than one defect can be present 
at any given time instant. Therefore, the following usual 
relation 

1)(
1

=∑
=

Nclass

i
i xµ  

does not still hold. This is the reason why a network was 
dedicated to each defect. The networks structures and 
weights were determined according to the internal 
representation optimization algorithm proposed in [13]. A 
cross validation procedure was used in order to cope with 
the bias-variance dilemma. The resulting networks were 
constituted of a single hidden layer of 9, 5, 7, 2, 8, 5 
neurons for the defects listed previously, respectively. 

After the optimization process, the fuzziness measures 
were estimated for each defect. The results obtained on the 
cross validation set are shown in figure 2. 

 
Figure 2. Fuzziness measures. 

One observes that fuzziness is much smaller for the “on 
seat compression” defect than for others. This was 
confirmed by experts who agreed on the feeling that on 
seat compression can be less ambiguously detected than 
other defects. Furthermore, networks output time 
representations have shown that the transitions between 
absence and presence of on seat compression are much 
sharper than for every other defect. 

Figure 3 represents an example of the networks outputs 
as a function of time during a time interval where on seat 
movements were detected twice by an expert (bold line). It 
also appears “engine or wheel vibrations” during the first 



 

 

period labeled “on seat movements”. This can be 
explained by the similar frequency bands occupied by 
these phenomena. One can also observe that “on seat 
movements” decrease when a lower frequency 
phenomenon appears (pumping), as usually experienced 
by experts. 

 
Figure 3. Example of membership functions estimation 

5. CONCLUSIONS 

In this paper, we have shown that fuzziness can be 
automatically extracted from the concept to be learnt. The 
proposed method relies on the universal approximator 
property of multilayer networks. Using a crisp coding of 
the experts evaluations, minimization of a fuzziness 
measure allows to make the least fuzzy decision according 
to the data. Furthermore, this method takes into account 
every kind of uncertainty (probabilistic, resolutional, 
fuzziness), the separate contribution of which, however, 
cannot be extracted. We have also shown that the decision 
rule automatically performs gradual fusion from the 
conjunctive mode (experts agreement) to the disjunctive 
mode (experts disagreement). 

We have successfully applied this method to car 

behavior estimation where input data are vibration 
measurements and desired output (experts evaluations) are 
expressed in terms of linguistic variables. The results were 
correlated with the experts feeling. The intelligent 
detectors obtained after the networks training were 
implemented in real time on a car and successfully 
validated. 
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