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ABSTRACT 

This paper proposes an unsupervised method for real time 

detection of abnormal events in the context of audio surveillance. 

Based on training a One-Class Support Vector Machine (OC-

SVM) to model the distribution of the normality (ambience), we 

propose to construct sets of decision functions. This modification 

allows controlling the trade-off between false-alarm and miss 

probabilities without modifying the trained OC-SVM that best 

capture the ambience boundaries, or its hyperparameters. Then we 

present an adaptive online scheme of temporal integration of the 

decision function output in order to increase performance and 

robustness. We also introduce a framework to generate databases 

based on real signals for the evaluation of audio surveillance 

systems. Finally, we present the performances obtained on the 

databases. 

 

Index Terms— One-Class SVM, unsupervised learning, detection, 

adaptive audio segmentation, audio surveillance. 

1 INTRODUCTION 

Third-generation surveillance systems (3GSS) [13] point out the 

interest in multimodal analysis of environments for public safety. 

This includes the use of audio in complement of video. The 

increasing demand for surveillance harms operators watchfulness 

as they are supposed to supervise dozens of screens and other 

sensors. In this context, audio analysis might provide automatic 

awareness in order to focus operators attention on real risky 

situations. The classical framework for doing so involves two main 

steps: 1- detection of abnormal situations, 2-recognition of detected 

events. In this paper, we focus on improving the detection stage. 

Most of the audio surveillance systems proposed in the 

literature are supervised; they need more than the training signal 

itself to be trained. Minimum information requirement is a 

challenge for building more efficient and intelligent automated 

surveillance systems [18]. Thus, we only consider here non 

supervised systems. 

Classical approaches consist of setting up detectors dedicated 

to few identified abnormal events [17], or strongly related to the a 

priori ambience [10]. These are not suitable in the context of 

surveillance as: 1- we have no prior information relative to events 

to detect; 2- in noisy environments (e.g. public transports, or urban 

complexes), the ambience is a non-stationary continuum that may 

include normal sound events. We propose to use non-supervised 

approaches to learn ambience patterns. Literature offers methods to 

estimate the distribution of normality; Gaussian Mixtures Models 

(GMM) and One Class Support Vector Machine (OC-SVM) being 

the most popular. Because of the nature of the optimized criterion, 

OC-SVM [14] presents better generalization results. Furthermore, 

we do not have any prior on the ambience data distribution in the 

acoustic space and OC-SVM algorithms are able to model 

arbitrarily shaped sets. For these reasons, we propose to capture the 

distribution of the ambience with OC-SVM and we consider every 

rejected point as a detected event to be classified. We also slightly 

modify OC-SVM to deal with the trade-off between detection and 

false alarm probabilities. 

In order to improve the detection scores of our detectors, we 

temporally integrate the detector output. As events are of variable 

length, we show that an optimal integration requires segmentation 

information. Most of the proposed audio segmentation algorithms 

in the literature are based on information criterion such as 

Bayesian Information Criterion (BIC), [3]. Unfortunately, it is 

difficult to design a segmentation module with good generalization 

capabilities when considering various types of audio signals. We 

propose here an automatic on-line segmentation module based on 

multi-level segmentation, as already suggested in the area of 

speech recognition [5] [6]. 

This paper begins with the presentation of One-Class SVMs 

and the construction of the family of decision functions. Section 3 

gives an overview of the proposed segmentation for temporal-

integration of the decision function. Then, section 4 introduces the 

generation of an evaluation database from real signals, adding 

amplitude controlled abnormal events to ambience signals. We 

present experimental results in section 5. Finally, we conclude with 

some perspectives. 

2 OC-SVM BASED DETECTOR FOR AUDIO SIGNALS 

2.1 OC-SVM basic elements 

Let ���…���, �� ∈ 
 ⊂ ℝ be the training set, where � ∈ ℕ is the 
number of observations that belong to a single class, ambience 

signals in our application. OC-SVM [14] aims to define the 

boundary of �, the minimum volume region enclosing �1 − ��� 
observations. Hyperparameter �, in �0; 1�, controls the fraction of 
observations that are allowed to be out of � (outliers). Let ��: ℝ → ℝ be a decision function such that: 

����� ≥ 0,	if	� ∈ �	����� < 0,	otherwise 
Within the context of SVM, the space of possible functions ����� is reduced to a Reproducing Kernel Hilbert Space (RKHS) 

with kernel !: ℝ ×ℝ → ℝ. This kernel induces the so-called 
feature space # via the mapping $:ℝ → #. Let 〈. , . 〉( be a dot 
product in #. We consider here the Gaussian kernel: 

!��, �)� = 〈$���, $��′�〉(=exp�−‖� − �)‖0 220⁄ � 
Since in this case !��, �� = 1, all the data are mapped onto the 

unit-radius hypersphere centered at the origin of #. 



Training an OC-SVM consists of def

hyperplane 4 = �5 ∈ #	6. 7. 〈5,8〉( − 9 =
margin 9 ‖8‖(⁄  is maximum (see Figure 1)

result from the optimization problem [14]: 

min=,>,?
1
2‖8‖(0 − 9 @

1
��AB�

�

�C�
subject to D〈8

where B�  are the slack variables representing the loss associated 
with �� (non null B� define the outliers). The LagrangE associated with this problem fully determine 

obtain the decision function ����� = ∑G�H/JH K 0	L defines the support vectors set. 

Figure 1- Principle of One-Class SVM

2.2 Constructing OC-SVM based decision function set

In standard OC-SVM, an observation is declared

the ambience class (#M) if ����� ≥ 0. Once this decision rule is 
obtained, we propose to define a family of decision rules by 

modifying the threshold: 

D if	����� ≥ O, �	is	declared	as	ambience	if	����� < O, �	is	declared	as	abnormal	event	
This formulation allows control of the trade

false-alarm probabilities Z�[M|#�� and Z
The introduced threshold O might be determined experimentally by 

operational requirements. O controls a translation of the 
hyperplane 4, in the feature space #. Then, t
of �, in the representation space, is the contour of the decision 
function ����� given O. 

Choosing � is a challenging problem as it directly drives the 

fraction of training data lying inside the domain.

conditioned by the application and operational requirements

terms of detection rates or miss/false-alarm 

for small values of �, � can be estimated on regions of the input 

space where the density of training data is very low

variance of the estimation of �. Conversely, high values of 
result in a high bias of the estimate of �
represent the ambience data distribution. In our approach, 

an optimal value of � that is only driven by the quality of the input 
signal, estimating the number of potential outliers

raise the performance to operational requirements

threshold O. 
Figure 2 illustrates, based on an experimentation for abnormal 

audio event detection, the decision function set

different values of ν. Any set of decision functions corresponds to 
a curve, showing the balance between miss and false

defining the separation = 0� such that the 

). Parameters 8 and 9 

〈8, $����〉( ≥ 9 − B�B� ≥ 0, ^ = 1… � _ 
are the slack variables representing the loss associated 

he Lagrangian multipliers 

fully determine 8 and 9. We finally ∑ J�!��� , ��� − 9 and 

 

 
Class SVM 

SVM based decision function set 

declared as belonging to 

Once this decision rule is 

obtained, we propose to define a family of decision rules by 

is	declared	as	ambience	�[M�is	declared	as	abnormal	event	�[��_	
formulation allows control of the trade-off between miss and Z�[�|#M� respectively. 

might be determined experimentally by 

controls a translation of the separating 

. Then, the resulting boundary 

contour of the decision 

a challenging problem as it directly drives the 

lying inside the domain. This is 

the application and operational requirements, in 

alarm probabilities. In fact, 

on regions of the input 

space where the density of training data is very low; increasing the 

Conversely, high values of � can � which could poorly 
our approach, we select 

by the quality of the input 

signal, estimating the number of potential outliers, then we try to 

operational requirements using a suitable 

based on an experimentation for abnormal 

decision function sets obtained with 

of decision functions corresponds to 

balance between miss and false-alarm 

probabilities. For each curve, max∀a∈b ����� where c ⊂ ℝ is the evaluation set.
a square symbol locates the default OC

performance (λ = 0). Preliminary results show

surveillance signals, a good choice 

performance as O varies, compared to

Figure 2- Influence of � and O
probability trade-off. Squares 

obtained with a standard OC

2.3 Temporal integration of decision function

The audio stream is first processed frame

composed of successive audio samples of a few tenths of 

milliseconds, is processed to extract 

descriptors. Then we compute 

vector. This approach does not correspond to an operational need 

and ignores temporal aspects which are now 

propose the following median-filtered decision function:

e if	fgh����i�j ≥ O, �	is	declared	as	ambience	
if	fgh����i�j < O, �	is	declared	as	abnormal	event	

where �i is the k-th feature vector
the median value of the series 

order. This filter provides good performance

corresponds to the duration of integration, fixed by 

observation is incoherent with the fact that events 

length. Therefore, we now present an adaptive integration scheme

3 AUTOMATIC ONLINE SEGMENTATI

The segmentation process that we 

algorithm (see Figure 3). First, in order to 

representation of the signal, we 

extracted feature vectors. With no 

signals, it seems reasonable to use standard spectral representation

as features. Therefore, we use output energies of 

linear filter bank. No assumption is possible regarding the duration 

of audio segments but the system should react as fast as possible. 

Few seconds can be considered as 

surveillance applications. This gives 

Once the buffer is full, we 

process. Based on a pre-defined similarity criterion

successive pairs of segments are iteratively merged 

segment remains (bottom-up hierarchical

process). We use the Euclidean distance 

probabilities. For each curve, λ varies from min∀a∈b ����� to 
is the evaluation set. On each curve, 

the default OC-SVM decision function 

Preliminary results show that, for audio 

a good choice for � can lead to better 
compared to varying only �. 

 O on detection false-alarm / miss 
Squares represent the decision function 

obtained with a standard OC-SVM (O = 0). 
decision function 

audio stream is first processed frame-by-frame. Each frame, 

composed of successive audio samples of a few tenths of 

is processed to extract a vector of “acoustic” 

we compute the decision function from these 

does not correspond to an operational need 

aspects which are now dealt with. We first 

filtered decision function: 

is	declared	as	ambience	�[M�
is	declared	as	abnormal	event	�[��_	

th feature vector, fg�ki� the operator returning 
the median value of the series �kilgm�, … , ki� and n, the filter 

provides good performance when event duration 

to the duration of integration, fixed by n. This 

is incoherent with the fact that events are of variable 

we now present an adaptive integration scheme. 

IC ONLINE SEGMENTATION OF AUDIO 

that we use is a multi-level online 

First, in order to dispose of a long term 

representation of the signal, we feed a buffer with frame-by-frame 

ith no a priori knowledge of the 

to use standard spectral representation 

output energies of a Fourier-based 

No assumption is possible regarding the duration 

of audio segments but the system should react as fast as possible. 

seconds can be considered as an operational requirement for 

. This gives the buffer size. 

Once the buffer is full, we start the adaptive segmentation 

defined similarity criterion, the closest 

of segments are iteratively merged until only one 

hierarchical-clustering-based merging 

We use the Euclidean distance between mean vectors of 



segments. In the resulting structure (that we can represent as a 

dendrogram), we look for the optimal segmentation level

criterion consists of applying some pre-defined threshold to the 

distance of the closest merged segments. In our implementation, 

we computed the intra-segment correlation coefficient

between merged segments), and chose the segmentation level 

which provides correlation coefficients above a given threshold for 

all segments. The segmentation at this level was

last segment that contains the first frames of the next buffer

segment. 

Then, the decision statistic is integrated over 

homogeneous segment. For every segment, we now define 

decision function: 

e if	〈����i�〉op ≥ O, �	is	declared	as	ambience	if	〈����i�〉op < O, �	is	declared	as	abnormal	event	
where 〈ki〉op  is the operator returning the average value of the 
series Gki/	∀q ∈ rHL and rH the set of frame indices belonging to 

segment s.	
In all our experiments (as in Figure 4

2000ms (200 frames), fed with linear 24-filterbank output energies 

(features for segmentation can be different from those used for 

detection). Segments were constrained to contain from 8 to 100 

frames and the quality measure threshold is set to 0.98.

Figure 3- Multi-Level Segmentation illustration

 

Figure 4- Example of segmentation results on a recording from a

Rome subway station: waveform (bottom), spectrogram (midd

segmentation result (top); vertical dashed lines separate segments.

(that we can represent as a 

the optimal segmentation level. A typical 

defined threshold to the 

distance of the closest merged segments. In our implementation, 

segment correlation coefficient (correlation 

, and chose the segmentation level 

which provides correlation coefficients above a given threshold for 

was kept except for the 

irst frames of the next buffer 

integrated over each 

For every segment, we now define the final 

is	declared	as	ambience	�[M�
is	declared	as	abnormal	event	�[��_ 

is the operator returning the average value of the 

the set of frame indices belonging to 

4), buffer length was 

filterbank output energies 

(features for segmentation can be different from those used for 

contain from 8 to 100 

frames and the quality measure threshold is set to 0.98. 

 
Level Segmentation illustration. 

 
on results on a recording from a 

way station: waveform (bottom), spectrogram (middle), 

ashed lines separate segments. 

4 DATABASE FOR AUDIO 

We have developed a framework to 

recorded real ambience signals 

(see Figure 6). Our approach has several advantages: 

SNR, perfect knowledge of events position

generation of a large amount of 

SNR is defined globally. Practically, this means 

computed globally from the 

ambience signal. The event is then duplicated and 

constant amplitude at different positions 

This approach allows building

variability of real ambience signals

Literature is extensive concerning the measure of noise

[4][8][1]. Figure 5 indicates empirical measures of SNR over 

surveillance signals using different 

functions [7][9]. These results show that 

higher values. This indicates that 

evaluating the SNR of events into surveillance signals

we use this weighting for targeting SNRs when generating the 

database. 

Figure 5- Experimental SNRs using different weighting functions

Figure 6- Simulation flowchart 

evaluate abnormal event detection 

5 EVALUATION

We generated a database using 

each. Events are 1-second sounds extracted from commercial 

databases [15]. We considered 

categories. Ambiences were record

Rome [2]. Training set was composed of 

hour). Each event was introduced

each of the 12 remaining ambience signals (

selected 5 SNRs varying from 5 to 25

5,760 audio files with an abnormal event 

seconds. This corresponds to 288,000 events 

Weighting Flat

SNR 10,77 dB

FOR AUDIO SURVEILLANCE 

a framework to combine abnormal events with 

signals from a place under surveillance 

has several advantages: control of 

events position, fast and flexible 

large amount of test signals. In our application, the 

SNR is defined globally. Practically, this means that the SNR is 

from the average energy over the whole 

. The event is then duplicated and inserted with 

at different positions into the ambience signal. 

building signals representative of the 

signals. 

Literature is extensive concerning the measure of noise level 

indicates empirical measures of SNR over 

surveillance signals using different standardized weighting 

show that using ITU-R468 results in 

that this weighting is more adapted in 

s into surveillance signals. Therefore, 

we use this weighting for targeting SNRs when generating the 

 
using different weighting functions 

 

 
flowchart of surveillance audio signals to 

abnormal event detection system 

EVALUATION 

using 18 ambience signals of 10 minutes 

sounds extracted from commercial 

We considered 96 events grouped into 27 

recordings from a subway station in 

composed of 6 ambience signals (1 

introduced at 50 different positions into 

remaining ambience signals (used as a test set). We 

5 to 25dB. This process resulted in 

with an abnormal event occurring every 12 

288,000 events and 960 hours of 

A-type C-type ITU-R468

12,61 dB 10,5 dB 15,09 dB



audio for evaluation. All signals were analyzed frame by frame in 

an online framework. Frames were 20ms long, Hamming 

windowed, with a 50% overlap. A 32-dimensional feature vector 

composed of the output energies of a linear filterbank was 

computed for each frame. Then we performed the online multi-

level segmentation presented in section 3. OC-SVM 

hyperparameters were set to 2 = 10 and � * 10
lt, resulting in 

1548 support vectors from 360,033 learning data. Evaluation 

consisted of applying our decision function 1- frame by frame, 2- 

after median filtering over 1 second and 3- using adaptive 

segmentation. Obtained results are presented in Figure 7 [10]. Each 

curve corresponds to a given SNR and illustrates the trade-off 

between miss and false-alarm probabilities. 

6 CONCLUSION 

In this paper, we introduced a method for online detection of 

abnormal events in audio signals. Based on One-Class Support 

Vector Machines, our approach consists of a slight modification on 

the decision function. We also discussed the need for temporal 

integration of detection functions and developed a multi-level 

segmentation algorithm. Then we described a process for 

elaborating non standards audio test databases applied to 

surveillance. Finally, we presented experiments that illustrated the 

efficiency of our unsupervised framework. Future work will focus 

on studying relations between hyperparameters and the signal 

shapes, and criteria for measuring their quality. 
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Figure 7 - Detection Error Trade-off curves at different SNR without segmentation (left), with the proposed 1-second median filter on 

decision output (middle), and with application of our adaptive multi-level segmentation process (right). 


