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ABSTRACT

This article deals with a regularized version of the split
gradient method (SGM), leading to multiplicative algo-
rithms. The proposed algorithm is available for the opti-
mization of any divergence depending on two data fields
under positivity constraint. The SGM-based algorithm
is derived to solve the nonnegative matrix factorization
(NMF) problem. An example with a Frobenius norm
on both the data consistency and the penalty term is
developped and applied to hyperspectral data unmixing.

Index Terms— SGM, NMF, regularization

1. INTRODUCTION

In a recent paper, [1], we proposed the Split Gradient
Method (SGM) allowing to obtain the multiplicative al-
gorithms dedicated to NMF for any convex functional
expressing the data consistency, that is the discrepancy
between data and model.

Extending a previous paper dedicated to the de-
convolution problem, [2], we propose here a method to
regularize the NMF problem in the SGM context. For
such a problem, the regularization functional acts on the
columns of the unknown matrices.

The method is founded on the separation of the neg-
ative gradient, not only on the discrepancy function but
also on the penalty term, this gives clearly gradient de-
scent algorithms which convergence is ensured with a
search on the step size; this is not the case in [3] and
references therein. We show as an example the forms of
the algorithms in the case of a Tikhonov regularization
for smoothness constraints. Obviously, others penalty
functions can be used as well.

In the present communication we use the Frobenius
norm to express both the data consistency and the regu-
larization term. Clearly any other convex divergence can
be used for both terms.

In section 2 we specify the problem at hand and the
notations for NMF while in section 3 we briefly recall
the main points of the SGM. In section 4, we develop

our argumentation to justify the decomposition of the
gradient of the penalty term, the application of the reg-
ularization to hyperspectral imagery is given in section
5. A numerical example is finally shown in section 6.

2. NONNEGATIVE MATRIX
FACTORIZATION

We consider here the problem of nonnegative matrix fac-
torization (NMF), which is now a popular dimension re-
duction technique, employed for non-subtractive, part-
based representation of nonnegative data. Given a data
matrix V of dimension F ×N with nonnegative entries,
the NMF consists of seeking a factorization of the form

V ≈ WH (1)

where W and H are matrices, with non negative entries,
of dimensions F ×K and K×N , respectively. Dimension
K is usually chosen such that FK + KN � FN , hence
reducing the data dimensionality.

The factorization (1) is usually sought through the
minimization problem

min
W,H

J (V,W,H) s.t. [W]ij ≥ 0, [H]ij ≥ 0 (2)

To solve (2), one can use a minimization method of the
SGM-type, alternatively on W and H.

3. SPLIT GRADIENT METHOD

We briefly recall the main points of the SGM in the NMF
context, [4, 5, 1]. The SGM is based on the Karush-
Kuhn-Tucker conditions at the optimum W∗ and H∗.
We only develop the minimization w.r.t W (minimiza-
tion w.r.t H follows exactly the same scheme), this leads
to:

[W∗]ij [∇WJ (V,W∗,H)]ij = 0
⇔ [W∗]ij [−∇WJ (V,W∗,H)]ij = 0 (3)
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The second formulation of eq.(3), while trivial, makes
appear the descent direction. To solve this equation
iteratively, three points have to be noticed. The first
one is that M · (−∇WJ ) is a gradient related descent
direction of J if M is a matrix with positive entries,
where · denotes the Hadamard product. The second
one is that [−∇WJ ]ij can always be decomposed as
[P]ij − [Q]ij , where [P]ij and [Q]ij are positive entries.
Last but not least, the third one is that equations of
the form ϕ(W) = 0 can be solved with a fixed-point
algorithm, under some conditions on the function ϕ, by
considering the problem W = W+ϕ(W). Implementing
this fixed-point strategy with (3) and using

[M]ij =
1

[Q]ij
(4)

we obtain the gradient related descent algorithm

[Wk+1]ij = [Wk]ij + αk
ij

[Wk]ij
[Qk]ij

(
[Pk]ij − [Qk]ij

)
(5)

with αk
ij a positive step size that allows to control con-

vergence of the algorithm. We take the same step size
for all indices. This step size must be searched by simpli-
fied search methods (Armijo rule for example, [6]) in the
range [0, αk

max] where αk
max is explicitely computed from

(5) to ensure the non-negativity of the components of
Wk. It can be easily shown that αk

max is always greater
than one and for αk = 1, we get the very simple and
well-known multiplicative form:

[Wk+1]ij = [Wk]ij
[Pk]ij
[Qk]ij

(6)

Positiveness is satisfied if [W0]ij > 0, but convergence of
the algorithm (6) is not guaranteed.

4. REGULARIZATION

In this section, we propose to introduce the principles
of regularization in the context of SGM, with the ob-
jective to give multiplicative algorithms for NMF. The
regularization penalty term is applied separately on the
columns of W and H and is added to the data consis-
tency D(V,WH). Then the problem (2) is expressed as
follows:

min
W,H

J (V,W,H) [W]ij ≥ 0, [H]ij ≥ 0 (7)

J (V,W,H) = D(V,WH) + γF1(W) + μF2(H) (8)

The terms F1(W) and F2(H) are the penalty functions,
γ and μ are the regularization factors.

4.1. Regularized SGM

The general rules given for SGM remain true for the reg-
ularized versions of the algorithms. For the minimization
with respect to W:

−∇WJ = −∇WD − γ∇WF1 (9)

If we denote the decomposition of the negative gradients
as

[−∇WD]ij = [P]ij − [Q]ij (10)

[−∇WF1]ij = [PR]ij − [QR]ij (11)

We have
[−∇WJ ]ij = [P]ij − [Q]ij (12)

with

[P]ij = [P]ij+γ[PR]ij , [Q]ij = [Q]ij+γ[QR]ij (13)

The same type of decomposition is available for the gra-
dient with respect to H.

4.2. Tikhonov regularization

We develop the argumentation in the simple case of the
Tikhonov regularization, expressing some smoothness
property of the solution:

F(X) =
∑
ij

([X]ij − c)2 (14)

possibly with c = 0 or:

F(X) =
∑
ij

[DX]2ij (15)

where D is the first derivative or the second derivative
operator. In all these penalties, we always express the
discrepancy between the current solution and the refer-
ence solution by means of the squared Frobenius norm.
More generally, the penalty functions used in the litera-
ture express a discrepancy between two functions of the
solution. Note that the Tikhonov regularization used in
this paper is just an example.

5. APPLICATION TO HYPERSPECTRAL
IMAGERY

Hyperspectral imaging has received considerable atten-
tion in the last few years. See for instance [7], [8] and ref-
erences therein. It consists of data acquisition with high
sensitivity and resolution in hundreds contiguous spec-
tral bands, geo-referenced within the same coordinate
system. With its ability to provide extremely detailed
data regarding the spatial and spectral characteristics of
a scene, this technology offers immense new possibilities
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in collecting and managing information for civilian and
military application areas.

Each vector pixel of an hyperspectral image charac-
terizes a local spectral signature. Usually, one consider
that each vector pixel can be modeled accurately as a lin-
ear mixture of different pure spectral components, called
endmembers. Referring to our notations, each column
of V can thus be interpreted as a spectral signature ob-
tained by linear mixing of the spectra of endmembers,
i.e., the columns of W. The problem is then to estimate
the endmember spectra W and the abundance coeffi-
cients H from the spectral signatures V.

We propose to regularize the columns of W, the end-
member spectra, as in terrestrial imagery.

5.1. Regularization on the columns of W

In what follows, we shall implement the first order regu-
larization (15) as F(X) =

∑
ij [DX]2ij . Let us note that

when we use the expression DX, we can write:

[DX]ij = [X]ij − [AX]ij (16)

where, when we use the first derivative, AX corresponds
to the convolution of each column of the current solu-
tion X by the mask [1, 0, 0], (a shifted version of the
solution) and when we use the second derivative, AX
corresponds to the convolution of each column of X by
the mask [0.5, 0, 0.5], (a low pass version of the solution).
We must first compute the gradient of the penalty term
with respect to the elements of the columns of W. If
the reference solution depends on the current solution,
we have:

F1(W) =
1
2

∑
j

∑
i

([AW]ij − [W]ij)2 (17)

then, the opposite of the gradient can be expressed in
the matrix form

− ∂F1

∂[W]ij
= [AT W − AT AW + AW − W]ij (18)

The decomposition (11) that must be used in SGM is:

PR = AT W + AW, QR = AT AW + W (19)

If the reference solution is constant, the penalty term is:

F1(W) =
1
2

∑
j

∑
i

(c − [W]ij)2 (20)

then, the opposite of the gradient can be expressed in
matrix form

− ∂F1

∂[W]ij
= c − [W]ij (21)

Then, the decomposition (11) is:

PR = c, QR = W (22)

5.2. Complete form of the algorithm

We also use a Frobenius norm for data consistency:

D(V,WH) =
1
2

∑
j

∑
i

([WH]ij − [V]ij)2 (23)

with:

− ∂D
∂[W]ij

= [VHT ]ij − [WHHT ]ij = [P]ij − [Q]ij (24)

In this case, with equations (19), (24), the algorithm
(5) writes:

[Wk+1]ij = [Wk]ij+

αk[Wk]ij

(
[VHT k]ij + γ[(AT + A)Wk]ij

[WkHkHT k]ij + γ[(AT A + I)Wk]ij
− 1

)

(25)

If the reference solution is constant, the previous expres-
sion of the algorithm becomes:

[Wk+1]ij = [Wk]ij+

αk[Wk]ij

(
[VHT k]ij + γc

[WkHkHT k]ij + γ[Wk]ij
− 1

)
(26)

For αk = 1, a multiplicative form for (25) and (26) are
obtained. Computing the gradient over H of (23), and
using the form (5) give the following expression for the
actualization of H (here H is not regularized).

[Hk+1]ij = [Hk]ij+

βk[Hk]ij

(
[WT k+1V]ij

[WT k+1Wk+1Hk]ij
− 1

)
(27)

where βk is the step size.

6. SIMULATIONS RESULTS

Many simulations have been performed to validate the
proposed algorithm, eqs. (25) and (27). Note that the
different forms of the regularization term give approxi-
matively the same practical results. The experiment pre-
sented in this paper corresponds to 10 linear mixtures of
3 endmembers, the length of each spectrum being 826.
The three endmembers used in this example were ex-
tracted from the ENVI library [9] and correspond to the
spectra of the construction concrete, green grass, and
micaceous loam. A noise vector distributed according to
a Gaussian distribution with zero-mean and covariance
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Fig. 1. Columns of W. On each plot: solid line for true
values, dashed line for estimated values. Left column:
without regularization γ = 0. Right column with γ = 0.1
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Fig. 2. Columns of V, solid line for true values, dashed
line for estimated values without regularization, γ = 0

0 0.5 1 1.5 2 2.5 3
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Fig. 3. Columns of V, solid line for true values, dashed
line for estimated values with γ = 0.1

matrix σ2IN , where IN is the N ×N identity matrix has
been added to each column of V. Note that this statisti-
cal model assumes that the noise variances are the same
in all bands. Results are given for a snr equal to 20dB.
Equations (25) and (27) have been implemented. Fig. 1
shows the estimated endmembers (columns of W) after
12000 iterations, and compared with the true values with
and without regularization. Fig. 2 and fig. 3 show the 10
reconstructed spectra in comparison with the true ones,
respectively without and with regularization. We clearly
see the interest of the regularization on the estimation.

7. CONCLUSION

A regularized version of the SGM has been developped
for NMF, leading to the well-known multiplicative algo-
rithms as a particular case. An application to hyperspec-
tral imagery has been proposed and a simulation example
shows clearly effectiveness of the algorithm. Let us note
that the method can be applied for any convex criterion
for both the data consistency and the penalty term.
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