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Abstract—The aim of this paper is to present sev-
eral multiplicative algorithms for nonnegative matrix
factorization. We show how to obtain such algorithms
in the case where non-negativity and flux conservation
constraints are imposed, and how to regularize such
problems by introducing smoothness or sparsity prop-
erties. Application to hyperspectral imagery is finally
considered.

I. Introduction of the physical context

Hyperspectral imaging has received considerable atten-
tion in the last few years. See for instance [1], [2] and
references therein. It consists of data acquisition with
high sensitivity and resolution in hundreds contiguous
spectral bands, geo-referenced within the same coordinate
system. With its ability to provide extremely detailed
data regarding the spatial and spectral characteristics of
a scene, this technology offers immense new possibilities
in collecting and managing information for civilian and
military application areas.

Each vector pixel of an hyperspectral image charac-
terizes a local spectral signature. Usually, one consider
that each vector pixel can be modeled accurately as a
linear mixture of different pure spectral components, called
endmembers. Referring to our notations in Equation (1),
each column of V can thus be interpreted as a spectral
signature obtained by linear mixing of the spectra of
endmembers, i.e., the columns of W. Nonnegative matrix
factorization (NMF) consists of estimating the endmember
spectra W and the abundance coefficients H from the
spectral signatures V, subject to non-negative constraints
on the entries of W and H, and sum-to-one constraints on
the columns of W.

In this paper, we propose multiplicative interior-point
algorithms that can be used within this context. We
also show how to regularize the problem by introducing
smoothness or sparsity constraints on the columns of W
and H respectively. The paper is organized as follows. In
Section 2, we describe the problem at hand and notations
for non-negative matrix factorization. In Section 3, we
recall the main steps of the Split Gradient Method (SGM).
In Sections 4 and 5, we show how to handle non-negativity
and sum-to-one constraints, and how to incorporate reg-

ularization. Finally, application to hyperspectral imagery
is briefly considered in section 6.

II. Nonnegative matrix factorization

Here we consider the problem of nonnegative matrix
factorization, which is now a popular dimension reduction
technique, employed for non-subtractive, part-based rep-
resentation of non-negative data. Given a data matrix V
of dimension F × N with nonnegative entries, the NMF
problem consists of seeking a factorization of the form

V ≈WH (1)

where W and H are two matrices with non negative
entries, of dimensions F ×K and K×N , respectively. Di-
mension K is usually chosen such that FK+KN � FN ,
hence reducing the data dimensionality.

Factorization (1) is usually sought through the mini-
mization problem

min
W,H

D(V,WH) s.t. [W]ij ≥ 0, [H]ij ≥ 0 (2)

where D(V,WH) =
∑

i,j δ([V]ij |[WH]ij) is a separable
measure of fit. We shall consider that δ(x|y) is a convex
positive function of y ∈ IR+ given x ∈ IR+. In this paper,
to restrict the solutions space, we shall show how this
framework can be extended to deal with flux constraints
of the form:∑

i

[W]ij = 1
∑
i

[H]ij =
∑
i

[V]ij (3)

The algorithmic approach described hereafter is alter-
nately applied on W and H in order to solve (2), (3).

III. Introduction to the Split Gradient Method

In [3], we proposed the Split Gradient Method (SGM)
to derive multiplicative algorithms dedicated to NMF for
any convex cost function D. As the SGM only takes into
account non-negativity constraints, we also presented the
flux-constrained SGM in order to satisfy constraints (3).

We shall now briefly recall the main steps of the SGM
within the NMF context. See [3], [4], [5] for more details.
The SGM is based on the Karush-Kuhn-Tucker conditions
at the optimum W∗ and H∗. Restricting our attention



to minimization w.r.t H (minimization w.r.t W follows
exactly the same scheme), we have

[H∗]ij [∇HD(V,WH∗)]ij = 0

⇔ [H∗]ij [−∇HD(V,WH∗)]ij = 0 (4)

The second expression in Equation (4), while trivial, makes
apparent the descent direction with the minus sign. In
order to solve this equation iteratively, three points have
to be noticed. The first one is that M · (−∇HD) is a
gradient-related descent direction of criterion D if M
is a matrix with positive entries, where · denotes the
Hadamard product. The second one is that [−∇HD]ij can
always be decomposed as

[−∇HD]ij = [R]ij − [S]ij , (5)

where [R]ij and [S]ij are positive entries. Last but not
least, the third one is that equations of the form ϕ(H) = 0
can be solved with a fixed-point algorithm, under some
conditions on ϕ, by considering H = H + ϕ(H). Imple-
menting this fixed-point strategy with (4) and using

[M]ij =
1

[S]ij
(6)

we obtain the gradient-related descent algorithm

[Hk+1]ij = [Hk]ij + αk [Hk]ij
[Sk]ij

(
[Rk]ij − [Sk]ij

)
(7)

with αk a positive step size that allows to control conver-
gence of the algorithm. This step size can be determined
by simplified search methods, [6], in the range [0, αk

max]
where αk

max is explicitly computed from (7) to ensure the
non-negativity of the components of Hk+1. It can be easily
shown that αk

max is always greater than one. For αk = 1,
we obtain the simple and well-known multiplicative form

[Hk+1]ij = [Hk]ij
[Rk]ij
[Sk]ij

. (8)

The positiveness of [Hk+1]ij is thus ensured if [H0]ij > 0.
Obviously, this setup does not guarantee the convergence
of the algorithm.

IV. Flux conservation constraints

We propose to extend the SGM algorithm in order to
deal with flux conservation constraints (3). This can be
achieved by using the following normalized variables

[W]ij =
[Z]ij∑
m[Z]mj

(9)

[H]ij = [T]ij ×
∑

m[V]mj∑
m[T]mj

. (10)

The optimization problem becomes unconstrained with
respect to the flux conservation constraints, and we can

proceed as with the SGM algorithm. Note that the mea-
sure of fit D is still convex in the normalized variables.
The gradient versus these new variables expresses as:

− ∂D
∂[Z]`j

=
1∑

m[Z]mj((
− ∂D
∂[W]`j

)
−
∑
i

[W]ij

(
− ∂D
∂[W]ij

))
(11)

and

− ∂D
∂[T]`j

=

∑
m[V]mj∑
m[T]mj((

− ∂D
∂[H]`j

)
−
∑

i[T]ij∑
m[T]mj

(
− ∂D
∂[H]ij

))
(12)

Let us note that any shift, for all (i, j), of the form

(−∂D/∂[W]ij)shift =

(−∂D/∂[W]ij)−min
ij

(−∂D/∂[W]ij) + ε (13)

and

(−∂D/∂[H]ij)shift =

(−∂D/∂[H]ij)−min
ij

(−∂D/∂[H]ij) + ε (14)

where ε is a (small) positive constant, leaves (11) and (12)
unchanged. This shift, however, ensures the positiveness
of (−∂D/∂[W]ij)shift and (−∂D/∂[H]ij)shift. Considering
again the SGM algorithm, and restricting our attention to
minimization w.r.t H, decomposition (5) can be obtained
as

[R]ij =

∑
m[V]mj∑
m[T]mj

(
− ∂D
∂[H]ij

)
shift

(15)

[S]ij =

∑
m[V]mj∑
m[T]mj

∑
i[T]ij∑

m[T]mj

(
− ∂D
∂[H]ij

)
shift

(16)

Let us note that [S]ij does not dependent on i. The
optimization algorithm on [T]ij deduced from (7) writes

[Tk+1]`j = [Tk]`j + αk[Tk]`j

×

 (−∂D/∂[Hk]`j)shift∑
i[T

k]ij∑
m[Tk]mj

(−∂D/∂[Hk]ij)shift
− 1

 (17)

It can be checked that∑
`

[Tk+1]`j =
∑
`

[Tk]`j . (18)

for all αk. Transforming back to the initial variables, we
finally have

[Hk+1]`j = [Hk]`j + αk[Hk]`j

×

(∑
m

[V]mj
(−∂D/∂[Hk]`j)shift∑

i[H
k]ij(−∂D/∂[Hk]ij)shift

− 1

)
(19)



We observe that∑
i

[H0]ij =
∑
i

[V]ij =⇒
∑
i

[Hk]ij =
∑
i

[V]ij ∀k (20)

At each iteration, the entries of each column of Hk

are positive and their sum constant. The `1-norm of the
columns of Hk is thus fixed, which encourages sparsity.
Analogous derivations can be done for W, with or without
flux conservation constraints. We shall now show how
to incorporate constraints on the columns of matrices H
and W via Tikhonov regularization and sparsity-enforcing
terms. Other penalty functions are, however, possible.

V. Regularization

The regularization penalty terms are incorporated sep-
arately on the columns of W and H, and are added
to the data consistency term D(V,WH). The penalized
objective function expresses as

Dreg(V,WH) = D(V,WH)+γ1F1(W)+γ2F2(H) (21)

where F1(W) and F2(H) are penalty functions, and γ1
and γ2 the regularization factors.

A. Tikhonov smoothness regularization

Such a regularization, which expresses some smoothness
property of the solution, mainly applies to the endmember
spectra, that is, on the columns of W. We can consider

F1(W) =
1

2

∑
ij

([W]ij − c)2 (22)

possibly with c = 0, or

F1(W) =
1

2

∑
ij

[∂1,2W]2ij (23)

where ∂1,2 is the first or second-order derivative operator.
For simplicity, we approximate ∂1,2W in closed numerical
form as

[∂1,2W]ij = [W]ij − [AW]ij (24)

where AW stands for the convolution of each column of
matrix W by a mask, e.g., [1 0 0] and [ 12 0 1

2 ] for the first
and second-order derivative operators, respectively. The
opposite of the gradient can be expressed in matrix form
as follows

−[∇WF1]ij = [(A + A>)W]ij − [(A>A + I)W]ij . (25)

This expression makes the decomposition (5) required by
the SGM algorithm explicit since it consists of a difference
between two positive terms.

Note that Tikhonov regularization with the basic SGM
algorithm was initially associated to the basic SGM algo-
rithm in [7], i.e., without flux constraint. The interested
reader is invited to consult this reference for an overview
of the results that have been obtained.

B. Sparsity-enforcing function

Such a penalty, which expresses that most of informa-
tion may be concentrated in a few coefficients, mainly ap-
plies to the abundance coefficients, that is, to the columns
of H. Keeping in mind that the algorithm satisfies flux
conservation constraint, see (20), we are ready to consider
the following sparsity measure σ introduced by Hoyer [8]

σ =

√
K − ‖[H]•j‖1

‖[H]•j‖2√
K − 1

, 0 ≤ σ ≤ 1 (26)

with K the number of rows of H, and [H]•j its j-th row.
This clearly defines a relation between the `2-norm and the
`1-norm of [H]•j , which remains constant along iterations.

‖[H]•j‖22 = α2‖[H]•j‖21 (27)

with

α =
1√

K − σ(
√
K − 1)

,
1√
K
≤ α ≤ 1. (28)

Note that only two values for σ lead to unambiguous
situations; If α = 1, only one entry of [H]•j is nonzero;
If α = 1/

√
K, all the entries of [H]•j are equal. Any other

value for α can correspond to different sets of entries. As a
consequence, we suggest to consider the following penalty
function1

F2(H) =
1

2

∑
j

(
‖[H]•j‖22 − α2‖[H]•j‖21

)2
(29)

with α = 1, and use the regularization factor γ2 in (21) to
push [H]•j toward a sparse solution. For convenience, let
us provide the opposite of the gradient of F2(H)

−[∇HF2]ij = (α2‖[H]•j‖21 − ‖[H]•j‖22)

([H]ij − α2‖[H]•j‖1)
(30)

to be used in (19) with (21). In the next section, we shall
test this algorithm for hyperspectral data unmixing.

VI. Application to hyperspectral data unmixing

The experiments presented in this paper were performed
with 20 linear mixtures of 6 endmembers, the length of
each spectrum being 826. The six endmembers used in
this example were extracted from the ENVI library [9],
and correspond to the construction concrete, green grass,
micaceous loam, olive green paint, bare red brick and
galvanized steel metal.

In order to characterize the performance of our ap-
proach, and show that it tends to provide sparse solutions,
we considered a matrix H with only one nonzero entry per
column. This entry was selected randomly and set to one.
See Figure 1. Each observed spectrum was corrupted by
an additive white Gaussian noise at a signal-to-noise ratio
equal to 20 dB. The Frobenius norm

D(V,WH) =
1

2

∑
i

∑
j

([V]ij − [WH]ij)
2 (31)

1Using (19), note that [H]•j‖21 remains constant along iterations.



was used as criterion for the quality of the factorization.
The following ratio was considered to stop the algorithm

D(V,WkHk)−D(V,Wk−1Hk−1)

D(V,Wk−1Hk−1)
≤ 10−10. (32)

Regularization factor γ1 was set to 0. See [7] for simula-
tions dedicated to Tikhonov regularization. The matrices
H obtained for γ2 = 0 and γ2 = 10−3, respectively, are
presented in Figures 2 and 3.

We clearly observe that the sparsity-enforcing function
allowed us to recover, in most cases, the endmember
involved in each observed spectrum. On the contrary, when
no sparsity penalty term was used, all the entries of the
estimated matrix H were nonzero. Finally, we checked that
normalization of the columns of the matrix W, as well as
the flux conservation between V and H, were satisfied at
each iteration in both cases.

Fig. 1. True H

Fig. 2. Estimated H without sparsity constraint, γ2 = 0

Fig. 3. Estimated H with sparsity constraint, γ2 = 10−3

VII. Conclusion

In this paper, we proposed a (split) gradient-descent
method to solve the nonnegative matrix factorization
problem subject to flux conservation constraints on each
column of the estimated matrices. Tikhonov smoothness
and sparsity-enforcing regularization terms were also con-
sidered. We illustrated our approach with an application
within the context of hyperspectral data unmixing.
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