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We propose a new method for general Gaussian kernel hyperparameter optimization for support vector
machines classification. The hyperparameters are constrained to lie on a differentiable manifold. The pro-
posed optimization technique is based on a gradient-like descent algorithm adapted to the geometrical
structure of the manifold of symmetric positive-definite matrices. We compare the performance of our
approach with the classical support vector machine for classification and with other methods of the state
of the art on toy data and on real world data sets.
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1. Introduction

Support Vector Machine (SVM) is a promising pattern classifica-
tion technique proposed by Vapnik (1995). Unlike traditional
methods which minimize the empirical training error, SVM aims
at minimizing an upper bound of the generalization error through
maximizing the margin between the separating hyperplane and
the data. This can be regarded as an approximate implementation
of the Structure Risk Minimization principle. What makes SVM
attractive is the property of condensing information in the training
data and providing a sparse representation by using a very small
number of data points called support vectors (SVs) (Girosi, 1998).

The key features of SVMs are the use of kernels, the absence of
local minima, the sparseness of the solution and the capacity con-
trol obtained by optimizing the margin (Cristianini and Shawe-
Taylor, 2000). Nevertheless an SVM based method is unable to give
accurate results in high dimensional spaces when more than one
dimension are noisy (Grandvalet and Canu, 2002; Weston et al.,
2000). Another limitation of the support vector approach lies in
the choice of the kernel and its eventual hyperparameter. Hyperpa-
rameter selection is in fact crucial to enhance the performance of
an SVM classifier. Different works were introduced to deal with
this problem for different aims; Gold and Sollich (2003), Grandva-
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let and Canu (2002), Lanckriet et al. (2004) and Weston et al.
(2000) introduced methods for feature selection problem using a
Gaussian kernel and Chen and Ye (2008), Lanckriet et al. (2004)
and Luss and d’Aspremont (2008) learn directly the optimal kernel
matrix, also called Gram matrix, from the training data using semi-
definite programming or using an initial guess (similarity matrix)
of the kernel. These methods use similar optimization problem
and give the solution based on gradient descent approaches. Note
that authors in (Lanckriet et al., 2004; Luss and d’Aspremont, 2008)
estimate simultaneously the kernel matrix for training and test
examples and the kernel function expression is not determined.
Well, learning directly the kernel matrix is technically consuming
as we have to learn and store n x (n+ 1)/2 parameters, where n
is the number of examples in the database. Furthermore, estimat-
ing the kernel matrix on the given data set will not be directly
usable to classify unseen examples.

In a different manner, and for the same classification problem,
methods proposed for feature selection learn the Gaussian kernel
hyperparameter as a diagonal matrix Q of dimension d x d where
d is the number of features, and do not take into account the even-
tual relationship between features (as in feature extraction
problems).

We propose here a new method for hyperparameters learning
for general Gaussian kernel of the form:

kex.y) = exp (5 (k- Qlx-y) ). 1)

where x,y € R%, and Q is a d x d symmetric positive-definite matrix
to be adjusted in order to answer adequately a specified criterion,
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namely here margin maximization used by the well-known SVM
method.

Note that SVM-based classification methods of the state of the
art restrict Q to the identity matrix multiplied by a positive real
072(Q = 621; where 1 € R is the identity matrix) or to a posi-
tive-definite diagonal matrix and use gradient-based approaches
for optimization (Grandvalet and Canu, 2002; Lanckriet et al.,
2004; Weston et al., 2000). The assumption of positive-definite
diagonal matrix Q means that we are performing a feature selec-
tion scheme simultaneously with the optimization algorithm. The
method proposed in this paper use a full symmetric positive defi-
nite matrix Q and constitutes a general alternative for the usual
Gaussian kernel where we have only one parameter ¢ to estimate.
It generalizes also the assumption of positive-definite diagonal ma-
trix by being able to capture feature correlation by the non-diago-
nal elements of the matrix Q. The method presented in
(Glasmachers and Igel, 2005), dealing with the same subject, has
been applied on a bound of the generalization error, which is the
radius margin quotient. The relevance of this method was proven
on a simple 2d example where the best results were achieved by
constraining the optimization to a constant trace subspace in order
to control the size of the kernel. In contrast, our method is working
on an exact margin criterion and an explicit expression of the gra-
dient of this criterion is given in the paper. The kernel size varia-
tion is controlled using a regularization term based on the
Frobenius norm. In (Friedrichs and Igel, 2005), the authors pro-
posed an approach based on genetic algorithms optimization. As
we know, this kind of methods is time consuming as we have to
evaluate a fitness function for each member of the population of
the genetic algorithm and then apply mutation, crossover and
selection to get the best individuals.

The article is organized as follows. In Section 2.1, we give a brief
introduction of optimization on the manifold of symmetric posi-
tive-definite matrices. In Section 2.2 we recall the principle of
SVM. We then introduce, in Section 2.3, our new approach for gen-
eral Gaussian kernel hyperparameters optimization. Finally, Sec-
tion 3 describes results obtained on toy and real world data
indicating the performance of our approach.

2. General Gaussian kernel optimization

The aim of this work is to optimize the general Gaussian kernel
parameter Q (cf. Eq. (1)) under the maximum margin criterion
using gradient-based approach in the manifold of symmetric posi-
tive-definite matrices. We first begin with a brief overview of the
optimization on the manifold of positive-definite symmetric
matrices.

2.1. Optimization on the manifold of symmetric positive-definite
matrices

Let S; be the set of all symmetric positive definite matrices of
dimension d:

S;={QeRr"Q" =Q¥7Qx> 0, vx e RY}. )

We consider the minimization of a function f : S;—R over S.
Classical optimization approaches like gradient descent or Newton
algorithm can be extended to deal with optimization on the Rie-
mannian manifold S (Absil et al., 2008) by considering the generic
update classically used in optimization methods:

Qp+1 = Qp + 77p5p7 (3)

where Q, is a member of Sy, 7, is the step size and S;, is the adap-
tation rule.

In a geometric approach, S, could be taken as the tangent vector
to the space S (Amari and Nagaoka, 2000; Boothby, 1975), and the
addition operation can be implemented via the exponential map
(Absil et al., 2008). This results in a new generic iteration of the
form

Qp+l = ng (npsp)’ (4)

where £, maps the tangent space 7S, (set of symmetric matrices)
to the Riemannian manifold S3. It is given by &(T) =
Q"% exp(Q"*TQ *)Q"?, where T is a symmetric matrix and,
0 Tk
exp(T) =Y 1 (5)
k=0
For gradient-descent algorithm, S, is given by the opposite of
the gradient of f{Q,) and noted by —gradf(Q,). Given the explicit
analytic expression of the gradient —gradf(Q,), the generating
mechanism of the next step is:

QP+1 = ng (npsp)’ (6)
= Q)% exp (-n,Q,'” grad £(Q,)Q, )@, )

2.2. Support vector machines

The support vector machines approach, initiated by Vapnik
(1998), is initially developed for binary classification problems. It
classifies patterns from two classes (+1 and —1) by searching the
optimal hyperplane which has a maximum margin between the
nearest positive and negative examples. A significant advantage
of SVMs is that the solution is global and unique.

Considering a training set A, = {x; i=1,...,n} where x; € R? is an
example with associated class y; € {-1,+1}.

The SVM optimization problem can be formulated using matrix
notations

max 2a’e - Tr(K(Ya)(Ya)"), (8)

under the constraints

n
Zaiyi:07 (9)
i=1
0<o<C, i=1,...,n. (10)

where a = ()1, . Y=diagly), ¥y= (¥i)i-1...ne€ is the n-vector of
ones, Kj = k(x;,x;) is the Gram matrix, and C is a constant chosen
by the user. Note that a high value of C corresponds to a great pen-
alty to errors in the case of linearly non-separable data.

In this case, the classification of a new pattern x is given by the
decision function:

f(x) =sign (Zy,‘%k(x, Xi) + b) : (11)
ieSV

The Gaussian kernel k(x,x;) = e-I*-%I’/?’ g ¢ R*, is one of the
most popular and powerful kernel used in pattern recognition
and classification methods, and in particular for SVM techniques.
Unlike some conventional statistical approaches (for example neu-
ral network methods where each feature is multiplied by a synap-
tic weight), the classical SVM approach with Gaussian Kernel of
parameter ¢ does not attempt to control model complexity by
keeping the number of features small and all features are scaled,
and thus weighted, according to the same parameter ¢. This choice
seems to be poor and not adequate for general classification
problems where some features are only about noise, or when there
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are some features providing somewhat more pertinent information
for the classification problem, or even when there are correlation
between features.

Works of the state of the art answer partially these problems by
considering the general Gaussian kernel of Eq. (1) with a diagonal
matrix Q (Gold and Sollich, 2003; Grandvalet and Canu, 2002; Wes-
ton et al., 2000), and thus performing the feature selection scheme
under the SVM criterion. Work introduced in (Glasmachers and
Igel, 2005) consider a full matrix Q using optimization of radius-
margin generalization performance measures for SVMs on the
manifold of positive definite symmetric matrices by restricting
the optimization to a constant trace subspace in order to control
the size of the kernel. We consider in this work a more general
solution by optimizing the maximum margin criterion augmented
by an adapted regularized term. Experiments on toy and real-
world data show that our strategy leads to a significant improve-
ment of classification results as compared to existing classification
methods.

2.3. Kernel hyperparameter optimization under the SVM framework

We formulate the hyperparameter kernel learning problem as
n (Lanckriet et al., 2004; Luss and d’Aspremont, 2008), where
the authors minimize a modified form of Eq. (8),

we,(Q)= max 2a’e—Tr(K%(Ya)(Ya)") + p|KC — K|}

{0<a<Caly=0}
(12)
with Y = diag(y),
and [|K[l; =

K = exp(—(x; — %)’ Q(x; — x;)/2), where Q € S}
trace(KK") is the Frobenius norm. The term

pllK2 = K'||2 is a regularization term used to constrain the solution
using an eventually indefinite kernel matrix K (Chen and Ye,
2008; Luss and d’Aspremont, 2008), e.g., a similarity matrix or a
guess of the best kernel calculated over training database. Setting
p=0 leads to the optimization problem of classical SVM
classification.

2.3.1. Gradient calculation

If a=(a)ic1,...n is solution of the following maximization
problem,
max  2a’e — Tr(K¢(Ya)(Ya)") + p|[KC — K'|Z, (13)

{0<a<Caly=0}

we search for Q that minimizes w¢,(Q). Eq. (13) is convex with re-
spect to each hyperparameter Qg(k,l<{1,...,d}) of the general
Gaussian kernel hyperparameter Q. In fact, |K¢ — K'|? is convex
(composition of the convex function |-|r and exponential func-
tions), and —Tr(K%Ya)(Ya)") is a linear combination of composed
convex functions (affine and exponential). Thus, the minimum of
Eq. (13) exists and is unique. We calculate the gradient of wc,,(Q)
that we will use for the update step of the gradient descent method
applied in the manifold Sj. The gradient of wc,,(Q) is given by

_ (We,p(Q)
gradwc_,p7< 2Qu )kl] K (14)

Let R% =K% Ya)(Ya)” and r¢=Tr(R%). We have then
n
=- zyi.Vjaiaj exp(—(x — %) Q(x; — X,)/2),

=1
n d d
=- Zyl'}’j%%‘ exp | — Z Z Xk — Xji) (Xt — Xj1)Qpa
k=1 I=1

=

(15)

[NSTRE

and

¢ = ZR”,
= 72 > yiy;0u0y exp

i=1 j=1

d d
1
= - E E yly]alaj | I exp ( xlk X]k)(xll le)le)-
k=

i=1 j=1 1 I=1

— Xjk) (Xil — Xﬂ)le) ;

(16)
The derivative of r<¢ is thus given by
ore L
Ble ,21: jz]: 2y1y15x1aj ik’ ]k')(x le’)
d d
< [T 1] ex < (Xik — Xjx ) (Xit _le)le>’ (17)
k=1 I=1
n n -l Q
= jyiyj(xiaj(xik' = X)Xy — XK
=1 j=1
Let S¢= (K2 — K')? and s2= p||K? — K'|| = pTr(SY). We have
St = Z(KQ Kj)? (18)
j=1
and
n n 3
sC=p (K} — Kj)

(19)
The derivative of sq is given by
aSQ
- _ ;) — s — X
8Qk’l’ P ,z; 121: ik ]k Xif il )
d d
x H I1 exp ( (Xik — Xjie) (X — le)le)
=1 I=1 (20)

=
d
[T exp (——(x,k Xji) (Xit — le)le) —Kﬁ,),
=1

=P > (X —Xu) (X — XK (KQ —K )
o1 j=1

Thus, the derivative of wc,(Q) :=rq + sq will be

Z Z Z.sz]aldj ik —

i=1 j=1

n
- pz Z(Xik’ — X ) (X — le’)Kg (KS - KI/J‘)’

i-1 j=1

i

k=1

BWC l)

Q
an’l’ jk’)( il — ”)Kij T

1
= Z 2 I.VJOCIOC) iv — Xk )(Xxl’ - X]I’)KQ T
=1 1

P( W — Xiw ) (X —le’)Kf} (K§ - K;j>7

1 ,
=30 = x0KS Gy U - K,))
l

i=1 j=

=
3

(21)
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2.3.2. Algorithm steps

After calculating the gradient, we can now introduce the steps
used for general Gaussian hyperparameters optimization:

Set q := 0. Given Qg a symmetric positive-definite matrix and K’
a kernel matrix (eventually an indefinite kernel matrix). Firstly, we
calculate the Lagrange multipliers a9 solution of the SVM optimiza-
tion problem (13) associated to the kernel matrix K%. Secondly, we
look for Qg+1, using gradient descent method on the manifold S;:
Using the gradient expression of wc,, defined in Eq. (21) and the
exponential mapping introduced in Section 2.1, the update of
Qg+1 is the result of the gradient-descent optimization method ap-
plied to wc,, defined in Eq. (12) and starting from the symmetric
positive-definite matrix Q,. In other words, Qg+ is the convergence
result of the sequence (Q,4), defined using the gradient-descent
adaptation rule

Qg = Q7 exp (—1,Q,4 *grad we, (Q,0)Q547) Q)7 22)

where Qpq:=Qq and 7, is the step-size at the iteration p. These
steps are repeated until Qg+ = Qq.

As any gradient-based optimization method, the speed of con-
vergence of our approach depends on the choice of the value of
the step-size #,, however, it is somewhat unreliable: if we choose
a step-size too large, than the objective function might actually get
worse on some steps, if the step-size is too small, then the algo-
rithm will take a very long time to make progress. The value of
#p can be optimized at each step p by searching the minimum of
the function

1, = min %Tr(KQ“'?)(Yaq)(Yaq)’) — pIK%™ —K'||f, (23)
0>

where

Q) = Q)7 exp (~1Q, 4 grad we,(Q,0)Q,4) Q7 (24)

Algorithm 1 gives the steps of optimization of the general Gaussian
kernel hyperparameters for SVM classification.

Algorithm 1: Optimization algorithm

1.Inputs:Qp initial value of Q (cf. Eq. (1)) and K (cf. Eq. (12))
computed over training data {x;; i=1,...,n}
2.q:=0
repeat
1. Compute Lagrange multipliers a? using the kernel matrix
K% (cf. Eq. (12))
2.p:=0
3. Qog:=0Qq
repeat
1. Compute gradwc ,(Qp ) using Egs. (14) and (21)
2. Compute 7, > 0 using Eq. (23)
3.Qpirg = Q)7 exp (-11,Q, 4% grad we p(Qp) Q4% ) Q)7
4. p=p+1
until WC,p(QpH,q) < WC,p(Qp,q)

3. Qq+1 = Qp.q
4.q:=q+1

until Q;=Q4_1

3. Experiments

For simulated and real experiments, we used 30 partitions of
each dataset separated into disjoint training and test sets. Each
partition contains 200 samples: 100 for training and 100 samples
for test. For each SVMs hyperparameters (C and ¢) combination,

five classical SVMs are built using the training sets of the first five
data partitions. The hyperparameters with the best classification
rate is selected and their performance is measured by using all
30 partitions. The initial value of Q is taken as a identity matrix
multiplied by the best hyperparameter ¢ selected above.

3.1. Toy data

We compared our method with the standard SVMs, with feature
selection approach proposed in (Grandvalet and Canu, 2002) and
with the method of Glasmachers and Igel (2005). We used the
non-linear toy data presented in (Weston et al., 2000). The number
of features of the database is 52 where only the two first features
are relevant. See Weston et al. (2000) for more details about the
data. We search here for a diagonal matrix Q that gives the best
classification rate. We used Q,=al for initialization and
K' =K%, Table 1 shows classification rates for the classical SVM,
adaptive scaling, Glasmachers and Igel and our approach. The
new approach gives the best result with 93.36% of data which
are well classified compared to 51.28% for SVM, 90.63% for adap-
tive scaling and 65.85% for Glasmachers and Igel approach. In our
opinion, the aberrant results obtained for Glasmachers and Igel ap-
proach is due mostly to the use of noisy data (in (Glasmachers and
Igel, 2005), the approach was tested on a noise-free data based on
uniform 2d distribution). Also controlling the kernel size in large
space-dimension with only a single parameter seems to be difficult
to accomplish and the radius margin quotient can lead to undesir-
able solutions under these conditions.

To illustrate the stability of our approach using different values
of ¢ for the initialization of Q(Q, = o1), we show in Fig. 1 the var-
iation of the probability error of different approaches. The figure
shows that the initialization of Q did not affect significantly the re-
sult of our method and that the new approach gives always the
best classification rates compared to adaptive scaling or to the clas-
sical SVM.

We note that we do not fixe the number of features to be se-
lected as done in (Weston et al., 2000). In the next section, we pro-
vide a more general application of our approach to handle
correlation between features using a full matrix.

3.2. Real-world data

For the evaluation of our hyperparameter optimization method
on real-world data, we used the common medical benchmark data-
sets Breast-Cancer and Heart with input dimension d equal to 10
and 13, respectively. Each component of the input data is normal-
ized to zero mean and unit standard deviation.

Table 2 gives the results obtained using the ordinary SVM, adap-
tive scaling approach, the method of Glasmachers and Igel (2005),
and our approach. We achieved significantly better results by our
approach; on the first database, we get 94.75% of classification rate
compared to 92.24% for the ordinary SVM and for the adaptive
scaling approaches and 92.56% for the approach of Glasmachers
and Igel (2005). We get also a better classification rate on the sec-
ond database with 92.93% for our approach and 85.97% with the
classical SVM and the adaptive scaling approaches, and 87.03%
for the approach of Glasmachers and Igel (2005). Note that the re-
sults of the adaptive scaling method is similar to that of SVM be-

Table 1
Results averaged over 30 trials using a diagonal matrix Q.

Approach SVM (%)  Adaptive Glasmachers  Our
scaling (%) and Igel (%) approach(%)
Classification rate ~ 51.28 90.63 65.85 93.36
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Table 2
Results averaged over 30 trials using a full matrix Q.
Approach SVM (%) Adaptive Glasmachers Our
scaling (%) and Igel (%) approach(%)
Breast-cancer 92.24 92.24 92.56 94.75
Heart 85.97 85.97 87.03 92.93
0.7 T
—%— SVM
Adaptive scaling
—+— Optimal GGK
0.6 | B
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Fig. 1. Probability error for different value of the initial o.

cause data are constructed using only relevant features. The ob-
tained results show clearly that our method is able to capture
the correlation between different features leading for this better
classification results. The superiority of our method compared to
the method of Glasmachers and Igel (2005) is due to the fact that
our method is using an exact SVM criterion for kernel optimization
on the manifold of positive-definite matrices. The regularization
term p||[K¢ — K'||Z used to constrain the solution seems to be more
adapted than that of the kernel size when data space dimension is
high.

4. Conclusion

We proposed here a new method for SVM hyperparameters
optimization in the case of general Gaussian kernel. An approach

that handle diagonal and full matrix for the hyperparameter opti-
mization under the SVM framework. This new method adapts (in
the case of full matrix) the orientation of Gaussian kernels, i.e., that
can detect correlations in the input data features relevant for the
kernel machine method. Results on real and simulated data show
the effectiveness of the proposed method.

Also the new approach can be adapted to address the problem
of support vector regression using the general Gaussian kernel. Fu-
ture work will address this problem. Other optimization criteria
may also be used as in: kernel fisher discriminant, kernel principal
component analysis and others.
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