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Decentralized Online Nonparametric Learning
Alec Koppel§, Santiago Paternain?, Cédric Richard† and Alejandro Ribeiro?

Abstract—We consider decentralized online supervised learn-
ing where estimators are chosen from a reproducing kernel
Hilbert space (RKHS). Here a multi-agent network aims to learn
nonlinear statistical models that are optimal in terms of a global
convex functional that aggregates data across the network, while
only having access to locally observed streaming data. We address
this problem by allowing each agent to learn a local copy of the
global regression function while enforcing consensus constraints.
We use a penalized variant of functional stochastic gradient
descent operating simultaneously with low-dimensional subspace
projections. The resulting algorithm allows each individual agent
to learn, based upon its locally observed data stream and
message passing with its neighbors, a function that is provably
close to globally optimal and satisfies the consensus constraints.
Moreover, the complexity of the learned regression functions
is guaranteed to be finite. We then validate this approach on
the Brodatz textures dataset for the case of decentralized online
multi-class kernel logistic regression.

I. INTRODUCTION

We focus on decentralized online statistical learning prob-
lems, in which agents aim to make inferences as well as
one which has access to all data at a centralized location in
advance. Instead of assuming agents seek a common parameter
vector w ∈ Rp, we focus on the case where agents seek
to learn a common decision function f(x) belonging to a
reproducing kernel Hilbert space (RKHS). Such functions
represent, e.g., nonlinear statistical models [3] or trajectories
in a continuous space [4].

Optimization tools for multi-agent online learning have thus
far been restricted to the case where each agent learns a linear
statistical model [5] or a task-driven dictionary [6], which
exclude state of the art nonlinear interpolators: kernel methods
[7], [8] and neural networks [9], [10]. We note that instabilities
associated with non-convexity which are only a minor issue
in centralized settings [11], but become both theoretically
and empirically difficult to overcome in constrained settings
[6], and therefore efforts to extend neural network learning
to multi-agent online learning must overcome duality gap
issues associated to constrained non-convex settings. Instead,
we focus on extending kernel methods to decentralized online
settings, motivated both by its advantageous empirical perfor-
mance, as well as the theoretical benefits of convexity. This
stochastic convex problem, however, is defined over an infinite
space, and therefore one must both solve the optimization
problem and sure it is optimally sparse. Doing so in multi-
agent settings, which underlie Internet of Things [12], [13]
and multi-robot [14], [15] applications, is our goal.
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To understand our approach, consider centralized vector-
valued stochastic convex programming, which has been clas-
sically solved with stochastic gradient descent (SGD) [16].
SGD involves descending along the negative of the stochastic
gradient rather than the true gradient to avoid the fact that
computing the gradient of the average objective has complexity
comparable to the training sample size, which could be infinite.
In contrast, a stochastic program defined over a function space
is an intractable variational inference problem in general, but
when the function space is a RKHS [17], the Representer
Theorem allows us to reduce an infinite space into a parameter-
ization of weights and data samples [18]. Unfortunately, the
resulting feasible set has complexity comparable to sample
size N (intractable for N → ∞ [19]). Efforts to mitigate
this complexity explosion have been developed that combine
functional extensions of stochastic gradient method (FSGD)
with compressions of the function parameterization [20]–[24].
Mostly, such methods compress the function representation
independent of the iterative sequence to which they are ap-
plied. In contrast, a method was recently proposed that com-
bines greedily constructed [25] sparse subspace projections
with functional SGD, and tailors the compression to preserve
optimality properties of FSGD [26].

Here we extend [26] to multi-agent settings (Section II).
Multiple distributed optimization tools may be used to develop
such an extension; however, the Representer Theorem [18]
has not been established for stochastic saddle point problems
in RKHSs. Thus, we adopt an approximate primal-only ap-
proach via penalty methods [27], [28], which in decentralized
optimization is called distributed gradient descent (DGD)
(Section III). Using functional stochastic extensions of DGD,
together with the greedy projections designed in [26], we
develop a method such that each agent, through its local data
stream and neighborhood message passing, learns a memory-
efficient approximation to the globally optimal function almost
surely (Section IV), which contrasts with other nonlinear
interpolation techniques such as dictionary learning [6], [11],
[29] or neural networks [10] which exhibit instability due
to non-convexity. In Section V, we apply our method to
decentralized online multi-class kernel logistic regression on
the Brodatz textures [30], and observe stable learning, memory
efficiency, and competitive error rates. Compared to [2], we
have corrected our main convergence result, establish that
consensus is attained in the full RKHS, rather than only in
mean square, and further validate the proposed method on a
practically challenging visual identification task.

II. ONLINE LEARNING WITH KERNELS

Consider the problem of distributed expected risk minimiza-
tion, where the goal is to learn a regressor that minimizes a loss
function quantifying the merit of a statistical model averaged
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Algorithm 1 Greedy Projected Penalty Method

Require: {xt,yt, η, ε}t=0,1,2,...

initialize fi,0(·) = 0,Di,0 = [],w0 = [], i.e. initial
dictionary, coefficients are empty for each i ∈ V
for t = 0, 1, 2, . . . do

loop in parallel for agent i ∈ V
Observe local training example realization (xi,t, yi,t)
Send obs. xi,t to nodes j ∈ ni, receive scalar fj,t(xi,t)

Receive obs. xj,t from nodes j ∈ ni, send fi,t(xj,t)

Compute unconstrained stochastic grad. step [cf. (8)]
f̃i,t+1(·) = (1− ηλ)fi,t − η∇fi ψ̂i,c(fi(xi,t),yi,t) .

Update params: D̃i,t+1=[Di,t, xi,t], w̃i,t+1 [cf. (10)]

Greedily compress function using matching pursuit
(fi,t+1,Di,t+1,wi,t+1) = KOMP(f̃i,t+1, D̃i,t+1, w̃i,t+1, ε)

end loop
end for

over a data set scattered across an interconnected network
that represents, for instance, robotic teams [6], communication
systems [31], or sensor networks [32]. To do so, we define
a symmetric, connected, and directed network G = (V, E)
with |V| = V nodes and |E| = E edges and denote as
ni := {j : (i, j) ∈ E} the neighborhood of agent i. Each
agent i ∈ V observes a local data sequence as realizations
(xi,n, yi,n) from random pair (xi, yi) ∈ X × Y ⊂ Rp × R
and seeks to learn a common globally optimal regression
function f from the class function H. This setting may be
mathematically captured by associating to each node i a
convex loss functional `i : H × X × Y → R that quantifies
the merit of the estimator f̃(xi) evaluated at feature vector xi.
This loss averaged over all possible xi defines the statistical
loss L(f̃) :=

∑
i∈V Exi,yi

[
`i(f̃

(
xi), yi

)]
, which we combine

with a Tikhonov regularizer to construct the regularized loss
R(f̃) := argminf̃∈H L(f̃) + (λ/2)‖f̃‖2H [33], [34]. Then the
globally optimal regression function f̃∗ is defined as

f̃∗ = argmin
f̃∈H

∑
i∈V

(
Exi,yi

[
`i(f̃

(
xi), yi

)]
+
λ

2
‖f̃‖2H

)
. (1)

Observe that this global loss is a network-wide average (scaled
by V ) of all local losses, and therefore the minimizers of (1)
and a centralized agent with access to all data coincide when
(xi, yi) have a common joint distribution for each i. However,
in multi-agent optimization, agents select a regression func-
tion f with only local data, which yields different decision
functions f∗i that are not as good as one selected with data
aggregated across the network. To overcome this limitation, we
allow message passing between agents and consider a setting
where agents seek to select decisions as good as a centralized
meta-agent. Thus, constrain the regression functions among
neighbors to be equal fi = fj , (i, j) ∈ E , yielding

f∗ = argmin
{fi}⊂H

∑
i∈V

(
Exi,yi

[
`i(fi

(
x), yi

)]
+
λ

2
‖fi‖2H

)
such that fi = fj , (i, j)∈ E . (2)

Define the product Hilbert space HV of functions aggre-
gated over the network, whose elements are stacked functions
f(·) = [f1(·); · · · ; fV (·)]. Further define stacked random vec-
tors x = [x1; · · · ;xV ] ∈ RV p and y = [y1; · · · yV ] ∈ RV that
represents V labels or physical measurements, for instance.
We seek to solve (2) when nodes do not know the distribution
of the random pair (xi, yi) but sequentially observe local
independent training examples (xi,n, yi,n), but are allowed to
do local message passing with one another. Next, we discuss
details of function space HV that make (2) tractable.

A. Reproducing Kernel Hilbert Spaces

The problem in (2) is intractable in general, since it defines
a variational inference problem integrated over the unknown
joint distribution P(x, y). However, whenH is equipped with a
reproducing kernel κ : X×X → R (see [8], [35]), a functional
problem of the form (1) may be reduced to a parametric form
via the Representer Theorem [19], [36]. Thus, we restrict the
Hilbert space in (2) to be one equipped with a kernel κ that
satisfies for all functions f̃ : X → R in H and for all xi ∈ X :

(i) 〈f̃ , κ(xi, ·))〉H = f̃(xi) (ii) H = span{κ(xi, ·)}. (3)

Here 〈·, ·〉H denotes the Hilbert inner product for H. Further
assume that κ is positive semidefinite, i.e. κ(xi,x

′
i) ≥ 0

for all xi,x
′
i ∈ X . For kernelized regularized empirical

risk minimization, the Representer Theorem [37] states that
optimal f̃ in the function class H may be written in terms of
kernel evaluations only of the training set

f̃(xi) =

N∑
n=1

wi,nκ(xi,n,xi) , (4)

where wi = [wi,1, · · · , wi,N ]T ∈ RN denotes a set of
weights. The upper index N in (4) is referred to as the
model order, and for ERM the model order and training
sample size are equal. By exploiting the Representer Theorem,
we transform an infinite dimensional optimization problem
in HV into a finite NV -dimensional parametric problem.
Thus, the RKHS provides a principled framework to solve
nonparametric regression problems as a search over RV N

for a set of coefficients. However, when training examples
(xi,n, yi,n) become sequentially available or their total number
N is not finite, the complexity of representing a function
f̃ in (4) approaches infinity as well, and thus requires an
intractable amount of memory. Thus, our goal is to solve
(2) in an approximate manner such that each fi admits a
finite representation near f∗i , while satisfying the consensus
constraints fi = fj for (i, j) ∈ E .

III. DECENTRALIZED COLLABORATIVE LEARNING

We now develop an online decentralized iterative solution
to (2) when the functions {fi}i∈V are elements of a RKHS,
as detailed in Section II-A. To exploit the properties of this
function space, we require the applicability of the Representer
Theorem [cf. (4)], but this result holds for any regularized
minimization problem with a convex functional. Thus, we may
address the consensus constraint fi = fj , (i, j) ∈ E in (2)
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by enforcing approximate consensus on estimates fi(xi) =
fj(xi) in expectation. Thus, we introduce the penalty function

ψc(f)=
∑
i∈V

(
Ri(fi) +

c

2

∑
j∈ni

Exi

{
[fi(xi)−fj(xi)]

2
})

, (5)

where Ri(fi) := Exi,yi

[
`i(fi

(
xi), yi

)]
+(λ/2)‖fi‖2H. Further

define f∗c = argminf∈HV ψc(f) and the local penalty as

ψi,c(fi)= Ri(fi) +
c

2

∑
j∈ni

Exi

{
[fi(xi)−fj(xi)]

2
}
. (6)

Observe from (5) - (6) that ψc(f) =
∑

i ψi,c(fi).

A. Functional Stochastic Gradient Method

The data distribution P(x,y) is unknown, so minimizing
ψc(f) directly via variational inference is not possible. Rather
than postulate a distribution for (x,y), we only require
sequentially available independent and identically distributed
samples (xt,yt) from their joint density. Then, we address (5)
using stochastic methods. Thus, compute ∇f ψ̂i,c(f(xt),yt),
the functional stochastic gradient (5), as in [22]

∇f ψ̂i,c(f(xt),yt)= `′i(fi(xi,t), yi,t)κ(xi,t, ·)+ λfi (7)

+c
∑
j∈ni

(fi(xi,t)−fj(xi,t))κ(xi,t, ·).

Now we may define the distributed stochastic gradient method
for the kernelized λ-regularized multi-agent problem in (2) as

fi,t+1 = fi,t − η∇f ψ̂i,c(f(xt),yt) , (8)

where η > 0 is an algorithm step-size. We further require
that, given λ > 0, the step-size satisfies η < 1/λ and the
global sequence is initialized as f0 = 0 ∈ HV . With this
initialization, the Representer Theorem (c.f. (4)) implies that,
at time t, the function fi,t admits an expansion in terms of
feature vectors xi,t observed thus far as

fi,t(x) =

t−1∑
n=1

wi,nκ(xi,n,x) = wT
i,tκXi,t(x) . (9)

On the right-hand side of (9) we have introduced the no-
tation Xi,t = [xi,1,. . .,xi,t−1] ∈ Rp×(t−1), κXi,t

(·) =
[κ(xi,1,·),. . ., κ(xi,t−1,·)]T, and wi,t = [wi,1, . . . wi,t−1] ∈
Rt−1. Moreover, observe that the kernel expansion in (9),
together with the update (8), yields the fact that performing
the stochastic gradient method in HV amounts to V parallel
parametric updates on the dictionaries Xi and coefficients wi:

Xi,t+1 = [Xi,t, xi,t] , (10)

[wi,t+1]u=

{
(1− ηλ)[wi,t]u for 0 ≤ u ≤ t− 1

−η
(̀
′
i(fi,t(xi,t),yi,t)+c

∑
j∈ni

(fi,t(xi,t)−fj,t(xi,t))
)
,

where the second case on the last line of (10) is for u = t.
This update causes Xi,t+1 to have one more column than Xi,t.
We define the model order as number of data points Mi,t in
the dictionary of agent i at time t (the number of columns
of Xt). FSGD is such that Mi,t = t − 1, and hence grows
unbounded with t. Next we address this intractable memory
growth such that we may execute stochastic descent through
low-dimensional projections of the stochastic gradient [26].

B. Sparse Subspace Projections

Reduce the complexity noted in Section III-A, we approximate
the function sequence (8) by one that is orthogonally projected
onto subspacesHD ⊆ H that consist only of functions that can
be represented using some dictionary D = [d1, . . . , dM ] ∈
Rp×M , i.e., HD = {f : f(·) =

∑M
n=1 wnκ(dn, ·) =

wTκD(·)} = span{κ(dn, ·)}Mn=1, and {dn} ⊂ {xu}u≤t. For
convenience we define [κD(·) = κ(d1, ·) . . . κ(dM , ·)], and
KD,D as the resulting kernel matrix from this dictionary.
We enforce efficiency in function representation by selecting
dictionaries Di that Mi,t << O(t) for each i, following [26].
To be specific, we propose replacing the local update (8) in
which the dictionary grows at each iteration by its projection
onto subspace HDi,t+1

= span{κ(di,n, ·)}Mt+1

n=1 as

fi,t+1 := PHDi,t+1

[
(1− ηλ)fi,t − η

(
∇fi`i(fi,t(xi,t), yi,t)

+c
∑
j∈ni

(fi,t(xi,t)−fj,t(xi,t))κ(xi,t, ·)
)]
. (11)

We define projection P onto subspace HDi,t+1by use of kernel
orthogonal matching pursuit [25] applied to the sequence of
kernel dictionaries and weights with stopping tolerance ε. See
[1][Section 3.2] for details. The coefficients and dictionary
updates are given in Algorithm 1.

IV. OPTIMALLY SPARSE FUNCTION REPRESENTATION

We turn to establishing – based on extending Section IV
of [26] to multi-agent settings – that Algorithm 1 converges
with probability 1 to a neighborhood of the minimizer of the
penalty function ψc(f) [cf. (5)] and that the kernel dictionary
that parameterizes the regression function fi for each agent
i remains finite. Let us define the local projected stochastic
functional gradient associated with the update in (11) as

∇̃fiψ̂i,c(fi,t(xi,t), yi,t) = (12)(
fi,t − PHDi,t+1

[
fi,t − η∇fi ψ̂i,c(fi,t(xi,t),yi,t)

])
/η

such that the local update of Algorithm 1 [cf. (11)] may be
expressed as a stochastic projected functional gradient descent

fi,t+1 = fi,t − η∇̃fiψ̂i,c(fi,t(xi,t), yi,t) . (13)

Subsequently, we require the some technicalities common to
kernelized stochastic methods, see [38]–[40].

i) The feature space X ⊂ Rp and target domain Y ⊂ R
are compact, and the reproducing kernel map satisfies

sup
x∈X

√
κ(x,x) = X <∞. (14)

ii) The local losses `i(fi(x), y) are convex and differen-
tiable w.r.t. the scalar argument fi(x) on R for all
x ∈ X , y ∈ Y . Moreover, the instantaneous losses
`i : H × X × Y → R are Ci-Lipschitz continuous for
all z ∈ R for a fixed y ∈ Y .

iii) Let Ft be the filtration measuring the algorithm history:
Ft = {xu, yu, fu}tu=1. The projected functional stochas-
tic gradient of the penalty which stacks (12) has finite
conditional variance

E[‖∇̃f ψ̂c(ft(xt),yt)‖2H | Ft] ≤ σ2. (15)
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Fig. 1: In Fig. 1a, we plot the global objective
∑

i∈V(Exi,yi [`i(fi,t
(
x), yi

)
]) versus the number of samples processed, and observe

convergence. In Fig. 1b we display the Hilbert-norm network disagreement
∑

(i,j)∈E ‖fi,t − fj,t‖2H with a penalty parameter c = 0.02. In
Fig. 1c, we plot the model order of a randomly chosen agent’s regression function, which stabilizes to 4299.

Under the previous assumptions, the iterates of Algorithm
1 converge to a neighborhood of the minimizer of ψc(f).

Theorem 1: Consider the sequence {ft} generated by Al-
gorithm 1 with f0 = 0 and regularizer λ > 0. Suppose As-
sumptions i-iii hold, and we select η < 1/λ and compression
budget ε = Kη3/2 for any K > 0. Then we have convergence
to a neighborhood with probability 1 as

lim inf
t→∞

‖ft−f∗c ‖H≤
√
η

λ

[
KV+

√
K2V 2+λσ2

]
=O(√η) a.s.

(16)
Empirically, use of constant step-sizes maintains consistent
algorithm adaptivity in the face of new data. Moreover, we
may apply Theorem 3 of [26], which guarantees the model
order of the function sequence remains finite.

Corollary 1: Denote ft ∈ HV as the sequence defined by
Algorithm 1 with η and ε as in Theorem 1. Let Mt be the
model order of function ft. Then there exists a finite upper
bound M∞ such that, for all t ≥ 0, the model order is always
bounded as Mt ≤ M∞, and the model order of the limiting
function f∞c = limt ft is finite.
Thus, use of constant step-sizes yields approximate conver-
gence to f∗c while ensuring finite memory (Corollary 1). Under
an additional hypothesis, we have that consensus in the RKHS
is attained, as we state next.

Theorem 2: Let Assumptions i - iii hold. Let f∗c be the
minimizer of the penalty function (5). Then, suppose the
penalty parameter c in (5) approaches infinity c → ∞, and
that the node-pair differences f∗i,c− f∗j,c are not orthogonal to
mean transformation Exi

[κ(xi, ·)] of the local input spaces xi

for all (i, j) ∈ E . Then f∗i,c = f∗j,c for all (i, j) ∈ E .
Thus, as long as a specific condition holds on the feature map
induced by the kernelization of node i’s data, consensus is
achieved when we send the penalty parameter to infinity. Next,
we asses Algorithm 1 in practice.

V. NUMERICAL EXPERIMENTS

Consider the task of kernel logistic regression from multi-
class training data that is scattered across a multi-agent net-
work. In this case, the merit of a particular regressor for agent
i is quantified by its contribution to the class-conditional prob-
ability. Define a set of class-specific functions fi,k : X → R,
and denote them jointly as fi ∈ HC , where {1, . . . , C} denotes

the set of classes. Then, define the probabilistic model of the
odds ratio of being in class c vs. all others

P (yi = c |xi) :=
exp(fi,k(xi))∑
k′ exp(fi,k′(xi))

. (17)

The negative log likelihood defined by (17) is the instanta-
neous loss (see, e.g., [37]) at sample (xi,n, yi,n):

`(fi,xi,n, yi,n) =−logP (yi = yi,n|xi,n)+
λ

2

∑
k

‖fi,k‖2H (18)

We generated the brodatz data set from a subset of [30]:
from 13 texture images (i.e. D=13), we generate a set of 256
textons [41]. Next, for each overlapping patch of size 24-
pixels-by-24-pixels within these images, we took the feature to
be the associated p = 256-dimensional texton histogram. The
corresponding label was given by the index of the image from
which the patch was selected. We then randomly selected N =
10000 feature-label pairs for training and 5000 for testing.
Each agent in network with V = 5 observes a unique stream
of samples from this data set. Here the communication graph
is a random network with edges generated randomly between
nodes with probability 1/5 repeatedly until we obtain one that
is connected, and then symmetrize it. We run Algorithm 1
for ten epoches: in each epoch we stream the entire training
set to each agent. A Gaussian kernel is used with bandwidth
σ2 = 0.1, step-size η = 4, compression budget ε = η3/2

with parsimony constant K = 0.04, mini-batch size 32 and
regularizer λ = 10−5. The penalty coefficient is c = 0.02.

Results of this experiment are in Figure 1: Fig. 1a displays
the global objective

∑
i∈V(Exi,yi

[`i(fi,t
(
x), yi

)
]) relative to

no. of samples, where we can clearly observe global conver-
gence; Fig. 1b plots the network disagreement

∑
(i,j)∈E ‖fi,t−

fj,t‖2H, which remains small during training; and the model
order of an agent chosen at random versus samples processed
is given in Fig. 1c. The resulting decision function achieves
93.5% accuracy over the test set which is comparable with the
accuracy of the centralized version (95.6%) [26]. However, the
model order required is more than twice the model order in the
centralized case (4358 in average v.s. 1833 [26]). Compared
to other distributed classification algorithms, we outperform
the state of the art by a significant margin: D4L achieves 75%
accuracy [6].
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