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ABSTRACT

We consider stochastic optimization problems defined over reproduc-
ing kernel Hilbert spaces (RKHS), where a multi-agent network aims to
learn decision functions, i.e., nonlinear statistical models, that are opti-
mal in terms of a global convex functional that aggregates data across
the network, while only having access to locally observed sequentially
available training examples. We address this problem by allowing each
agent to learn a local regression function while enforcing consensus con-
straints. We use a penalized variant of functional stochastic gradient
descent operating simultaneously with low-dimensional subspace pro-
jections. The resulting algorithm allows each individual agent to learn,
based upon its locally observed data stream and message passing with its
neighbors, a function that is provably close to globally optimal and sat-
isfies the consensus constraints. Moreover, when constant learning rates
are used, the complexity of the learned regression functions is guaran-
teed to be finite. For a multi-class kernel logistic regression task with
Gaussian mixtures data, we observe stable function estimation and state
of the art accuracy for distributed online multi-class classification.

1. INTRODUCTION

We consider decentralized online optimization problems: a network G =
(V, E) of agents aims to minimize an objective that is a sum of local
objectives available only to each node. The problem is online because
data samples upon which local convex objectives depend are sequentially
and locally observed by each agent. In this setting, agents aim to make
inferences as well as one which has access to all data at a centralized
location in advance. Rather than assuming agents seek a common vector
w ∈ Rp, we address the case where agents seek to learn a common
decision function f(x) belonging to a reproducing kernel Hilbert space
(RKHS), which represents, e.g., a nonlinear statistical model [1] or a
continuous trajectory [2]. Nonlinear interpolators perform far better than
their linear counterparts induced by the vector-valued convex problems
[3], but few works [4] extend them to streaming decentralized settings
that underlie Internet of Things [5,6] and multi-robot [7,8] applications.

Consider centralized vector-valued stochastic convex programming,
which has been classically solved with stochastic gradient descent
(SGD) [9]. SGD involves descending along the negative of the stochas-
tic gradient rather than the true gradient to avoid the fact that computing
the gradient of the average objective has complexity comparable to the
training sample size, which could be infinite. In contrast, a stochastic
program defined over a function space is an intractable variational infer-
ence problem in general, but when the function space is a RKHS [10],
the Representer Theorem allows us to reduce an infinite space into
a parameterization of weights and data samples [11]. Unfortunately,
the resulting feasible set has complexity comparable to sample size N
(intractable for N →∞ [12]).

Efforts to mitigate the complexity of the function representation
(“the curse of kernelization”) have been developed that combine func-
tional extensions of stochastic gradient method with compressions of
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the function sequence parameterization [13–17]. Mostly, such meth-
ods compress the function representation independent of the iterative
sequence to which they are applied. In contrast, a method was recently
proposed that combines greedily constructed [18] sparse subspace pro-
jections with functional SGD, and tailors the compression to preserve
descent properties of the RKHS-valued stochastic process [19].

In this work, we extend [19] to multi-agent settings. Multiple dis-
tributed optimization tools may be used to develop such an extension;
however, the Representer Theorem [11] has not been established for
stochastic saddle point problems in RKHSs. Thus, we adopt an ap-
proximate primal-only approach via penalty methods [20, 21], which in
decentralized optimization is called distributed gradient descent (DGD).
Using functional stochastic extensions of DGD, together with the greedy
projections designed in [19], we develop a method such that each agent,
through its local data stream and neighborhood message passing, learns a
memory-efficient approximation to the globally optimal function almost
surely. Such global stability contrasts with nonlinear function estimation
techniques such as dictionary learning [22–24] or neural networks [25]
which exhibit instability due to non-convexity.

Subsequently, in Section 2 we clarify the problem of stochastic pro-
gramming in the RKHS. In Section 3, we propose a penalty method that
yields a decentralized online method for kernel regression without any
complexity bottleneck based on functional stochastic gradient method
combined with greedy subspace projections (Section 3.2). We establish
that each agent’s function sequence converges to a neighborhood of the
globally optimal regression function with probability 1 in Section 4. In
Section 5, we present an example of a decentralized online multi-class
kernel logistic regression problem with Gaussian mixture data [17], and
observe a state of the art trade-off between stability and accuracy.

2. FUNCTIONAL STOCHASTIC PROGRAMMING

Consider the problem of distributed expected risk minimization, where
the goal is to learn a regressor that minimizes a loss function quanti-
fying the merit of a statistical model averaged over a data set scattered
across an interconnected network that represents, for instance, robotic
teams [24], communication systems [26], or sensor networks [27]. To
do so, we define a symmetric, connected, and directed network G =
(V, E) with |V| = V nodes and |E| = E edges and denote as ni :=
{j : (i, j) ∈ E} the neighborhood of agent i. Each agent i ∈ V ob-
serves a local data sequence as realizations (xi,n, yi,n) from random pair
(xi, yi) ∈ X ×Y ⊂ Rp×R and seeks to learn a common globally opti-
mal regression function f from the class functionH. This setting may be
mathematically captured by associating to each node i is a convex loss
functional `i : H×X ×Y → R that quantifies the merit of the estimator
f̃(xi) evaluated at feature vector xi. This loss averaged over all possi-

ble xi defines the statistical loss L(f̃) :=
∑

i∈V Exi,yi

[
`i(f̃

(
xi), yi

)]
,

which we combine with a Tikhonov regularizer to construct the regular-
ized loss R(f̃) := argminf̃∈H L(f̃) + (λ/2)‖f̃‖2H [28, 29]. Then the
globally optimal regression function f̃∗ is defined as

f̃∗ = argmin
f̃∈H

∑
i∈V

(
Exi,yi

[
`i(f̃

(
xi), yi

)]
+
λ

2
‖f̃‖2H

)
. (1)



Algorithm 1 Greedy Projected Penalty Method

Require: {xt,yt, η, ε}t=0,1,2,...

initialize fi,0(·) = 0,Di,0 = [],w0 = [], i.e. initial dictionary,
coefficients are empty for each i ∈ V
for t = 0, 1, 2, . . . do

loop in parallel for agent i ∈ V
Observe local training example realization (xi,t, yi,t)
Send obs. xi,t to nodes j ∈ ni, receive scalar fj,t(xi,t)
Receive obs. xj,t from nodes j ∈ ni, send fi,t(xj,t)

Compute unconstrained stochastic grad. step [cf. (8)]
f̃i,t+1(·) = (1− ηλ)fi,t − η∇fi ψ̂i,c(fi(xi,t),yi,t) .

Update params: D̃i,t+1=[Di,t, xi,t], w̃i,t+1 [cf. (10)]
Greedily compress function using matching pursuit

(fi,t+1,Di,t+1,wi,t+1) = KOMP(f̃i,t+1, D̃i,t+1, w̃i,t+1, ε)

end loop
end for

Observe that this global loss is a network-wide average (scaled by V ) of
all local losses; however, in multi-agent optimization, there is no global
coordination among the agents in selecting function f̃ , but rather, each
agent, via its locally observed data and message passing with its neigh-
bors, seeks to learn f̃∗. Thus, we allow agent i to select a distinct fi, but
we enforce that at optimality all function estimates fi coincide, which
yields the nonparametric decentralized stochastic program:

f∗ = argmin
{fi}∈H

∑
i∈V

(
Exi,yi

[
`i(fi

(
x), yi

)]
+
λ

2
‖fi‖2H

)
such that fi = fj , (i, j)∈ E (2)

For further reference we define the stacked Hilbert space HV of func-
tions aggregated over the network whose elements are stacked functions
f(·) = [f1(·); · · · ; fV (·)]. Moreover, define stacked random vectors
x = [x1; · · · ;xV ] ∈ RV p and y = [y1; · · · yV ] ∈ RV that represents
V labels or physical measurements, for instance.

The goal of this paper is to develop an algorithm to solve (2) in dis-
tributed online settings where nodes do not know the distribution of the
random pair (xi, yi) but sequentially observe local independent training
examples (xi,n, yi,n). In the next section we discuss necessary details
of the function spaceHV to make (2) tractable.

2.1. Function Estimation in Reproducing Kernel Hilbert Spaces

The problem in (2) is intractable in general, since it defines a varia-
tional inference problem integrated over the unknown joint distribution
P(x, y). However, when H is equipped with a reproducing kernel κ :
X × X → R (see [3, 30]), a functional problem of the form (1) may
be reduced to a parametric form via the Representer Theorem [12, 31].
Thus, we restrict the Hilbert space in (2) to be one equipped with a kernel
κ that satisfies for all functions f̃ : X → R inH and for all xi ∈ X :

(i) 〈f̃ , κ(xi, ·))〉H = f̃(xi) (ii)H = span{κ(xi, ·)}. (3)

Here 〈·, ·〉H denotes the Hilbert inner product for H. Further assume
that κ is positive semidefinite, i.e. κ(xi,x

′
i) ≥ 0 for all xi,x

′
i ∈ X .

For kernelized regularized empirical risk minimization, the Represen-
ter Theorem [32] states that optimal f̃ in the function class H may be
written in terms of kernel evaluations only of the training set

f̃(xi) =

N∑
n=1

wi,nκ(xi,n,xi) , (4)

where wi = [wi,1, · · · , wi,N ]T ∈ RN denotes a set of weights. The
upper index N in (4) is referred to as the model order, and for ERM the

Algorithm 2 Kernel Orthogonal Matching Pursuit (KOMP)

Require: function f̃ defined by dict. D̃ ∈ Rp×M̃ , coeffs. w̃ ∈ RM̃ ,
approx. budget ε > 0
initialize f = f̃ , dictionary D = D̃ with indices I, model order
M = M̃ , coeffs. w = w̃.
while candidate dictionary is non-empty I 6= ∅ do

for j = 1, . . . , M̃ do
Find minimal approximation error with dictionary element dj

removed
γj = min

wI\{j}∈RM−1
‖f̃(·)−

∑
k∈I\{j}

wkκ(dk, ·)‖H .

end for
Find index minimizing approx. error: j∗ = argminj∈I γj

if minimal approx. error exceeds threshold γj∗ > ε
stop

else
Prune dictionary D← DI\{j∗}
Revise set I ← I \ {j∗} and model order M ←M − 1.
Update weights w defined by current dictionary D

w = argmin
w∈RM

‖f̃(·)−wTκD(·)‖H
end

end while
return f,D,w of model order M ≤ M̃ such that ‖f − f̃‖H ≤ ε

model order and training sample size are equal. By exploiting the Repre-
senter Theorem, we transform an infinite dimensional optimization prob-
lem inHV into a finite NV -dimensional parametric problem. Thus, the
RKHS provides a principled framework to solve nonparametric regres-
sion problems as a search over RV N for a set of coefficients. However,
when training examples (xi,n, yi,n) become sequentially available or
their total number N is not finite, the complexity of representing a func-
tion f̃ in (4) approaches infinity as well, and thus demands an infeasible
amount of memory. Thus, our goal is to solve (2) in an approximate
manner such that each fi admits a finite representation near f∗i , while
satisfying the consensus constraints fi = fj for (i, j) ∈ E .

3. GREEDY PROJECTED PENALTY METHOD

We now develop an online decentralized iterative solution to (2)
when the functions {fi}i∈V are elements of a RKHS, as detailed in Sec-
tion 2.1. To exploit the properties of this function space, we require
the applicability of the Representer Theorem [cf. (4)], but this result
holds for any regularized minimization problem with a convex func-
tional. Thus, we may address the consensus constraint fi = fj , (i, j) ∈
E in (2) by enforcing approximate consensus on estimates fi(xi) =
fj(xi) in expectation. Thus, we introduce the penalty function

ψc(f)=
∑
i∈V

(
Ri(fi) +

c

2

∑
j∈ni

Exi

{
[fi(xi)−fj(xi)]

2}), (5)

where Ri(fi) := Exi,yi

[
`i(fi

(
xi), yi

)]
+ (λ/2)‖fi‖2H. Further define

f∗c = argminf∈HV ψc(f) and the local penalty as

ψi,c(fi)= Ri(fi) +
c

2

∑
j∈ni

Exi

{
[fi(xi)−fj(xi)]

2} . (6)

Observe from (5) - (6) that ψc(f) =
∑

i ψi,c(fi).

3.1. Functional Stochastic Gradient Method

The data distribution P(x,y) is unknown, so minimizing ψc(f) di-
rectly via variational inference is not possible. Rather than postulate
a distribution for (x,y), we only require sequentially available inde-
pendent and identically distributed samples (xt,yt) from their joint
density. Then, we address (5) using stochastic methods. Thus, compute
∇f ψ̂i,c(f(xt),yt), the functional stochastic gradient (5), as in [15]



0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

t, number of samples processed

0.2

0.4

0.6

0.8

1

1.2

1.4
1.6

G
l
o
b
a
l
O
b
j
e
c
t
i
v
e

(a) Global objective vs. samples processed

0 1000 2000 3000 4000 5000

t, number of samples processed

10
-15

10
-14

10
-13

10
-12

10
-11

N
et
w
o
rk

D
is
a
g
re
em

en
t

(b) Disagreement vs. samples processed

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

t, number of samples processed

0

5

10

15

20

M
i
,
t
,
M
o
d
e
l
O
r
d
e
r

(c) Model Order Mi,t vs. samples processed

Fig. 1: In Fig. 1a, we plot the global objective
∑

i∈V(Exi,yi [`i(fi,t
(
x), yi

)
]) versus the number of samples processed, and observe convergence. In

Fig. 1b we display the Hilbert-norm network disagreement
∑

(i,j)∈E ‖fi,t − fj,t‖
2
H with a penalty parameter c that doubles every 200 samples. In

Fig. 1c, we plot the model order of a randomly chosen agent’s regression function, which stabilizes to 18 after 162 samples.

∇f ψ̂i,c(f(xt),yt)= `′i(fi(xi,t), yi,t)κ(xi,t, ·)+ λfi (7)

+c
∑
j∈ni

(fi(xi,t)−fj(xi,t))κ(xi,t, ·).

Now we may define the distributed stochastic gradient method for the
kernelized λ-regularized multi-agent problem in (2) as

fi,t+1 = fi,t − η∇f ψ̂i,c(f(xt),yt) , (8)

where η > 0 is an algorithm step-size. We further require that, given
λ > 0, the step-size satisfies η < 1/λ and the global sequence is initial-
ized as f0 = 0 ∈ HV . With this initialization, the Representer Theorem
(c.f. (4)) implies that, at time t, the function fi,t admits an expansion in
terms of feature vectors xi,t observed thus far as

fi,t(x) =

t−1∑
n=1

wi,nκ(xi,n,x) = wT
i,tκXi,t(x) . (9)

On the right-hand side of (9) we have introduced the notation Xi,t =

[xi,1,. . .,xi,t−1] ∈ Rp×(t−1), κXi,t(·) = [κ(xi,1,·),. . ., κ(xi,t−1,·)]T,
and wi,t = [wi,1, . . . wi,t−1] ∈ Rt−1. Moreover, observe that the
kernel expansion in (9), together with the update (8), yields the fact that
performing the stochastic gradient method inHV amounts to V parallel
parametric updates on the dictionaries Xi and coefficients wi:
Xi,t+1 = [Xi,t, xi,t] , (10)

[wi,t+1]u=

{
(1− ηλ)[wi,t]u for 0 ≤ u ≤ t− 1

−η
(̀
′
i(fi,t(xi,t),yi,t)+c

∑
j∈ni

(fi,t(xi,t)−fj,t(xi,t))
)
,

where the second case on the last line of (10) is for u = t. This update
causes Xi,t+1 to have one more column than Xi,t. We define the model
order as number of data points Mi,t in the dictionary of agent i at time
t (the number of columns of Xt). FSGD is such that Mi,t = t − 1,
and hence grows unbounded with iteration index t. Next we address this
intractable memory growth such that we may execute stochastic descent
through low-dimensional projections of the stochastic gradient [19].

3.2. Sparse Subspace Projections

To mitigate the complexity growth noted in Section 3.1, we approxi-
mate the function sequence (8) by one that is orthogonally projected
onto subspaces HD ⊆ H that consist only of functions that can be
represented using some dictionary D = [d1, . . . , dM ] ∈ Rp×M ,
i.e., HD = {f : f(·) =

∑M
n=1 wnκ(dn, ·) = wTκD(·)} =

span{κ(dn, ·)}Mn=1, and {dn} ⊂ {xu}u≤t. For convenience we define
[κD(·) = κ(d1, ·) . . . κ(dM , ·)], and KD,D as the resulting kernel
matrix from this dictionary. We enforce efficiency in function repre-
sentation by selecting dictionaries Di that Mi,t << O(t) for each i,

following [19]. To be specific, we propose replacing the local update
(8) in which the dictionary grows at each iteration by its projection onto
subspaceHDi,t+1 = span{κ(di,n, ·)}

Mt+1
n=1 as

fi,t+1 := PHDi,t+1

[
(1− ηλ)fi,t − η

(
∇fi`i(fi,t(xi,t), yi,t)

+c
∑
j∈ni

(fi,t(xi,t)−fj,t(xi,t))κ(xi,t, ·)
)]
. (11)

We define projection P onto subspace HDi,t+1by the update (11). The
coefficients and dictionary updates are given in Algorithm 1 - 2.

4. CONVERGENCE ANALYSIS

We turn to establishing –based in the analysis in Section IV of [19] –
that Algorithm 1 converges with probability 1 to a neighborhood of the
minimizer of the penalty function ψc(f) [cf. (5)] and that the kernel
dictionary that parameterizes the regression function fi for each agent
i remains finite. Let us define the local projected stochastic functional
gradient associated with the update in (11) as

∇̃fiψ̂i,c(fi,t(xi,t), yi,t) = (12)(
fi,t − PHDi,t+1

[
fi,t − η∇fi ψ̂i,c(fi,t(xi,t),yi,t)

])
/η

such that the local update of Algorithm 1 [cf. (11)] may be expressed as
a stochastic projected functional gradient descent

fi,t+1 = fi,t − η∇̃fiψ̂i,c(fi,t(xi,t), yi,t) . (13)

Subsequently, we require the following technical conditions common in
the analysis of kernelized stochastic methods, see [33–35].

(A1) The setsHDi,t in (11) intersect a finite norm ball ‖f‖H ≤ K.
(A2) The feature spaceX ⊂ Rp and target domain Y ⊂ R are compact,

and the reproducing kernel map satisfies

sup
x∈X

√
κ(x,x) = X <∞. (14)

Moreover, the instantaneous losses `i : H × X × Y → R are
Ci-Lipschitz continuous for all z ∈ R for a fixed y ∈ Y .

(A3) The local losses `i(fi(x), y) are convex and differentiable w.r.t.
the scalar argument fi(x) on R for all x ∈ X , y ∈ Y .

(A4) Let Ft be the filtration measuring the algorithm history: Ft =
{xu, yu, fu}tu=1. The projected functional stochastic gradient of
the penalty which stacks (12) has finite conditional variance

E[‖∇̃f ψ̂c(ft(xt),yt)‖2H | Ft] ≤ σ2. (15)

We show that under the previous assumptions the iterates of Algorithm
1 converge to a neighborhood of the minimizer of ψc(f).
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Fig. 2: Visualizations of the Gaussian mixture data set (left) as in [17], where each class is denoted by a distinct color, and the learned low-memory
multi-class kernel logistic regressor of a randomly chosen agent in the network (right), which attains 95.2% classification accuracy on a hold-out
test set. Curved black lines denote decision boundaries between classes; dotted lines denote confidence intervals; bold black dots denote dictionary
elements. Kernel dictionary elements concentrate at peaks of the Gaussian clusters and near points of class overlap.

Theorem 1 Consider the sequence {ft} generated by Algorithm 1 with
f0 = 0 and regularizer λ > 0. Suppose Assumptions 1-4 hold, and we
select η < 1/λ and compression budget ε = Kη3/2 for any K > 0.
Then we have convergence to a neighborhood with probability 1 as

lim inf
t→∞

‖ft − f∗c ‖H≤
√
η

λ

[
2KV +

√
λσ2

]
=O(√η) a.s. (16)

Empirically, the use of constant step-sizes has the effect of maintaining
consistent algorithm adaptivity in the face of new data. Moreover, we
may apply Theorem 3 of [19], which guarantees the model order of the
function sequence remains finite.

Corollary 1 Denote ft ∈ HV as the sequence defined by Algorithm 1
with η and ε as in Theorem 1. Let Mt be the model order of function ft.
Then there exists a finite upper bound M∞ such that, for all t ≥ 0, the
model order is always bounded as Mt ≤ M∞, and the model order of
the limiting function f∞c = limt ft is finite.

Thus, use of constant step-sizes yields approximate convergence to f∗c
while ensuring the memory requirements are always finite, as stated in
Corollary 1. We are left to analyze the goodness of the solution f∗c as an
approximation of the solution of the original problem (2). In particular,
we establish consensus in the mean square sense. First we establish an
upper bound on the penalty term in (5).

Proposition 1 Let Assumptions 2 and 3 hold. Let f∗c be the minimizer
of ψc(f) in (5) and p∗ be the optimal value of (2). Then

1

2

∑
i∈V

∑
j∈ni

Exi

{
[f∗c,i(xi)−f∗c,j(xi)]

2} ≤ p∗

c
. (17)

As a consequence of the previous proposition, considering the limit with
c going to infinity in (17), allows us to write for all i, j that

lim
c→∞

1

2
Exi

{
[f∗c,i(xi)−f∗c,j(xi)]

2} = 0. (18)

The latter is equivalent to consensus in the mean square sense.

5. NUMERICAL EXPERIMENTS

Consider the task of kernel logistic regression from multi-class training
data that is scattered across a multi-agent network. In this case, the merit
of a particular regressor for agent i is quantified by its contribution to the
class-conditional probability. We define a set of class-specific activation
functions fi,k : X → R, and denote them jointly as fi ∈ HK , where
{1, . . . ,K} denotes the set of classes. Then, define the probabilistic
model of the odds ratio of a sample being in class k versus all others

P (yi = k |xi) :=
exp(fi,k(xi))∑
k′ exp(fi,k′(xi))

. (19)

The negative log likelihood defined by (19) is the instantaneous loss (see,
e.g., [32]) at sample (xi,n, yi,n):

`(fi,xi,n, yi,n) =−logP (yi = yi,n|xi,n)+
λ

2

∑
k

‖fi,k‖2H (20)

Following [17, 19], we generate a data set from Gaussian mixture
models, which consists N = 5000 feature-label pairs for training
and 2500 for testing. Each label yn was drawn uniformly at ran-
dom from the label set. The corresponding feature vector xn ∈ Rp

was then drawn from a planar Gaussian mixture model, i.e., x
∣∣ y ∼

(1/3)
∑3

j=1N (µy,j , σ
2
y,jI) where σ2

y,j = 0.2 for all values of y and
j. The means µy,j are themselves realizations of their own Gaussian
distribution with class-dependent parameters, i.e., µy,j ∼ N (θy, σ

2
yI),

where {θ1, . . . ,θK} are equitably spaced around the unit circle, one for
each class label, and σ2

y = 1.0. We fix the number of classes K = 5,
meaning that the feature distribution has 15 distinct modes. The data
points are plotted in Figure 2a.

Here the V = 20 node digraph is random and with edges generated
randomly with probability 1/5 repeatedly until we obtain one that is
connected, and then symmetrize it. We run Algorithm 1 when each agent
observes a unique random stream of samples from this common training
set, a Gaussian kernel is used with bandwidth d = 0.6, with constant
learning rate η = 3, compression budget ε = η3/2, parsimony constant
K = 0.04, mini-batch size 32, and regularizer λ = 10−6. The penalty
coefficient is initialized c = 0.01 and doubled every 200 samples.

The results of this implementation1 in Figures 2b and 1. In Figure
1a, we plot the global objective

∑
i∈V(Exi,yi [`i(fi,t

(
x), yi

)
]) relative

to the number of training examples processed, and observe stable con-
vergence to a global minimum. In Figure 1b we display Hilbert-norm
network disagreement

∑
(i,j)∈E ‖fi,t − fj,t‖2H versus observed sam-

ple points. Since each regression function is initialized as null, initially
the disagreement is trivially null, but it remains small over the function
sample path as model training occurs. Moreover, the model order of an
arbitrarily chosen agent i = 15 versus samples processed is given in
Figure 1c: observe that the model order stabilizes after only a couple
hundred training examples to 18, which is only a couple more than 15,
the number of modes of the joint data density function. The resulting
decision surface of node 15 is given in Figure 2b, which achieves 95.2%
classification accuracy on the test set which is comparable to existing
centralized batch approaches (see Table 2 of [19]) to kernel logistic re-
gression.

1 We would like to thank Garrett Warnell of the U.S. Army Research
Laboratory-CISD for invaluable implementation assistance.
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