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ABSTRACT

The autoregressive (AR) model is a well-known technique to

analyze time series. The Yule-Walker equations provide a

straightforward connection between the AR model parame-

ters and the covariance function of the process. In this paper,

we propose a nonlinear extension of the AR model using ker-

nel machines. To this end, we explore the Yule-Walker equa-

tions in the feature space, and show that the model parameters

can be estimated using the concept of expected kernels. Fi-

nally, in order to predict once the model identified, we solve

a pre-image problem by getting back from the feature space

to the input space. We also give new insights into the convex-

ity of the pre-image problem. The relevance of the proposed

method is evaluated on several time series.

Index Terms— autoregressive model, Yule-Walker equa-

tions, expected kernels, pre-image problem, nonlinear model

1. INTRODUCTION

Many applications involve the analysis of time series data.

One of the simplest, yet efficient, way to model time series

is the autoregressive (AR) model. It states that each sample

is given as a linear combination of a small number of pre-

vious samples. A prediction scheme is therefore inherent to

this model, once the model parameters determined, i.e., the

coefficients in the linear combination. These parameters are

tightly linked to the covariance function of the process. The

Yule-Walker equations explore this direct correspondence in

order to estimate the parameters from the covariances of the

time series. As a linear prediction model, the AR model is not

adapted to treat nonlinear systems.

An elegant way to extend linear models into nonlinear

ones is given by the concept of kernel methods in machine

learning. The main idea is to map the data, using a nonlinear

function, from the input space into a feature space, usually of

a higher dimension. By using the kernel trick [1], it turns out

that one can transform linear techniques into nonlinear ones,
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without the need to explicitly exhibit the mapped space. This

principle has shown its capacity in many applications, initially

with Vapnik’s Support Vector Machines (SVM) [2], and now

includes kernel principal component analysis and SVM nov-

elty detection, only to name a few. In the same spirit, some

kernel-based methods were considered for the analysis and

prediction of time series data [3], including the SVM for re-

gression and kernel Kalman filter [4].

In this paper, we explore the concept of kernel methods in

order to provide a nonlinear extension of the AR model. To

this end, we propose to take full advantage of the Yule-Walker

equations in the feature space. We show that the parameters

are estimated using the (lagged) expected kernels. The con-

cept of expected kernels has shown its capacity in recent re-

search [5, 6]. Finally, to provide a prediction, one needs to

map the result back into the input space. This is the pre-image

problem. We give in this paper new insights into the convexity

of this problem, and propose a technique to solve the problem.

See [7] for a recent review, with several applications in signal

processing.

The rest of the paper is organized as follows: Next, we

present the classical AR model with Yule-Walker equations.

In Section 2, we present the kernel-based AR model and detail

the solution of Yule-Walker equations in feature space. In

Section 3, we provide a prediction scheme by solving the pre-

image problem. Section 4 covers the experiments done to

evaluate the relevance of the proposed technique on “MG30”

and “Lorenz attractor” time series.

AR model: the Yule-Walker equations

The AR model is widely used to analyze stationary and non-

stationary time series [8]. It gives each sample as a linear

combination of previous samples. The AR model is defined

by the fixed weights αi, for i = 1, 2, . . . , p, where p defines

the order of the model. Let x1, x2, . . . , xn be a time series, a

p-order AR model is described by

xi =

p
∑

j=1

αjxi−j + ǫi,



for i = p + 1, . . . , n, where ǫi is the unfitness error, as-

sumed white Gaussian with zero mean. The parameters

α1, α2, . . . , αp are directly connected with the covariance

function of the process. One can therefore determine these

parameters from the autocorrelation function. This is the

essence of the Yule-Walker equations: Let r be the autocorre-

lation function of the time series, then r(τ) =
∑p

j=1 αjr(τ −
j), for a lag τ ≥ 1. Since r(−τ) = r(τ), we obtain the matrix

form of the Yule Walker equations

r = Rα,

where r = [r(1) · · · r(p)]⊤, α = [α1 · · · αp]
⊤, and

R =











1 r(1) . . . r(p− 1)
r(1) 1 . . . r(p− 2)

...
. . .

...

r(p− 1) r(p− 2) . . . 1











,

where r(0) = 1 without loss of generality. Assuming that the

p× p matrix R is invertible, the coefficients α are estimated

by α = R
−1

r. Once the coefficients are estimated, the AR

model can be applied to predict future samples.

2. KERNEL AUTOREGRESSIVE MODEL USING

YULE-WALKER EQUATIONS

In order to derive a nonlinear extension of the Yule-Walker

equations for autoregressive models, we use the principle

of kernel machines. Let X be the input space, and let the

kernel κ : X × X 7→ IR be positive semi-definite, namely
∑

i,j αiαjκ(xi, xj) ≥ 0 for all xi, xj ∈ X and any αi, αj ∈
IR. The Moore-Aronszajn theorem [9] states that a positive

semi-definite kernel corresponds to an inner product in some

arbitrary feature space. Let Φ(·) denotes the mapping func-

tion from the input space X into the feature space H, then

κ(xi, xj) = 〈Φ(xi), Φ(xj)〉H ,

for any xi, xj ∈ X , where 〈· , ·〉
H

denotes the corresponding

inner product in H, and ‖ · ‖
H

its norm.

Using this concept, each sample of the time series

x1, x2, . . . , xn is mapped from the input space into some fea-

ture space, yielding Φ(x1), Φ(x2), . . . ,Φ(xn). Thus, an AR

model in the feature space is defined by

Φ(xi) =

p
∑

j=1

αj Φ(xi−j) + εΦi ,

which belongs to the feature space span by the images of the

samples with the map Φ(·). While the samples xi are as-

sumed zero-mean, this is not often the case for the mapped

data Φ(xi). Let µ be the mean of the mapped time series,

namely

µ = IE[Φ(xi)],

where IE[·] is the expectation, with
∑

i Φ(xi). Then,

Φ(xi)− µ =

p
∑

j=1

αjΦ(xi−j) + εΦi − µ

=

p
∑

j=1

αj

(

Φ(xi−j)− µ
)

+ εΦi −
(

1−

p
∑

j=1

αj

)

µ.

With the expectation of both sides, the times series being as-

sumed stationary, we get (1−
∑p

j=1 αj)µ = IE[εΦi ]. By con-

sidering the inner product (in the feature space) of both sides

of the above equation with (Φ(xi−τ )− µ), for some positive

lag τ , we get

〈Φ(xi)− µ, Φ(xi−τ )− µ〉
H
= 〈εΦi − IE[εΦi ], Φ(xi−τ )− µ〉

H

+

p
∑

j=1

αj〈Φ(xi−j)− µ, Φ(xi−τ )− µ〉
H
.

(1)

By substituting the inner product in the feature space with the

corresponding kernel function, we define the centered version

of a kernel κ(·, ·) with

κc(xi, xj) = 〈Φ(xi)− µ, Φ(xj)− µ〉
H
.

By analogy with the linear AR case, we assume that the

noise εΦi and Φ(xi−τ ) are uncorrelated for every positive lag

τ . Therefore, by taking the expectations of expression (1) and

assuming the stationarity, we get for any τ ≥ 1:

IE[κc(xi, xi−τ )] =

p
∑

j=1

αj IE[κc(xi−j , xi−τ )], (2)

where the notion of expected kernels is equivalent to the one

recently studied in [6]. By considering all the lag values, ex-

pression (2) is written in matrix form

rκ = Rκα,

where

rκ=
[

IE[κc(xi, xi−1)] IE[κc(xi, xi−2)] · · · IE[κc(xi, xi−p)]
]⊤

,

and Rκ is the matrix described by the expected kernels with











IE[κc(xi, xi)] IE[κc(xi−2, xi−1)] · · · IE[κc(xi−p, xi−1)]
IE[κc(xi−1, xi−2)] IE[κc(xi, xi)] · · · IE[κc(xi−p, xi−2)]

...
...

. . .
...

IE[κc(xi−1, xi−p)] IE[κc(xi−2, xi−p)] · · · IE[κc(xi, xi)]











The vector of coefficients α is obtained by inverting the ma-

trix Rκ, with

α = R
−1
κ rκ.



In practice, the expectations are estimated over a set of n

available samples. The centered version of the kernel is eval-

uated using

κc(xi, xj) = κ(xi, xj)−
1

n

n
∑

k=1

κ(xi, xk)−
1

n

n
∑

k=1

κ(xj , xk)

+
1

n2

n
∑

k,k′=1

κ(xk′ , xk).

3. PREDICTION BY SOLVING THE PRE-IMAGE

PROBLEM

Once the model parameters are determined on a set of n avail-

able samples, one may predict some future sample by

ψi =

p
∑

j=1

αj Φ(xi−j),

starting with i = n + 1. Being a linear combination of p

images, ψi belongs to the feature space. In order to predict

a sample, one needs to map back ψi from the feature space

into the input space. This is the pre-image problem. Several

techniques have been proposed to solve this ill-posed prob-

lem. This includes a multidimensional scaling technique, a

conformal map, and a learning scheme. See [7] for a formal

definition of the pre-image problem, and a recent survey of

the literature.

We solve the pre-image problem by seeking an approxi-

mate solution x∗i whose counterpart Φ(x∗) is as close as pos-

sible to ψi, the latter being defined as above. The resulting

optimization problem is:

x∗i = argmin
x

1

2

∥

∥

∥
Φ(x) −

p
∑

j=1

αj Φ(xi−j)
∥

∥

∥

2

H

.

This is equivalent to the optimization problem

x∗i = argmin
x
Ji(x),

with

Ji(x) = −

p
∑

j=1

αj κ(xi−j , x) +
1

2
κ(x, x), (3)

where the term independent of x has been removed.

Consider the case of the Radial Basis Functions, with ker-

nels of the form

κ(xj , xj′ ) = f(‖xj − xj′‖
2). (4)

A sufficient condition for a function f ∈ C∞ to be a valid

positive-definite kernel is its complete monotonicity, i.e., its

k-th derivative satisfies

(−1)kf (k)(ζ) ≥ 0 (5)

for any non-negative ζ [10]. The following Proposition gives

insights on the convexity of the pre-image problem, as defined

by (3):

Proposition 1. A sufficient condition for the convexity of the

cost function is given by the non-negativity of the coefficients

α1, . . . , αp.

Proof. Taking the second derivative of the cost function (3)

with respect to x, we get

∇2
xJi(x) = ∇x

[

2

p
∑

j=1

αj (xi−j − x) f (1)(‖xi−j − x‖2)
]

= 2

p
∑

j=1

αj

(

− f (1)(‖xi−j − x‖2)

+2(xi−j − x)2 f (2)(‖xi−j − x‖2)
)

The term between parentheses is positive, due to condition

(5). Therefore, a sufficient condition for the second derivative

to be positive, and thus for the convexity of (3), is that all the

coefficients αj are positive.

Unfortunately, the cost function is not convex in the gen-

eral case. However, it is reasonable to consider a local model,

since the pre-image is estimated from its p previous samples.

Therefore, we consider a local gradient descent approach with

x∗i,t+1 = x∗i,t − ηt∇xJi(x
∗

i,t),

where the index t denotes the iterative technique. The conver-

gence is controlled by the step size ηt, in the opposite direc-

tion of the gradient of Ji(x) with respect to x. Using the form

(4), the gradient of the kernel with respect to x is given by

∇xκ(xi−j , x) = 2(xi−j − x) f (1)(‖xi−j − x‖2).

By combining this expression with the gradient of the cost

function Ji(x), we get

∇xJi(x) = 2

p
∑

j=1

αj (xi−j − x) f (1)(‖xi−j − x‖2).

Such expression simplifies further for several kernel func-

tions, such as the Gaussian kernel with

f(ζ) = exp
(

−1
2σ2 ζ

)

,

thus f (1)(ζ) = − 1
2σ2 f(ζ).

4. EXPERIMENTS

We illustrate the efficiency of the proposed method with two

well-known time series data: “Mackey-Glass” (MG30) time

series provides a model of the blood cells production evo-

lution, and “Lorenz attractor” is the solution to a system of



“MG30” “Lorenz”

Multilayer perceptron 0.0461 0.2837

Support vector regression 0.0313 0.1811

Nonlinear Kalman filter 0.0307 0.03183

Kernel AR model 0.00006 0.1793

Table 1. Mean square error for different nonlinear prediction

approaches.
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Fig. 1. Initial “Lorenz attractor” time series, with its predic-

tion using the proposed approach.

differential equations. We considered the Gaussian kernel. A

set of n = 300 samples was used to determine the order p,

the parameters α1, α2, . . . , αp of the AR model, as well as

the value of the bandwidth σ of the Gaussian kernel. The next

300 samples, for i = n+1, . . . , 2n, were used to evaluate the

performance of the proposed kernel-based AR model.

This configuration is identical to the one given in [4], from

which we borrowed the comparative results given in Table 1.

Depending on the bandwidth chosen for the Gaussian kernel,

the error can be reduced to be approximately inconsiderable.

As far as the bandwidth is getting smaller, the error will be

decreased. The mean square error was estimated with

ǫ =
1

n

2n
∑

i=n+1

‖x∗i − xi‖
2,

where x∗i is the predicted value at instant i, and xi is the true

value of the time series at the same time. An illustration of the

prediction performance is given in Figure 1 for the “Lorenz

attractor”. It is worth noting that the proposed approach is

simpler to implement, with less parameters, and significantly

lower computational complexity than all the other methods

given in Table 1.

5. CONCLUSION

We presented a kernel-based AR model for the prediction of

time series data. We showed that one can take advantage of

the Yule-Walker equations in the feature space, by using the

concept of expected kernels. The prediction was assured by

solving a pre-image problem. The relevance of this proposed

method was revealed by a comparison to well-known nonlin-

ear prediction techniques.

There are many possibilities for future work: we are cur-

rently working on methods to estimate the optimal order of

the AR model in the feature space, in the same spirit of the

Akaike Information Criterion. We are also studying other pa-

rameter estimation techniques, such as the Levinson-Durbin

method. Also, we are considering the use of Gaussian process

methods where the covariance function is the kernel function.

Moreover, it would be desirable to extend the proposed ap-

proach to the autoregressive moving average model.
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