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Abstract— The inherent physical characteristics of many real-
life phenomena, including biological and physiological aspects,
require adapted nonlinear tools. Moreover, the additive nature
in some situations involve solutions expressed as positive com-
binations of data. In this paper, we propose a nonlinear feature
extraction method, with a non-negativity constraint. To this end,
the kernel principal component analysis is considered to define
the most relevant features in the reproducing kernel Hilbert
space. These features are the nonlinear principal components
with high-order correlations between input variables. A pre-
image technique is required to get back to the input space.
With a non-negative constraint, we show that one can solve
the pre-image problem efficiently, using a simple iterative
scheme. Furthermore, the constrained solution contributes to
the stability of the algorithm. Experimental results on event-
related potentials (ERP) illustrate the efficiency of the proposed
method.

Index Terms— Kernel-PCA, pre-image problem, non-
negativity constraint, additive weight algorithm

I. INTRODUCTION

There has been an ever-increasing interest of engineers and

scientists in nonlinear feature extraction since, unfortunately,

most natural systems exhibit nonlinear behavior. Further-

more, with some prior information on the system under

investigation, a constrained solution is often required in many

situations, in order to illustrate some physical characteristics

such as the non-negativity.

Consider for instance an electroencephalographic (EEG)

recording, which corresponds to a summation of individual

contributions in the brain. A measure of the brain activity

should always be positive, since the brain is always in

activity. In practice, the recordings are zero-meaned by

comparing them to some reference, resulting into positive

and negative components. Nevertheless, to understand the

underlying structure of theses recordings, and thus the brain

activity, one should keep in mind the non-negative additivity

of contributions. Non-negativity is a desirable property in

many research areas. Independent component analysis im-

pose a non-negative factorization of the data [1], i.e. for
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blind source separation with positive sources. In [2], a non-

negative principal component analysis (PCA) is proposed. A

more general approach is studied in [3] for signal and image

restoration with a non-negativity constraint.

Kernel-based methods provide a breakthrough in both

statistical learning theory and low computational cost for

nonlinear algorithms. The main idea behind these algo-

rithms is the kernel trick [4]. It gives a mean to transform

conventional linear algorithms into nonlinear ones, under

the only condition of expressing the algorithm in terms of

pairwise inner products between data. By substituting the

inner product operator with a (positive semi-definite) kernel

function, this is equivalent to mapping the data from the input

space into a feature space via some nonlinear map, and then

apply the linear algorithm in the feature space. The resulting

feature space is the so-called reproducing kernel Hilbert

space (RKHS). For instance, in [5] the authors reported the

superiority of nonlinear kernel-PCA over conventional linear

PCA, combined with a discrimination scheme in order to

classify event-related potentials (ERP).

While the mapping from input space to feature space is of

primary importance in kernel methods, the reverse mapping

from feature space back to input space is often very useful,

as studied in this paper. Unfortunately, getting back from the

RKHS to the input space is not obvious in general, as most

features of the former may not have an exact pre-image in

the latter. This is the pre-image problem, as one seeks an

approximate solution. Furthermore, this is also non-trivial as

the dimensionality of the feature space can even be infinite.

In [6], Mika et al. studied this highly nonlinear optimization

problem, and proposed a fixed-point iterative method. In [7],

a technique based on multidimensional-scaling is considered,

and recently a more adapted method is derived in [8]. While

these techniques are applied in a de-noising scheme, we

propose in this paper a feature extraction approach, incorpo-

rating a non-negativity constraint. The resulting algorithm is

based on an iterative gradient descent scheme. The proposed

method is general, and can be applied on any data, as long

as kernel-PCA can be applied. In this paper, we illustrate its

performance on a ERP problem in order to extract nonlinear

features from EEG.

The paper is organized as follows: In Section II, we review

the kernel-PCA technique. The problem of nonlinear feature

extraction is presented in Section III, in the light of the pre-

image problem. The non-negativity constraint is studied in

Section IV, while in Section V experimental results are given.
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II. KERNEL-PCA

Principal Component Analysis (PCA) is a widely used

technique for representing data, by extracting a small number

of features from the data itself. This approach is regarded

as a global approach, as opposed to methods such as para-

metric models and wavelet decomposition, where extracted

features highly depend on the model or wavelet type under

investigation. In PCA, features are obtained by diagonalizing

the correlation matrix of the data, conserving only the most

relevant eigenvectors. Without loss of generality, we assume

zero-mean data, given column-wise in x1, x2, . . . ,xn ∈ IRd.

PCA technique seeks the m features v1, v2, . . . ,vm ∈ IRd,

as the eigenvectors in the eigen-problem λv = C v, with

C = 1

n

∑n

j=1
xjx

⊤
j the correlation matrix. The relevance of

each eigenvector v is given by its corresponding eigenvalue

λ, which measures the amount of captured variance of the

data. From the linearity property of the operations, the

eigenvectors lie in the span of the data, taking the form

v =
∑n

i=1
αi xi.

Unlike conventional PCA which is restricted to learn only

linear structures within data, kernel-PCA is a popular gen-

eralization to discover nonlinearities. To recognize nonlinear

features, a common strategy consists in mapping the data into

some feature space, with Φ: IRd 7→ H, and then compute

PCA on mapped data, Φ(x1), Φ(x2), . . . ,Φ(xn) ∈ H. While

eigenvectors are linear in the transformed data, they are

nonlinear in the original data. Without the need to evaluate

explicitly the map, it turns out that one can efficiently com-

pute such nonlinear PCA, for a broad class of nonlinearities,

using the concept of the kernel trick. It corresponds to writing

the algorithm using only pairwise inner products between

data, thus substituting these proximity measurements with

nonlinear ones, defined by a kernel function. This widespread

principle is illustrated here on kernel-PCA [9].

First, we write PCA algorithm in terms of inner products

in the feature space, 〈Φ(xi), Φ(xj)〉H, for i, j = 1, 2, . . . , n.

Each extracted feature ϕ ∈ H satisfies the expression

λϕ = CΦ ϕ, (1)

where CΦ represents the correlation between mapped

data, expressed in a finite-dimensional space as CΦ =
1

n

∑n

j=1
Φ(xj)Φ(xj)

⊤. By analogy with the linear case, all

solutions ϕ lie in the span of the Φ-images of the data. This

means that there exists coefficients α1, α2, . . . , αn such that

ϕ =

n
∑

i=1

αi Φ(xi). (2)

Substituting CΦ and the expansion (2) into the eigen-

problem (1), and defining a n×n matrix K whose (i, j)-th
entry is 〈Φ(xi), Φ(xj)〉H, we get the eigen-problem in terms

of inner product matrix

n λα = K α, (3)

where α = [α1 α2 · · · αn]⊤. In order to get the nor-

malization as in PCA1, i.e. 〈ϕ, ϕ〉H = 1, one operates a

normalization on the resulting solution α, with ‖α‖2 = 1/λ.

Substituting the inner product operator with a kernel

function, κ : IRd × IRd 7→ IR, provides a nonlinear extension

to PCA, the so-called kernel-PCA. Kernels with a positive

semi-definite property correspond to an implicit mapping,

and thus can be written as κ(xi, xj) = 〈Φ(xi), Φ(xj)〉H,

in a feature space H, the so-called RKHS. Examples of ad-

missible kernels include the polynomial kernel κ(xi, xj) =
(1 + 〈xi, xj〉)

p, and the Gaussian kernel κ(xi, xj) =
exp( 1

σ2 ‖xi − xj‖
2), the latter implicitly maps data into an

infinite-dimensional space.

III. FEATURE EXTRACTION AS A PRE-IMAGE PROBLEM

As illustrated above, it is easy to compute the coefficients

in (2), thanks to the kernel trick. When a supervised learning

is required, the resulting features are only used in a pre-

processing scheme, for dimensionality reduction purpose,

before applying a discrimination machine such as Support

Vector Machines. In such cases, the features need not to

be explicated since, for any given x, the projection of

Φ(x) onto any ϕ ∈ H can be given by 〈ϕ, Φ(x)〉H =
∑n

i=1
αi κ(xi, x). When an unsupervised learning is desired,

such as in pattern recognition, it is not sufficient to know

the weighting coefficients. One is often interested in the

feature itself, as defined in (2), or more precisely in its

counterpart in the input space, i.e. a x∗ such that its map

is equivalent to ϕ =
∑n

i=1
αi Φ(xi). However, very few

elements of a RKHS satisfy this property. In general, one

seeks an approximate solution, i.e. x∗ in IRd whose map

Φ(x∗) is as close as possible to ϕ.

This is the pre-image problem in machine learning, where

one seeks to map back elements from the RKHS to the input

space. This optimization problem was originally studied by

Mika et al. in [6]. It consists of minimizing the distance in

the RKHS between both elements, with

x∗ = arg min
x∈IRd

‖ϕ − Φ(x)‖2

H, (4)

where ‖ · ‖H denotes the norm in the RKHS. Worth noting

that this is a non-convex and highly nonlinear optimization

problem. In [6], the authors propose a fixed-point iterative

method to solve this problem. Unfortunately, this technique

tends to be unstable and suffers from local minima. In [7], a

technique based on the multidimensional-scaling is proposed,

while in [10] the authors illustrate the connection of this

problem with other dimensionality reduction methods. More

recently, two of the authors propose a more adapted method

to solve the pre-image problem [8], [11]. Interestingly, all

these methods suggest that the resulting pre-image lies in

the span of the original data, namely

x∗ =

n
∑

i=1

γi xi. (5)

1Furthermore, data should be centered in the feature space, a task
efficiently operated by replacing the matrix K in (3) with the modified
matrix (1 − 1n)K(1 − 1n), with 1n the n-by-n matrix of entries 1/n
and 1 the identity matrix.
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While this is a linear system, it is computed on the basis

of closeness to the nonlinear feature, where distance is

computed in the feature space.

All these techniques have been proposed for de-noising

purpose, i.e. any new data is mapped, projected into the

most relevant subspace, and then mapped back to the input

space. To our knowledge, mapping the features back to the

input space was not considered in the literature, yet feature

extraction is as (if not more) important as de-noising data.

Moreover, in many physical phenomena, one may require a

constrained solution (see for instance [12] for an application

regarding positive temperatures). Next, we show that one

may provide an easy, yet efficient, scheme to solve this

optimization problem with a non-negativity constraint, i.e.

γ1, γ2, . . . , γn ≥ 0 in the expansion (5). Worth noting that

including a constraint contributes to the stability of the

solution, and provides often sparsity [13].

IV. THE PRE-IMAGE WITH NON-NEGATIVITY

CONSTRAINT

We begin by injecting the expansion in (5) into the

optimization problem (4), reducing the problem into finding

the coefficients vector γ∗ = [γ∗
1

γ∗
2
· · · γ∗

n]⊤. Let J(γ∗) be

the resulting cost function. Next, we consider solving the pre-

image problem, independently of the used kernel, by writing

the pre-image problem in the general form [3]

γ∗ = argmin
γ

J(γ)

subject to γ ≥ 0

with ≥ 0 denotes element-wise non-negativity. The corre-

sponding Lagrangian can be described as J(γ)−µ⊤γ, where

µ is the vector of the non-negative Lagrange multipliers. The

Kuhn-Tucker conditions must be satisfied at the optimum,

with the expressions

∇γ

[

J(γ∗) − µ∗⊤ γ∗
]

= 0

µ∗
i γ∗

i = 0 ∀i

where γ∗
i (resp. µ∗

i ) is the i-th component de γ∗ (resp. µ∗).

Thus the resulting problem to be solved is

γ∗
i [−∇γJ(γ)]i = 0

with [∇γJ(γ)]i is the i-th component of ∇γJ(γ) and the

minus sign is used to explicitly describe the gradient descent

of J(γ).
To solve this problem iteratively, we consider the fixed-

point approach, leading to the element-wise gradient descent

algorithm [13], [14]

γi(k + 1) = γi(k) + ηi(k)fi(γ(k))γi(k)[−∇γJ(γ)]i

where ηi(k) is a step size factor used to control conver-

gence, and fi(γ(k)) is a function having positive values.

To guarantee the non-negativity of γi(k + 1), updated from

the previously estimated one, γi(k), the following condition

should be satisfied: if [∇γJ(γ)]i > 0,

ηi(k) ≤
1

fi(γ(k))[∇γJ(γ)]i
;

0 50 100 150 200 250
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Fig. 1. The 40 trials from electrode FP1.

Otherwise, when [∇γJ(γ)]i ≤ 0, no restriction related to

the positivity is imposed on this step size factor. Finally, we

deduct that the general expression of the algorithm, in matrix

form, is

γ(k + 1) = γ(k) + η(k)d(k),

where d(k) defines the direction of descent, with

d(k) = −diag[fi(γ(k))γi(k)]∇γJ(γ).

The optimal step size η(k) can be computed eventually from

a linear search algorithm in the interval ]0, ηmax(k)] with

ηmax(k) = min
i

1

fi(γ(k))[∇γJ(γ)]i
.

V. EXPERIMENTS

The proposed method for solving the pre-image problem

with non-negative constraint, provides a general technique

for feature extraction, and can be applied in any feature

extraction problem. In this section, we illustrate it on a set

of event-related potentials (ERP) from EEG recordings. The

experimental signals are taken from a large study on selected

sets of people, with a genetic predisposition to alcoholism

[15]. The acquisition system is composed of 64 electrodes,

positioned on the scalps, taking the measurements sampled

at 256 Hz, for 1 second. There were 122 subjects, each

one has completed 120 trials where different visual stimuli

were shown to them: the subject was exposed either to

one stimulus (S1), or two stimuli (S1 and S2). We have

considered only one subject with ERP resulting from one

stimulus, and chosen one electrode, FP12. The number of

trials is 40, resulting into 40 signals of 256 samples each,

illustrated in Fig. 1.

2The considered EEG signals can be downloaded from
http://archive.ics.uci.edu/ml/databases/eeg/eeg.data.html.
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Fig. 2. The individual and the cumulative captured variance of the 40
available features. The first 4 features capture 67% of overall variance

To perform the non-negative coefficients pre-image, the

kernel applied on the signals was the Gaussian kernel, with

bandwidth set to σ = 300. The kernel-PCA algorithm was

applied using this kernel, with the overall captured variance

illustrated in Fig. 2 with individual λk/
∑

40

i=1
λi (left axis)

and cumulative
∑k

j=1
λj/

∑

40

i=1
λi (right axis) eigenvalues

for each of the k eigenvectors. In the following, we consider

the four most relevant features, capturing 67 % of the data

variance, and consider the proposed method to get back

from the (infinite dimensional) RKHS to the input space of

256-sample signals. The additive weight update algorithm

is applied to pre-image the four features. For this purpose,

the following parameters were considered: the step size

factor was set to η = 0.9, and the number of iterations to

200. The resulting pre-imaged features are given in Fig. 3,

and compared to an arbitrary less-relevant feature, the 21st

extracted feature, which exhibits less structure within data.

We can easily verify that all the coefficients are nonnegative.

VI. CONCLUSIONS

Real-life phenomena, such as some biological character-

istics, impose constraints on the extracted features. In this

paper, we have shown that nonlinear features can be extracted

by jointly applying a kernel-PCA algorithm and a pre-image

technique. The pre-image problem is solved under the non-

negative constraint, using an additive fixed-point iterative

algorithm. The utility of the method was demonstrated on

real EEG data.
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Fig. 3. The four most relevant features as well as a less relevant one.
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