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ABSTRACT

Group zero-attracting LMS (GZA-LMS) and its reweighted vari-
ant (GRZA-LMS) have been proposed for system identification
with structural group sparsity of the parameter vector. Similar to
most adaptive filtering algorithms with regularized penalty, GZA-
LMS/GRZA-LMS suffers from a trade-off between convergence
rate and steady-state performance, meanwhile between the degree
of sparsity and estimation bias. Therefore, it is pivotal to properly
set the step-size and regularization parameter of the algorithms.
Based on a transient behavior model of GZA-LMS/GRZA-LMS, a
variable-parameter GRZA-LMS algorithm is proposed to address
this issue. By minimizing the mean-square-deviation at each time
instant, we obtain closed-form expressions of the optimal step-size
and regularization parameter. Simulation results illustrate the effec-
tiveness of the proposed algorithms in both white and colored input
cases.

Index Terms— Sparse system identification, group sparsity,
transient behavior model, variable parameter strategy, adaptive al-
gorithms.

1. INTRODUCTION

Adaptive filtering algorithms serve as a very useful tool for online
system identification [1, 2]. Within the myriad of adaptive algo-
rithms, the least-mean-square (LMS) algorithm has been widely
used due to its robustness, relatively good performance and low
complexity. It is important to endow the standard LMS algorithm
with other properties . One of the most useful properties is to
promote sparsity of the estimate, frequently required in several ap-
plications such as online sparse channel identification. In such a
scenario, though the impulse response can be long, only a few of the
coefficients have significant values. Several algorithms based on the
LMS were proposed to promote sparsity, such as proportionate nor-
malized LMS (PNLMS) [3, 4], zero-attracting LMS (ZA-LMS) and
reweighted zero-attracting LMS (RZA-LMS) [5]. These variants of
LMS all claimed improved performance in sparse situations. Beyond
element-wise sparsity, a further consideration is that some sparse
systems can be group-sparse system [6,7], utilizing such a structural
priori information can achieve enhanced performance. Opposed to
the general sparse system with impulse response having an arbitrary
structure, a group-sparse system has impulse response composed of
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a few distinct clusters of nonzero coefficients, such as specular mul-
tipath acoustic and wireless channels [6–8]. By utilizing the mixed
norm regularization, the `1,∞-regularized RLS algorithm [6], group
ZA-LMS (GZA-LMS) and group RZA-LMS (GRZA-LMS) [7] al-
gorithms were proposed to promote group-sparsity of estimates. To
ensure a performance gain in such group-sparse scenarios [6, 7, 9],
setting the algorithm parameters such as step size and regularization
parameter remains a tricky task. On one hand, the step-size plays a
crucial role to control the trade-off between the convergence speed
and the steady-state performance. On the other hand, the regulariza-
tion parameter controls the trade-off between the degree of sparsity
and the estimation bias. It is worth noting that setting an inappro-
priate value of these parameters may even deteriorate the estimation
performance.

Variable parameter strategies provide a simple but efficient way
to achieve a reasonable trade-off of competing performance require-
ment [10]. Several variable step-size strategies have been proposed
for LMS and ZA-LMS [10–14], and the step-size are adjusted ac-
cording to the estimation error mostly. While for group-sparse LMS,
there is little work addressing this issue. Motivated by [15], we pro-
pose in this paper to design a variable-parameter GZA-LMS (VP-
GZA-LMS) and variable-parameter GRZA-LMS (VP-GRZA-LMS)
algorithms. The proposed method is based on an optimization prob-
lem formulation stemming from the stochastic performance model
of the algorithm. This makes the proposed strategy different from
several other heuristic candidates. By minimizing the mean-square-
deviation (MSD) at each iteration, we obtain closed-form expression
of the optimal step-size and regularization parameter, leading to a
faster convergence as well as a lower misadjustment.

Notation. Normal font x denotes scalars. Boldface lowercase
letters x and uppercase letters X denote column vectors and matri-
ces, respectively. The superscript (·)> and (·)−1 denote the trans-
pose and inverse operators, respectively. 0N and 1N denote all-zero
vector and all-one vector of length N . The operator tr{·} takes the
trace of its matrix argument. The mathematical expectation is de-
noted by E{·}. The operator max{·, ·} and min{·, ·} take the max-
imum or minimum of two arguments.

⋃
and

⋂
denote union and

intersection of a collection of sets, respectively. ø denotes empty set.

2. SYSTEM MODEL AND GROUP-SPARSE LMS

Consider an unknown system with output dn characterized by the
linear model

dn = u>nw
? + vn, (1)

where w? ∈ RL is an unknown parameter vector, and un ∈ RL is
a zero-mean regression vector with positive definite covariance ma-



trix. The reference signal dn is assumed to be zero mean. The error
signal vn is assumed to be stationary, independent and identically
distributed (i.i.d.), with zero mean and variance σ2

v , and independent
of any other signal.

Consider the mean-square-error (MSE) cost function J(w),
namely

J(w) =
1

2
E
{

[dn −w>un]2
}
. (2)

with w? being the minimizer of J(w). In this paper we consider
the problem of estimating the unknown parameter vector w? with
a group-sparse structure. This can be addressed by minimizing the
following regularized MSE cost:

wo
GZA = arg min

w
JGZA(w) with

JGZA(w) =
1

2
E
{

[dn −w>un]2
}

+ λ‖w‖1,2
(3)

where the `1,2-norm is used to promote the group-sparsity of the es-
timate, and λ ≥ 0 is the regularization parameter. The `1,2-norm of
a vector w is defined as ‖w‖1,2 =

∑J
j=1 ‖wGj‖2, where {Gj}Jj=1

is a group partition of the whole index set G = {0, 1, . . . , L − 1},

satisfying: (1)
J⋃
j=1

Gj = G, (2) Gj
⋂
Gl = ø when j 6= l. And

wGj denotes a sub-vector ofw indexed by Gj . Using a sub-gradient
update, the iteration ofw in GZA-LMS is given in sub-vector form:

wn+1,Gj = wn,Gj + µ enun,Gj − ρ sn,Gj (4)

for j = 1, . . . , J , where

sn,Gj =

{ wn,Gj

‖wn,Gj
‖
2

for ‖wn,Gj‖2 6= 0

0 for ‖wn,Gj‖2 = 0,
(5)

where en = dn−w>n un is the estimation error, µ is a positive step-
size, un,Gj is a sub-vector of un corresponding to wn,Gj , and the
shrinkage parameter ρ = µλ.

To get enhanced performance in group-sparse system identifica-
tion, the GRZA-LMS was proposed to reinforce the group-sparsity.
Consider the optimization problem:

wo
GRZA = arg min

w
JGRZA(w) with

JGRZA(w)=
1

2
E
{

[dn−w>un]2
}

+λ

J∑
j=1

log(1+
‖wGj‖2

ε
),

(6)

where the log-sum penalty has been introduced to make group-
sparsity attractor take effort only on groups at the same level of
ε [5]. Similarly, using a sub-gradient update yields the GRZA-LMS:

wn+1,Gj = wn,Gj + µ enun,Gj − ρ βn,jsn,Gj , (7)

where βn,j = 1
‖wn,Gj

‖
2
+ε

is a weighting coefficient. Equivalently,

(7) in vector form is given by:

wn+1 = wn + µ enun − ρβn ◦ sn, (8)

where βn and sn are vector form of βn,j and sn,Gj with dimension
L× 1, and ◦ denotes Hadamard product.

Furthermore, we observe from (4) and (7) that the GRZA-LMS
reduces to GZA-LMS by simply replacing the parameters βn,j with
1 for j = 1, . . . , J , that is,

βn,j =

{
1

‖wn,Gj
‖
2
+ε

GRZA-LMS

1 GZA-LMS.
(9)

We will thus derive a variable parameter strategy for GZA-LMS and
GRZA-LMS on the unified form (8), while specific algorithms can
be obtained by setting βn,j according to (9).

3. MODEL-BASED PARAMETER DESIGN OF GRZA-LMS

3.1. Transient Behavior Model of GRZA-LMS

Define the weight error vector w̃n as the difference between the es-
timated weight vectorwn andw?:

w̃n = wn −w?. (10)

To derive a variable parameter strategy, we first study the stochastic
transient behavior of the second-order moments of w̃n over time.
Besides, to keep the calculations mathematically tractable, we intro-
duce the commonly used independence assumption [1]:

A1: The weight-error vector w̃n is statistically independent of
the input vector un.

Subtracting w? from both sides of (8), and using en = vn −
w̃>n un, yields the update of w̃n:

w̃n+1 = w̃n + µunvn − µunu>n w̃n − ρβn ◦ sn. (11)

Using the independence Assumption A1 and relation en = vn−
w̃>n un, the MSE of the GRZA-LMS is given by

E{e2n} = σ2
v + tr{RuQn} (12)

with Qn = E{w̃nw̃>n }. The quantity tr{RuQn} is the excess-
mean-square-error (EMSE) at time instant n, denoted by ζn. The
trace of Qn is the MSD, denoted by ξn = tr{Qn}. Besides, we in-
troduce the whiteness assumption A2 [1] to simplify the derivation:

A2: The input regressor un is a zero-mean white signal with
covariance matrixRu = σ2

uI .
Though introducing Assumption A2 to simplify the derivation,

it turns out that the resulting algorithms work well in moderately cor-
related input scenarios where assumption A2 does not hold. Under
Assumption A2, we relate MSD to EMSE via a scaling factor:

ζn = σ2
u tr{Qn} = σ2

u ξn. (13)

Therefore, we need to determine a recursion for tr{Qn} in order to
relate the MSD at two consecutive time instants n and n + 1. Post-
multiplying (11) by its transpose, taking the expectation and matrix
trace, using Assumptions A1 and A2, we get:

tr{Qn+1} = tr{Qn}+ µ2g + ρ2h+ 2µρl − 2µr1 − 2ρr2 (14)

with
g = σ2

v tr{Ru}+ E{u>n w̃nw̃>n unu>nun} (15)

h = E
{

(βn ◦ sn)>(βn ◦ sn)
}

(16)

l = E
{
w̃>n unu

>
n (βn ◦ sn)

}
(17)

r1 = E
{
w̃>n unu

>
n w̃n

}
(18)

r2 = E
{

(βn ◦ sn)>w̃n
}
. (19)

We have dropped the time index n in left hand side of (15) – (19) for
compactness.



3.2. Parameter Design Using Transient Behavior Model

Now we derive a parameter design strategy for GRZA-LMS using
model (14). Given the MSD ξn at time instant n, we solve for the
parameters that minimize the MSD ξn+1:

{µ?n, ρ?n} = arg min
µ,ρ

ξn+1 | ξn. (20)

Using the recursion (14), the above optimization problem becomes:

{µ?n, ρ?n}=arg min
µ,ρ

tr{Qn+1}

=arg min
µ,ρ

tr{Qn}+µ2g+ρ2h+2µρl−2µr1−2ρr2.

(21)
Equivalently, equation (21) can be written in matrix form as:

ξn+1 = [µρ]H [µ ρ]> − 2 [r1 r2] [µ ρ]> + ξn, (22)

which is a quadratic function of [µ ρ]>, withH =

[
g l
l h

]
.

By decomposing g into two additive terms, it can be proved that
Hessian matrixH could be written as the sum of a covariance matrix
and a positive semidefinite matrix, yielding H is positive semidefi-
nite. Since in practice a covariance matrix is always almost positive
definite [16], we assume further that H is positive definite, which
allows us to obtain the optimal parameters via:

[µ?n ρ
?
n]> = H−1[r1 r2]>. (23)

Using matrix calculation leads to:

µ?n =
hr1 − lr2
gh− l2 (24)

ρ?n =
gr2 − lr1
gh− l2 . (25)

However, the above result cannot be used since it requires statistics
that are not available in online learning scenarios. We now adopt an
approximation for these quantities. The subscript n as time index in
variables gn, hn, ln, r1n and r2n is now added for clearance . With
Assumption A2 the quantity gn can be computed as:

gn = σ2
v tr{σ2

uI}+ tr
{

2RuQnRu + tr{RuQn}Ru

}
= σ2

vσ
2
u L+ (2 + L)σ2

u ζn. (26)

Using the independence Assumption A1 yields:

r1n = ζn. (27)

Then, approximating the expectation in (16), (17) and (19) by their
instantaneous argument yields:

hn ≈ (βn ◦ sn)>(βn ◦ sn) (28)

ln ≈ w̃>n unu>n (βn ◦ sn) (29)

r2n ≈ (βn ◦ sn)>w̃n. (30)

Now we construct an approximation forw? at time instant n in order
to evaluating the weight error vector w̃n. As proposed in [17], one
strategy is to use an one-step approximation of the form:

ŵ?
n = wn − ηn∇J(wn) (31)

where ηn is a positive step-size to be determined. Given the MSD
ξn, we seek ηn that minimizes ξn+1. Following (20)–(25) leads to

ηn = r1n/gn. Further, we approximate the true gradient ∇J(wn)
with instantaneous value −enun. Finally, we have ŵ?

n = wn − pn
with pn = − r1n

gn
enun.

We then adopt the estimator ζ̂n for unknown EMSE ζn:

ên = (1− λ)en + λên−1 (32)

ζ̂n = max{ê2n − σ2
v, 0}, (33)

where λ ∈ [0, 1) is a smoothing factor. To further improve the es-
timation accuracy, we use ζnmin = σ2

u tr{Qn} calculated via (21)
as a lower bound of ζn, since we have minimized tr{Qn} at itera-
tion n − 1. Due to the approximation introduced in the derivation
and the inherent properties of signal realization, ζn is no less than
σ2
u tr{Qn}. Then instead of (33), we use

ζ̂n = max
{
ê2n − σ2

v, ζnmin

}
. (34)

Non-negative constraint of µ and ρ is needed. We did not con-
sidered it in (21) in order to get closed-form solutions (24) and (25).
Now we need to constrain µ and ρ with the following operators:

µ?n = max {µ?n, 0} (35)
ρ?n = max {ρ?n, 0} . (36)

We further impose a temporal smoothing over parameters µ?n and ρ?n,
meanwhile a predefined upper bound µmax of step-size to ensure the
stability of the algorithm:

µn = min {βµn−1 + (1− β)µ?n, µmax} (37)
ρn = βρn−1 + (1− β)ρ?n. (38)

4. SIMULATION RESULTS

Now we present simulation results to illustrate the effectiveness of
our algorithms in non-stationary system identification applications.
The input signal was generated via a first-order AR process defined
as un = αun−1 + zn, where zn is an i.i.d. zero-mean Gaussian
variable with variance σ2

z = 1− α2 (so that σ2
u = 1), and α is the

correlation coefficient of un. We obtained processes un with dif-
ferent levels of correlation through varying the value of α. vn was
an i.i.d. zero-mean white Gaussian noise with variance σ2

v = 0.01.
In all the experiments, the initial weight vector w0 was set to the
all-zero vector 0L. The MSD learning curves were obtained by av-
eraging results over 100 Monte-Carlo runs. Besides, the VP-GZA-
LMS and VP-GRZA-LMS were compared with the standard LMS,
GZA-LMS, GRZA-LMS, ZA-VSSLMS [11], WZA-VSSLMS [11]
algorithms. The last two were variable step-size algorithms for gen-
eral sparse system. For group-sparse algorithms, the group size was
set to 5, and ε of (9) was 0.1. We set parameters of all algorithms
so that their initial convergence speed were almost the same1. Then
by comparing the steady-state MSD, we evaluate their performance.
Two experiments were designed to illustrate the tracking and steady-
state behaviors of the algorithms with uncorrelated and correlated
input signals.

In the first experiment, we compared all the algorithms using
white input signals to make it coincident with design Assumption
A2. The order of the unknown time-varying system was set to L =
35. At time instant n = 1, n = 8000 and n = 16000, we set the

1In non-stationary system identification problems, we set the parameters
only to guarantee almost the same convergence rate during the first group of
system parameters w?

1 , not for all w?.



system parameter vector to w?
1 , w?

2 and w?
3 respectively. w?

2 was
a non-sparse one, while the rest had a group-sparse structure. The
parameter vectorsw?

1 ,w?
2 andw?

3 were defined as:

w?
1 = [0.8, 0.5, 0.3, 0.2, 0.1, 015, −0.05, −0.1, −0.2, −0.3,

−0.5, 05, 0.5, 0.25, 0.5, −0.25, −0.5]>;

w?
2 = [0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 117, −0.1, −0.2,

−0.3, −0.4, −0.5, −0.6, −0.7, −0.8 − 0.9]>;

w?
3 = [1.2, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.2, 0.5, 0.4, 015, −0.4,

−0.5, −0.2, −0.4, −0.5, −0.6 − 0.7, −0.8, −0.9, −1.2]>.

The result is illustrated in Fig. 1. It shows that all other algorithms
outperform LMS in stages w?

1 and w?
3 , demonstrating their effec-

tiveness for group-sparse systems. Further, for VP-GZA-LMS and
VP-GRZA-LMS algorithms, they converged as fast as other com-
peting algorithms when estimating the group-sparsew?

1 , meanwhile
maintaining a lower misadjustement, especially for VP-GRZA-
LMS. The estimation of the non-sparse w?

2 caused a moderate
performance degradation, mainly in their convergence speed. In
this stage, their convergence speeds slowed down compared to the
other algorithms but they reached a smaller MSD. The estimation
of w?

3 confirms the superior performance and tracking capability of
VP-GZA-LMS and VP-GRZA-LMS algorithms.
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Fig. 1. Transient behaviors of the compared algorithms in a time-
varying system with a white input.

In the second experiment, we used the same setting except that
the correlation coefficient αwas changed to 0.5. The learning curves
of all algorithms are provided in Fig. 2. Besides, for VP-GZA-LMS
and VP-GRZA-LMS, the evolution of step-size and regularization
parameter over time are provided in Fig. 3. Though there was some
performance degradation of VP-GZA-LMS and VP-GRZA-LMS al-
gorithm compared with the first experiment, the VP-GRZA-LMS
algorithm still yielded the lowest steady-state MSD along with the
fastest convergence speed among all the competing algorithms for
group-sparse systems w?

1 and w?
3 . While for VP-GZA-LMS, its

performance is almost on the same level as the best of the compet-
ing algorithms. Despite the loss of the whiteness Assumption, the
VP-GZA-LMS and VP-GRZA-LMS algorithms still work well with
correlated inputs for group-sparse system. Additionally, results in

Fig. 3 shows that VP-GZA-LMS and VP-GRZA-LMS set the step-
size and the regularization parameter to large values in order to en-
sure tracking ability and promote sparsity at the beginning of each
estimation phase. Then they gradually reduced these values to en-
sure small MSD.
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Fig. 2. Transient behaviors of compared algorithms in a time-
varying system with a colored input.
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5. CONCLUSIONS

In this paper, we introduced VP-GZA-LMS and VP-GRZA-LMS al-
gorithms to address online group-sparse system identification prob-
lems. Based on the transient behavior model of the GRZA-LMS,
we proposed to minimize the MSD with respect to the step-size and
regularization parameter simultaneously at each iteration. This led
to a convex optimization problem with a closed-form solution. Sim-
ulation results demonstrated the effectiveness of VP-GZA-LMS and



VP-GRZA-LMS algorithms over other existing variable step-size al-
gorithms. In addition, VP-GZA-LMS and VP-GRZA-LMS depend
on a few number of hyperparameters that do not drastically affect the
performance.
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