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Abstract—Kernel-based nonlinear mixing models have been
applied to unmix spectral information of hyperspectral images
when the type of mixing occurring in the scene is too complex or
unknown. Such methods, however, usually require the inversion
of matrices of sizes equal to the number of spectral bands.
Reducing the computational load of these methods remains a
challenge in large scale applications. This paper proposes a
centralized band selection (BS) method for supervised unmixing
in the reproducing kernel Hilbert space (RKHS). It is based upon
the coherence criterion, which sets the largest value allowed for
correlations between the basis kernel functions characterizing
the selected bands in the unmixing model. We show that the
proposed BS approach is equivalent to solving a maximum clique
problem (MCP), i.e., searching for the biggest complete subgraph
in a graph. Furthermore, we devise a strategy for selecting the
coherence threshold and the Gaussian kernel bandwidth using
coherence bounds for linearly independent bases. Simulation
results illustrate the efficiency of the proposed method.

Index Terms—Hyperspectral data, nonlinear unmixing, band
selection, kernel methods, maximum clique problem.

I. INTRODUCTION

The unmixing of spectral information acquired by hy-
perspectral sensors is at the core of many remote sensing
applications such as land use analysis, mineral detection,
environment monitoring and field surveillance [1], [2]. Such
information is typically mixed at the pixel level due to the
low resolution of hyperspectral devices or because distinct
materials are combined into a homogeneous mixture [3]. The
observed reflectances then result from mixtures of several pure
material signatures present in the scene, called endmembers.
Considering that the endmembers have been identified, hyper-
spectral unmixing (HU) refers to estimating the proportional
contribution of each endmember to each pixel in a scene.

The linear mixture model is widely used to identify and
quantify pure components in remotely sensed images due to its
simple physical interpretation. Though the linear model leads
to simple unmixing algorithms and facilitates implementation,
there are many situations to which it is not applicable. These
include scenes where there is complex radiation scattering
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among several endmembers, as may happen in some vegetation
areas [4]. In such situations, nonlinear mixing models must
be considered [5], [6]. Several model-based nonlinear HU
methods assume prior knowledge of the mixing that actually
occurs in the scene, e.g., see [5]–[9]. However, the complexity
of real mixing mechanisms, and the lack of prior knowledge
about them in many practical applications has led to the con-
sideration of flexible nonlinear mixing models that can model
generic nonlinear functions. Many model-free nonlinear HU
strategies have been proposed, including classification of abun-
dances coefficients [10], graph-based approximate geodesic
distances [11], [12], and kernel-based algorithms [13]–[17].
Kernel methods provide a non-parametric representation of
functional spaces, and can model nonlinear mixings of arbi-
trary characteristics [5], [6], [13]–[16], [18].

Kernel-based methods are efficient machine learning tech-
niques [19]–[21] that consist mainly of linear algorithms op-
erating in high dimensional reproducing kernel Hilbert spaces
(RKHS), into which the data have been mapped using kernel
functions [19]. Working in such high dimensional feature
spaces is possible due to the so-called kernel trick, which
allows the computation of inner products in the feature space
through a kernel function in the input space [22]. A limitation
of kernel methods for HU is that they usually require the
inversion of matrices whose dimensions equal the number
of spectral bands. Thus, reducing their computational cost
remains a challenge for their use in large-scale applications.

A possible way of reducing computational cost is to perform
band selection (BS) prior to unmixing [23]. The literature
proposes many BS strategies including information-based
methods [24], [25], band prioritization techniques [26], [27],
sparsity promoting methods [28], [29], spectral distance strate-
gies [26], [30], and a combination of manifold ranking and
saliency detection [31]. However, most efforts were focused
on discriminating endmembers since these methods deal with
the classification of spectral patterns, see e.g. [24], [29], [32]
and references therein. When the objective is to unmix spectral
information, subspace projection techniques [33] tend to be
preferred over BS [26], [28], [34], [35] for reducing the
complexity of linear unmixing processes. The reason is that
high dimensional data in linearly-mixed images are confined
to a low-dimensional simplex defined by the endmembers [3].
However, the simplex property is not preserved in the presence
of nonlinearly-mixed pixels [5], rendering projection tech-
niques less attractive.

In [25], [29], [32], the authors propose different unsuper-
vised BS strategies for classification of spectral patterns. A
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multitask sparsity pursuit (MTSP) criterion is used in [29],
while clustering is used in [32]. In [25], the authors combine
a graph-based formulation with structure-aware measures for
band informativeness and independence. They provide an
efficient global search strategy using a dominant set extraction
technique. Concerning BS techniques applied to HU, the au-
thors in [34] select bands by applying the unmixing algorithm
to a cross validation set. A discrimination metric is then
applied, which is based on the root mean square error of the
abundance estimates. In [28], simultaneous band selection and
endmember detection is proposed based on the ICE algorithm,
which performs a least squares minimization of the residual
sum of squares (RSS). The progressive band selection (PBS)
algorithm [26], sequentially selects bands that were previously
ranked according to a prioritization criterion such as entropy or
variance1. This method also applies a decorrelation procedure
to eliminate highly correlated adjacent bands, and exploits the
virtual dimension (VD) [36] to determine upper and lower
bounds for the number of bands to select. The PBS method
offers good performance for linear unmixing problems.

All the band selection approaches discussed above were
proposed for unmixing of linearly mixed hyperspectral images.
Their application to HU of nonlinearly mixed images is not
trivial, especially considering the interplay of the choice of
number of bands and the actual BS in determining unmix-
ing quality. Recently, we presented initial results on a BS
method to reduce the computational complexity of kernel-
based nonlinear HU [37]. The method in [37] employs the
kernel k-means algorithm to identify clusters of spectral bands
in the corresponding RKHS. The cluster prototypes are then
the selected bands. This method reduces significantly the
computation time required for nonlinear unmixing without
compromising the accuracy of abundance estimation. In this
approach, however, bands are selected based solely on the
distances between the RKHS images of the input vectors,
neither as a function of the resulting accuracy of the unmixing
procedure, nor as a function of the reconstruction error of any
band from the bands in the dictionary. In addition, it requires
an a priori definition of the final number of bands. Hence,
some cluster prototypes can be close to others and degrade
problem conditioning if this parameter is overestimated. To the
best of our knowledge, [37] is the only method available in the
literature for kernel-based nonlinear unmixing of hyperspectral
data with band selection in the RKHS.

In this paper we propose new coherence-based approaches
for band selection in the RKHS for application in kernel-based
supervised nonlinear unmixing of hyperspectral images. The
main advantage of a coherence-based method with respect to
the approach in [37] is that it seeks a reduced number of
bands that are able to represent well all the other bands in the
RKHS (in the sense of the reconstruction error of any band
from the bands in the dictionary) without requiring extensive
calculations for selecting the basis elements. The effectiveness
of the coherence criterion for online prediction of time series
has been verified, for instance, in [38].

1Although PBS select bands in the original data space, we consider this
method in the experiment section for benchmarking.

Initially, we introduce an automatic parameter selection
strategy to be employed in the band selection and unmixing
algorithms. Using this parameter set, we then propose a new
greedy band selection algorithm. This greedy approach is
appropriate for online settings due to its reduced complexity.
Though it leads to significant complexity reductions with
similar performance when compared to the full band un-
mixing, the online constraint requires a sequential dictionary
construction, what may preclude the examination of a large
amount of possibilities. We then address offline band selection
problem by formulating it as a maximum clique problem. This
new formulation allows a systematic search for the largest
number of bands required to form a linearly independent
RKHS basis for a given coherence level. The new method
results in dictionaries of kernel functions, and thus spectral
bands, that are less coherent than those obtained using kernel
k-means initialized with dictionaries of the same size. The
application of this method is verified to lead to better average
performance than those obtained using either kernel k-means
or the proposed greedy algorithm, with nonlinear unmixing
performance equivalent to the full band solution.

This paper is organized as follows. Section II reviews
the main concepts of hyperspectral image unmixing and two
popular nonlinear mixing models that will be used to generate
synthetic data for the simulations presented in Section VII.
Section III reviews least-square support vector regression
applied to hyperspectral unmixing and the SK-Hype algorithm
for nonlinear unmixing. This algorithm will be used to com-
pare the nonlinear unmixing results obtained using all the spec-
tral bands and performing band selection prior to unmixing.
Section IV introduces an original parameter selection strategy
to be employed in the band selection algorithms. The new
methodology aims to select a reduced number of bands that are
able to represent well all the other bands in the RKHS (in the
sense of the reconstruction error of any band from the bands in
the dictionary) and that does not require extensive calculations
for selecting the elements of this basis. Using this dictionary
construction methodology, Section V proposes a new greedy
band selection algorithm. Then, in Section VI we show that
the band selection problem can be formulated as a maximum
clique problem, which leads to a novel batch algorithm for
band selection. Section VII presents simulation results with
synthetic and real data to illustrate the performances of the
proposed band selection methods.

II. HYPERSPECTRAL IMAGES AND UNMIXING

Observed pixels in HIs are usually modeled as a function,
possibly nonlinear, of the endmembers and an additive noise
that accounts for the measurement noise plus a modeling error,
namely,

r = ψ(M) + e (1)

where r = [r1, . . . , rL]
> is a vector of observed reflectances

in L spectral bands, M = [m1, . . . ,mR] is the L×R matrix
of R endmembers, whose i-th column mi corresponds to
an endmember, e is a white Gaussian noise (WGN) vector,
and function ψ represents an unknown mixing mechanism.
Several models of the form (1) were proposed in the literature,
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depending on the linearity or nonlinearity of ψ, the nature of
mixture, and other properties [5].

A. The linear mixing model

The linear mixing model (LMM) considers only interactions
of light rays with a single material, neglecting interactions
between light and several materials [3]. The LMM assumes
that r is a convex combination of the endmembers, namely,

r =Mα+ e

subject to 1>α = 1 and α � 0
(2)

where α = [α1, . . . , αR]
> denotes the vector of abundances

of each endmember in M , and � is the entrywise ≥ operator.
Being proportions, the entries of α cannot be negative and
should sum to one. The observation r` in the `-th wavelength
of (2) can be written as

r` =m
>
λ`
α+ e` (3)

where mλ`
denotes the `-th row of M written as a column

vector. In the noiseless case (e` = 0), the sum-to-one and
positivity constraints over α in (2) restrict the data to a simplex
whose vertices are the endmembers.

B. Nonlinear mixing models

Most unmixing techniques require the definition of a mixing
model that analytically describes how the endmembers com-
bine to form the mixed spectrum r. Ideally, mixing models
should be physically motivated, linking its parameters to
physical phenomena. Physically motivated models exist. For
instance, [39] provides a description of the mixing mechanism
that is based on radiative transfer, and that can accurately
describe the light scattering happening in the observed scene.
Unfortunately, however, such physically motivated models
tend to lead to very complex unmixing problems. Hence, most
HI unmixing methods rely on models that include reasonable
simplifying assumptions and that lead to manageable unmixing
problems.

Several nonlinear models have been proposed to describe
complex mixing mechanisms [5], [6]. We now review two
popular models that will be used later. These models permit
the generation of synthetic images with a controlled level of
nonlinearity that can be used to assess the performance of the
proposed methods. The level of performance assessment using
real images is compromised by the uncertainties of the actual
mixing details (lack of ground truth).

The generalized bilinear model (GBM) [40], [41] is defined
as follows:

r =Mα+

R−1∑
i=1

R∑
j=i+1

δij αiαjmi �mj + e

subject to 1>α = 1 and α � 0

(4)

where each parameter δij ∈ [0, 1] characterizes the interaction
of endmembers mi and mj , and � denotes the Hadamard
product. For simplicity, we shall consider a simplified version
of this model where all the bilinear terms in (4) are weighted
by a single parameter δ = δij for all (i, j).

The post nonlinear mixing model (PNMM) [41] is defined
as follows:

r = g(Mα) + e (5)

where g is a nonlinear function applied to the noiseless LMM.
Thanks to function g, the PNMM specifies a large family of
nonlinear mixing models via a single expression. For instance,
the PNMM considered in [16] is given by

r = (Mα)ξ + e (6)

where (v)ξ denotes the exponentiation applied to each entry
of v. For ξ = 2, (6) is a bilinear model closely related to the
GBM but without a linear term. The PNMM has been explored
with different forms for g [42], [43].

The GBM and the PNMM models essentially describe
situations where the light interacts first with an endmember,
and then with a second one, before being captured by the hy-
perspectral sensor. Other nonlinear models can be considered
depending on the characteristics of the scene [40], [41], [44]–
[50]. More importantly, information about these characteristics
is usually missing, and it makes sense to consider nonparamet-
ric models that do not rely on strong assumptions.

III. LS-SVR FOR HYPERSPECTRAL UNMIXING

Kernel-based methods consist of mapping observations from
the original input space into a feature space by means of
a nonlinear function. Nonlinear regression problems can be
addressed in an efficient way in this new space as they are
converted to a linear problem. We shall now review the main
definitions related to RKHS [20], [51]–[53].

A. Mercer kernels and RKHS

The theory of positive definite kernels emerged from the
study of positive definite integral operators [54], and was fur-
ther generalized for the study of positive definite matrices [55].
It was established that, to every positive definite function

κ :M×M→ R (7)

defined over a non-empty compact M ⊂ Rd, there corre-
sponds one and only one family of real-valued functions onM
that defines a Hilbert space H endowed with an unique inner
product 〈·, ·〉H and the associated norm ‖·‖H, and admitting
κ as a reproducing kernel [22]. This means that κ(·,m) ∈ H
for all m ∈M, and has the reproducing property defined as:

ψ(m) = 〈ψ, κ(·,m)〉H (8)

for all ψ ∈ H and m ∈ M. Replacing ψ by κ(·,m′) in (8)
leads to:

κ(m,m′) = 〈κ(·,m), κ(·,m′)〉H (9)

for all m,m′ ∈ M. Equation (9) is the origin of the now
generic denomination reproducing kernel to refer to κ. Note
that H can be restricted to the span of {κ(·,m) : m ∈ M}
because, according to the reproducing property (8), nothing
outside this set affects ψ evaluated at any point of M. Let us
denote by ϕ the map fromM to H that assigns κ(·,m) to m.
Relation (9) implies that κ(m,m′) = 〈ϕ(m), ϕ(m′)〉H. This
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means that the kernel κ evaluates the inner product of any
pair of elements of M mapped into H without any explicit
knowledge of ϕ or H. This principle is called the kernel trick.

Several kernel functions have been considered in a variety of
applications during the past two decades [56]. Among the most
frequently used kernels, we highlight the Gaussian kernel:

κ(m,m′) = exp

(
−‖m−m

′‖2

2σ2

)
(10)

where σ is the kernel bandwidth.

B. The Representer Theorem

The BS method proposed in this paper is based on the
approximation of functions in a RKHS. The following is a
well known result for nonlinear regressions using reproducing
kernels.

Let κ : M × M → R be a kernel, and let H be the
RKHS associated with it. Consider the least-squares approach
to solve the problem of determining a function ψ(·) of H that
minimizes the sum of L squared errors e` between samples r`
of the desired response and the corresponding model output
samples ψ(m`) = 〈ψ(·), κ(·,m`)〉H, namely,

min
ψ∈H

L∑
`=1

|r` − ψ(m`)|2. (11)

By virtue of the representer theorem [53], the function ψ(·)
of H minimizing (11) can be written as a kernel expansion in
terms of available data:

ψ(·) =
L∑
`=1

α` κ(·,m`). (12)

Regarding the hyperspectral unmixing problem, consider an
observation r` at the `-th wavelength, that is, the `-th entry of
r, and the column vector mλ`

of the R endmember signatures
at the `-th wavelength, that is, the (transposed) `-th row of M .
By analogy with the LMM (3), we write:

r` = ψ(mλ`
) + e` (13)

with ψ a real-valued function in a RKHS H that characterizes
the nonlinear interactions between the endmembers, and e`
an additive noise at the `-th band. The next section describes
the classical application of a kernel method to nonlinear un-
mixing of hyperspectral data. Different kernel-based unmixing
methods could be considered. As the focus of this work is
on the improvement that can be obtained using BS prior
to unmixing, we consider a single state-of-the-art nonlinear
unmixing algorithm (the SK-Hype), which been shown to
provide good unmixing performance [5], [15], [16].

C. LS-SVR: least squares support vector regression

In order to estimate ψ in the least squares sense, we can
formulate the following convex optimization problem, also
called LS-SVR [21]:

min
ψ∈H

1

2
‖ψ‖2H +

1

2µ

L∑
`=1

e2`

such that e` = r` − ψ(mλ`
), ` = 1, . . . , L.

(14)

Consider the Lagrangian function

L(ψ, e,β) = 1

2
‖ψ‖2H+

1

2µ

L∑
`=1

e2`−
L∑
`=1

β` (e`−r`+ψ(mλ`
)).

(15)
where β = [β1, . . . , βL]

> is the vector of Lagrange multipli-
ers. Using the directional derivative with respect to ψ [57], the
conditions for optimality with respect to the primal variables
ψ and e` are given by

ψ∗ =

L∑
`=1

β`κ(·,mλ`
) (16)

e∗` = µβ` (17)

Substituting (16) and (17) in (15), we obtain the following
function to be maximized with respect to β:

L(ψ∗, e∗,β) = −1

2
β>(K + µI)β + β>r, (18)

whereK is the Gram matrix whose (i, j)-th entry is defined by
κ(mλi

,mλj
). Now we can state the following dual problem:

β∗ = argmax
β

−1

2
β>(K + µI)β + β>r. (19)

Its solution is obtained by solving the linear system:(
−I K + µI

)(
r

β

)
= 0. (20)

Although the formulation (14)–(19) allows one to address an
estimation problem inH by solving the linear system (20), this
approach is computationally demanding since it involves the
inversion of L× L matrices. This issue is critical, as modern
hyperspectral image sensors employ hundreds of contiguous
bands with an ever increasing spatial resolution. Hence, it is of
major interest to consider band selection techniques that lead
to significant computational cost reduction without noticeable
quality loss. Considering (16), a possible strategy is to focus
on a reduced-order model of the form:

ψ =
∑
j∈ID

βjκ(·,mλj ) (21)

where ID ⊂ {1, . . . , L} is an M -element (M < L) subset of
indexes. We shall call D = {κ(·,mλj

)}j∈ID the dictionary.
This reasoning is well established in the study of representa-

tion of nonlinear functions in a RKHS, and directly applies to
the solution of the LS-SVR. The observed hyperspectral image
is a nonlinear function of the L rows mλ`

, ` = 1, . . . , L,
of M , and kernel-based nonlinear unmixing algorithms rely
on a good representation of this nonlinear function in the
RKHS. Also, LS-SVR performs unmixing by maximizing
convex criteria in this RKHS. Finally, the representer theorem
establishes that the optimal solution can be written as a linear
combination of kernelized inputs, in our case kernelized bands
as shown in (16). Hence, a good strategy to construct ID
in (21) is to seek a reduced set of linearly independent
functions κ(·,mλj

), j ∈ ID that could be linearly combined
to reconstruct any κ(·,mλj

), j /∈ ID with a reduced error.
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One low complexity criterion that can be used to this end is
the coherence [38], as will be shown latter.

Now, to solve the hyperspectral nonlinear unmixing problem
frequently requires a formulation that includes the possibility
of estimating the abundances associated with each endmember.
This is not possible using the cost function (14), which is
not parameterized by the endmember abundances. The next
section briefly reviews the SK-Hype algorithm [15], which
addresses this limitation by adding an extra linear term to
the cost function and by introducing a new parameter u to
adequately distribute the solution of the optimization problem
between the linear and the nonlinear contributions.

D. The SK-Hype Algorithm
This section reviews the SK-Hype algorithm2 for nonlinear

unmixing of HIs [15]. It generalizes the LS-SVR method
by considering a mixing model consisting of a linear trend
parametrized by the abundance vector α and a nonlinear
residual component ψ. This model is given by:

r` = uα>mλ`
+ (1− u)ψ(mλ`

) + e` (22)

where u ∈ [0, 1) controls the amount of linear contribution to
the model and ψ(·) is an unknown function in an RKHS H.
SK-Hype solves the optimization problem

min
α,ψ,u

1

2

(
1

u
‖α‖2 + 1

1− u
‖ψ‖2H

)
+

1

2µ

L∑
`=1

e2`

subject to α � 0, 1>α = 1, and

e` = r` − uα>mλ`
− (1− u)ψ(mλ`

).

(23)

which is convex under mild continuity conditions [15]. Prob-
lem (23) is solved using a two stage alternating iterative
procedure with respect to (α, ψ) and u. For fixed u and
Lagrange multipliers β and γ, the dual problem of (23) is
given by [15]

max
β,γ

G(u,β,γ) =

− 1

2

(
β

γ

)>(
Ku + µI uM

uM> uI

)(
β

γ

)

+

(
r

0

)>(
β

γ

)
subject to γ � 0

(24)

with Ku = uMM> + (1− u)K. Solving (24) is equivalent
to solving the linear system(

−I Ku + µI uM

0 uM> uI

) r

β

γ

 = 0. (25)

Denoting β∗ and γ∗ the solutions of (24), the solution of the
primal problem (23) for u fixed is [15]

α∗ = M>β∗+γ∗

1>(M>β∗+γ∗)

ψ∗ = (1− u)
∑L
`=1 β

∗
` κ(·,mλ`

)

e∗` = µβ∗`

(26)

2Matlab code available at www.cedric-richard.fr

The alternating optimization is completed by using (26)
in [15], defining the resulting cost function J(u), solving

min
u
J(u) subject to 0 < u < 1 (27)

and continue by iteratively solving (25) and (27) to find the
global solution [15].

IV. SETTING THE PARAMETERS FOR BAND SELECTION

BS has been an active topic of research for classifica-
tion of spectral patterns, see [24], [58]–[61] and references
therein. Subspace projection techniques [33], [62], [63] tend,
however, to be preferred over BS [26], [35] for reducing
the complexity of linear unmixing processes. They use the
property that high-dimensional hyperspectral data are confined
to a low-dimensional simplex in linearly-mixed images with
only a few endmembers [3]. This assumption becomes invalid
when nonlinear mixing phenomena are involved. In a recent
work [37], we introduced a BS strategy method that employs
the kernel k-means algorithm to identify clusters of spectral
bands in the RKHS where nonlinear unmixing is performed.
The HU results obtained were encouraging. One drawback of
the approach in [37] is the need for an arbitrary choice of the
order of the nonlinear model, i.e., the number of selected bands
(or, equivalently, the dimension of the dictionary). Another
limitation of the method in [37] is that BS is performed based
on the distances among different bands in the RKHS. Hence,
the optimality of the solution is not driven by any direct
measure of modeling accuracy. In this section, we introduce
a new BS framework based on the coherence criterion [38]
and two algorithms to address this problem. The first is a
greedy approach, which is attractive for online applications
which require reduced computational effort. The second is a
centralized approach, in which the solution is found through
a maximum clique search in a graph. Although these two
approaches are connected, they differ in their formulation and
in the characteristics of the sets of bands they select. The use
of a coherence-based method allows the search for a reduced
number of bands that are able to represent well all the other
bands in the RKHS (in the sense of the reconstruction error of
any band from the bands in the dictionary) without the need
for extensive calculations to select the elements of this basis.

A. Coherence criterion for dictionary selection

Coherence is a parameter of fundamental interest for char-
acterizing dictionaries of atoms in linear sparse approximation
problems [64]. It was first introduced as an heuristic quantity
for Matching Pursuit in [65]. Formal studies followed in [66],
and were enriched for Basis Pursuit in [67], [68].

Consider a set of kernel functions {κ(·,mλ`
)}`=1,...,M in

H. The definition of coherence was extended to RKHS as [38]:

µ = max
i 6=j
|〈κ(·,mλi), κ(·,mλj )〉H|

= max
i 6=j
|κ(mλi ,mλj )|

(28)

where κ is a unit-norm kernel. Otherwise, replace κ(·,mλi
)

with κ(·,mλi
)/
√
κ(mλi ,mλi) in (28). Parameter µ is the

largest absolute value of the off-diagonal entries in the Gram
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matrix. It reflects the largest cross correlation in the dictionary
{κ(·,mλ`

)}`, and is equal to zero for every orthonormal
basis. A dictionary is said to be incoherent when its co-
herence µ is small. Although its definition is rather simple,
coherence possesses important properties [38]. In particular,
it can be shown that the kernel functions in the dictionary
D = {κ(·,mλ`

)}`=1,...,M are linearly independent if (M −
1)µ < 1. This sufficient condition illustrates that the coherence
(28) provides valuable information on a dictionary at low
computational cost. Other properties are discussed in [38].

Kernel-based dictionary learning methods usually consider
approximate linear dependence conditions to evaluate whether
a candidate kernel function κ(·,mλi

) can be reasonably well
represented by a combination of the kernel functions that are
already in the dictionary D. To avoid excessive computational
complexity, a greedy dictionary learning method has been
introduced in [38]. It consists of inserting the candidate
κ(·,mλi) into the dictionary D provided its coherence is still
below a given threshold µ0, namely,

max
j∈ID

|κ(mλi
,mλj

)| ≤ µ0 (29)

where µ0 is a parameter in [0, 1) determining both the maxi-
mum coherence in D and its cardinality |D|.

Using coherence criterion for BS allows to explicitly limit
the correlation of kernel functions in the dictionary. This
contrasts with the kernel k-means strategy, which starts from a
number of dictionary elements prescribed by the user without
taking the coherence of kernel functions into consideration.

B. Automatic parameter settings

A coherence-based BS in the RKHS includes the choice of
three design parameters, namely the coherence threshold µ0,
the dictionary cardinality |D| and the kernel bandwidth σ. This
section proposes a procedure for automatic parameter setting.

Let Kσ be the L × L Gram matrix whose (i, j)-th entry
is defined by κσ(mλi

,mλj
), where κσ denotes the Gaussian

kernel (10) parametrized by the bandwidth σ. Let D be an M -
element dictionary with coherence µ and index set ID. Then,
as shown in [38], a sufficient condition for linear independence
of the M elements of D is given by (M −1)µ < 1. We write:

µ <
1

(M − 1)
. (30)

We assume an initial objective to build a dictionary with
(approximately) M linearly independent elements. We thus
propose to set the coherence threshold µ0 as:

µ0 =
1

(M − 1)
(31)

and adjust the bandwidth σ to obtain a Gram matrix Kσ

whose entries are close to µ0 in some sense. To allow some
flexibility in the construction of the dictionary, we propose to
adjust σ such that the average value of the off-diagonal entries
Kσij |(i 6=j) is equal to µ0. Hence, we set

2

L2 − L

L−1∑
i=1

L∑
j=i+1

Kσij
= µ0 (32)

and determine σ2 as the solution of the following optimization
problem:

σ2 =argmin
σ2

 2

L2 − L

L−1∑
i=1

L∑
j=i+1

[K1ij ]
1/σ2

− µ0

2

s. t. σ2 ∈ R+

(33)

where K1 =Kσ is the Gram matrix for σ = 1. We emphasize
that since Kσij

≤ 1, (32) is a decreasing function of σ−2, and
thus (33) has a unique solution. Finally, we determine KD as
the largest sub-matrix of Kσ whose all off-diagonal entries
satisfy (29), which will be addressed in the sequel.

V. GREEDY BAND SELECTION ALGORITHM

Inspired by the good results obtained in [38] for online data
prediction, we propose in this section a greedy BS criterion
using the parameters determined by the procedure described
in Section IV-B.

The greedy coherence-based band selection (GCBS) algo-
rithm starts with an initial guess M for the number of bands
to be selected. The dictionary is then initialized by arbitrarily
selecting the first band. The procedure then continues for the
other bands, and is summarized by the following steps:

1) Given a maximum desired number of bands M , the
coherence threshold µ0 and the kernel bandwidth σ are
determined using (31) and solving (33) respectively.

2) The Gram matrixKσ is built. The first band is randomly
selected and included in the dictionary index ID.

3) The coherences between the bands not in the dictionary
and bands in ID are sequentially compared with µ0 and
added to the dictionary if condition (29) is satisfied.

The GCBS is detailed in Algorithm 1. The inputs to
Algorithm 1 are the maximum desired number M of bands
and the L × L Gaussian kernel Gram matrix for σ = 1 and
entries K1ij = κ(mλi

,mλj
) = exp

(
−0.5‖mλi

−mλj
‖2
)
.

It returns the index of selected bands and the Gaussian kernel
bandwidth σ. Initialization occurs in line 1, where the index
set ID is initialized with the first spectral band index, the
number Nb of bands in the dictionary is set to one, and the
coherence threshold µ0 is adjusted according to (31). Next,
σ2 is determined in line 2 by solving problem (33), and the
Gram matrix Kσ is computed in line 3 for the optimum σ2.
From line 4 to line 13 the algorithm sequentially tests all the
L−1 remaining bands using condition (29). Breaking the parts
down, in line 5 a zero vector c of length Nb is created, and the
off diagonal terms (`, IDj

) of the Gram matrix Kσ are stored
in c. If the maximum absolute value of the entries of c is less
than the coherence threshold (line 9), then the `-th band index
is added to ID, and Nb is incremented by one (lines 10 and
11). Finally, the algorithm returns the complete set of selected
bands and the kernel bandwidth in line 14.

Although GCBS has a reduced computational cost, its
dependence on the sequence of bands tested (initialization)
may result in suboptimal solutions. The next section presents
an alternative algorithm that leads to more effective solutions
for batch mode applications.
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Algorithm 1: Greedy Coherence-based BS (GCBS)
Input : The L× L Gram matrix K1 = (Kσ)σ=1, and

the desired number M of atoms.
Output: The indices ID of selected atoms, and the

Gaussian kernel bandwidth σ2.
1 Initialization: ID = {1}, Nb = 1, µ0 = 1/(M − 1);
2 Find σ2 solving (33);
3 Compute Kσ using σ2 obtained in line 2;
4 for ` := 2 to L do
5 c := 0Nb×1;
6 for j := 1 to Nb do
7 cj :=Kσ`,IDj

;
8 end
9 if max(|cj |) ≤ µ0 then

10 Insert ` into ID;
11 Nb := Nb + 1;
12 end
13 end
14 return ID, σ2;

VI. BATCH BAND SELECTION ALGORITHM

This section proposes a new batch band selection algorithm
in the RKHS. First, we show that the BS in RKHS can be
formulated as the solution of a maximum clique problem.
Then, we briefly review the major solutions available to solve
this problem and justify the choice of the algorithm to be
employed in our proposed BS method. Finally, we present the
details of the proposed batch BS algorithm.

A. Band selection as a maximum clique problem

To circumvent the limitations of GCBS in identifying all
bands satisfying the prescribed coherence threshold, a possible
approach is to seek the largest subset of spectral bands for
which the coherences between all pairs of elements are below
the threshold µ0.

Consider a set of kernel functions {κ(·,mλ`
)}`=1,...,L.

Determining a subset D with a prescribed coherence level can
be viewed as a two-step procedure. The first step aims at listing
all the pairs of functions that satisfy the coherence rule (29).
This can be performed by constructing a L×L binary matrix
B with entries defined as:

Bij =

{
1 if |κ(mλi ,mλj )| ≤ µ0

0 otherwise.
(34)

The second step consists of finding in B, up to a simultaneous
reordering of its rows and columns, the largest submatrix
of only ones. This problem can be recast as determining a
maximum clique in an undirected graph G = {V,E}, where
each vertex ` of V = {1, . . . , L} corresponds to a candidate
function κ(·,mλ`

), and edges in E ⊆ V × V connecting the
vertices are defined by the adjacency matrix B. Two vertices
are said to be adjacent if they are connected by an edge. A
complete subgraph of G is one whose vertices are pairwise ad-
jacent. The maximal clique problem (MCP) consists of finding

1

5

4

3
2

Fig. 1: The maximum clique problem (MCP)

the maximal complete subgraph of G [69]. This problem is NP-
Complete [70]. Figure 1 illustrates this problem in the context
of BS. This figure shows, for instance, that the coherence of
κ(·,mλ1

) and κ(·,mλ4
) is lower than the preset threshold µ0,

and the coherence of κ(·,mλ1) and κ(·,mλ2) is larger than
µ0. This graph has one maximum clique defined by the set of
vertices ID = {1, 3, 4, 5}, which means that the coherence of
the dictionary D = {κ(.,mλj

)}j∈ID is lower than µ0 and it
has maximum cardinality. A vast literature exists on maximum
clique problems (MCP), see [71] and references therein. The
next section reviews the main algorithms for MCP.

B. The maximum clique problem

MCP has a wide range of practical applications arising in
a number of domains such as bioinformatics, coding theory,
economics, social network analysis, etc. Given its theoretical
importance and practical interests, considerable efforts have
been devoted for deriving exact and heuristic algorithms.
Efficient exact methods have been designed mainly based on
the branch-and-bound (B&B) framework. Dynamic bounds on
the clique size are used to prune (or discard) branches during
search, and then dramatically reducing the search space [72].
Although algorithms are now much faster and efficient than
their past counterparts [73], the inherent complexity of exact
methods can still lead to a prohibitive computation time
when large problems are addressed [71]. To handle problems
whose optimal solutions cannot be reached within a reasonable
time, various heuristic and metaheuristic algorithms have been
derived with the purpose of providing sub-optimal solutions in
an acceptable time. In this paper, however, we shall focus on
exact algorithms since our application concerns small graphs
with a number of vertices equal to the number of bands.

Since the introduction of the Carraghan and Pardalos (CP)
exact algorithm [72], many refinements have been proposed
to improve its performance with a focus on two main issues.
The first one is to tighten the upper bound on the maximum
clique during search for the purpose of more efficient subtree
pruning. The second one is to improve the branching rule, and
then select the most promising vertices to expand candidate
cliques. In [71], the authors classify the exact MCP algorithms
into four groups, depending on their strategies for pruning
and branching. The first group solves sub-clique problems for
each vertex with iterative deepening and pruning strategies.
Examples are the CP algorithm [72] and its improved ver-
sion [74]. Both algorithms are sensitive to the order of vertices,
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which can result in drastically different execution times for a
given graph [74]. A second group is based on vertex coloring
techniques [75]. The most prominent algorithms in this group
use B&B strategies based on subgraph coloring. Examples of
algorithms are BT and the recent MCQ, MCR, MaxCliqueDyn,
BB-MaxClique, among others [71]. The third group improves
the basic CP by tightening candidate sets via the removal of
vertices that cannot be used to extend the current clique to
a maximum clique. Along this line, three B&B algorithms,
denoted DF, χ and χ+DF were proposed in [76]. The fourth
group consists of the exact methods based on MaxSAT [77],
which improve the techniques based on vertex coloring. The
MaxCLQ algorithm proposed in [77] is considered to be very
effective and solved the DIMACS problem (p hat1000–3) for
the first time [71]. A complex approach (ILS&MaxCLQ) that
combines different algorithms such as the MaxCLQ, MCS and
the ILS, was recently proposed [78]. A comparative discussion
on exact methods is presented in [71]. The MaxCLQ and
ILS&MaxCLQ were the only methods to solve all the pre-
sented problems, with the smallest CPU times for the former.

C. The Batch BS Algorithm

Similarly to the GCBS algorithm, this approach uses the
methodology presented in Section IV-B to set the Gaussian
kernel bandwidth and the coherence threshold. Thus, an initial
guess for the maximum desired number M of bands in the
dictionary is also needed. Once µ0 and σ2 are found, the kernel
matrix Kσ can be computed. As discussed in Section VI-A
solving this problem is equivalent to solve an MCP for a
graph with adjacency matrix B built following (34). Then,
an MCP algorithm (maxCQL) is used to find the indices of
the maximum clique in B, that is, the indices of the selected
bands. This approach can be summarized as:

1) Initialize the algorithm by choosing M .
2) Find the parameters µ0 and σ2 using (31) and (33)

respectively.
3) Build the Gram matrix Kσ .
4) Compare all elements of Kσ with µ0 and build the

adjacency matrix B as in (34).
5) Use the MaxCLQ algorithm to solve the MCP and find

the selected spectral bands.
The clique coherence-based band selection method is de-

scribed in Algorithm 2. Similarly to Algorithm 1, the inputs
are K1 and M . The adjacency matrix B in initialized with
zeros (line 1), the vertices vector V with the indices of all
available wavelengths, µ0 following (31), and ID as an empty
set. The kernel bandwidth is computed in line 2, and the Gram
matrix is computed in line 3 for the optimum σ2. In lines 4
through 10 every entry of the upper diagonal part of B is set
according to (34). In line 11 the MaxCLQ algorithm is used
to find the indices of the maximum clique in the graph. These
indices are assigned to the dictionary index set ID, which is
returned in line 10 together with the kernel bandwidth.

Note that M is used in Algorithm 1 and Algorithm 2 as a
design parameter, which is required to obtain the coherence
threshold and the Gaussian kernel bandwidth. The number Nb
of bands in the final dictionary can differ from M .

Algorithm 2: Clique Coherence-based BS (CCBS)
Input : The L× L Gram matrix K1 = (Kσ)σ=1, and

the desired number M of atoms.
Output: The indices ID of selected atoms, and the

Gaussian kernel bandwidth σ2.
1 Initialization: B := 0L×L, V = {1, . . . , L},

µ0 = 1/(M − 1), IDc = {∅};
2 Find σ2 solving (33);
3 Kσ using σ2 obtained in line 2;
4 for i := 1 to L− 1 do
5 for j := i+ 1 to L do
6 if [Kσij

] ≤ µ0 then
7 Bij := 1;
8 end
9 end

10 end
11 ID := MaxCLQ(V,B);
12 return ID, σ2;

VII. APPLICATION

A. Simulation with synthetic data

This section presents simulation results using synthetic
data to illustrate the performance of the proposed unmixing
method under controlled conditions for which the abundance
values are known. We constructed synthetic images using a
set of 8 endmembers extracted from the spectral library of the
ENVI software, which correspond to the spectral signatures
of minerals present in the Cuprite mining field in Nevada.
The minerals are alunite, calcite, epidote, kaolinite, budding-
tonite, almandine, jarosite and lepidolite, and their spectra
consisted of 420 contiguous bands, covering wavelengths
from 0.3951µm to 2.56µm. We constructed two 2000-pixel
hyperspectral images (N = 2000), each using 8 endmembers
(R = 8) from the Cuprite data, and the simplified GBM
or PNMM mixing models (see Section II) with δ = 1
and ξ = 0.7, respectively. The abundances were obtained
by uniformly sampling from the simplex, i.e., obeying the
positivity and sum-to-one constraints. WGN was added to all
images with power adjusted to produce a 21dB SNR. We
consider the root mean square error (RMSE) in abundance
estimation

RMSE =

√√√√ 1

NR

N∑
n=1

‖αn −α∗n‖2 (35)

and the CPU time required for both BS (when applicable)
and unmixing (averaged over 100 unmixings of the same HIs)
to compare the different BS strategies. All unmixings were
performed using a Gaussian kernel and considering either the
full set of bands or smaller sets selected using the BS strategies
presented in Section IV. SK-Hype was implemented for the
full set of bands. The kernel bandwidth for SK-Hype was
selected among the values σskp ∈ {0.5σ, σ, 2σ, 10σ, 20σ} to
obtain the minimum RMSE, where σ is the solution of (33), for
M = 30. The global kernel k-means (GKKM) algorithm [37]
implementation requires the number of bands to be fixed a
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priori. To keep the computational complexity under control,
we considered a selection approach based on the Akaike
Information Criterion (AIC) and given by [79]

M = argmin
M

[E(ν1, . . . , νM ) + λM ] (36)

where ν1, . . . , νM are the centroids chosen by the method [37],
and

E(ν1, . . . , νK) =

M∑
k=1

∑
`∈Ck

‖κ(·,mλ`
)− νk‖2H. (37)

Each cluster Ck is then represented by the band `k correspond-
ing to the closest point to its centroid νk:

`k = argmin
`∈Ck

‖κ(·,mλ`
)− νk‖2H. (38)

The parameter λ controls the complexity of the model, and
needs to be found empirically. The kernel bandwidth σkkm also
needs to be selected for GKKM. A grid search was performed
using a small part (200 pixels) of the synthetic image to find
λ and σkkm that would lead to a good RMSE performance.
The parameters were chosen among the values λ ∈ {2, 4, 6}
and σkkm ∈ {0.5σ, σ, 2σ, 10σ, 20σ}, again with σ being the
solution of (33), for M = 30. The parameter set leading to the
best performance in terms of RMSE for the abundances was
then selected. This way we seek a good RMSE performance
using the simplest possible model. To complete benchmarking,
the Progressive Band Selection (PBS) method in [26] was
considered using entropy for band prioritization, and spectral
information divergence (SID) for band decorrelation. The
algorithm was slightly modified to accept the specification of
the number of bands3. To select the kernel bandwidth of the
unmixing method, we adopted the same procedure used for the
GKKM algorithm. It is important to notice that, in general, the
abundance ground truth is not available from real data. Thus,
the RMSE in abundance estimation could not be used in design
as a measure to select model parameters. Hence, the SK-Hype,
GKKM, and PBS designs used in this comparison are based on
a quasi-optimal choice of parameters for these methods, which
could not be determined in practice. The proposed design
for the BS methods, however, can be employed in practical
applications.

BS with the CCBS and GCBS algorithms was performed
using M ∈ {5, 10, 20, 30}, with parameters µ0 and σ
adjusted using the methodology presented in Section IV-B.
We emphasize that this parameter setting strategy assumes no
prior knowledge about the abundance ground truth.

The simulation results are summarized in Tables I and II. In
these tables, the first column shows the BS strategy considered
prior to unmixing. SK-Hype in this column indicates the
solution without BS. The symbol ”(r)” besides CCBS or
GCBS means that we have randomized the order of the
bands prior to applying the BS strategy. The second column
shows the obtained RMSE and the standard deviation (STD)

3The PBS algorithm as proposed in [26] starts with an initial number of
bands, and then adjusts this number using a time-consuming strategy that
requires performing HU at each iteration. Hence, we slightly modified the
PBS algorithm by fixing the number of bands a priori to reduce complexity
and to produce a fair comparison among the different strategies.

in abundance estimation. The third column lists the average
CPU time elapsed in the (BS + unmixing) process. Column
four shows the number of selected bands Nb, and last column
shows the coherence of the final dictionary. For both tables,
the selected parameters for the SK-Hype and GKKM are
σskp = 0.5σ = 0.02515, and λ = 2 and σkkm = 2σ = 0.1006.

Tables I and II show the results for HIs built with Cuprite
endmembers and using, respectively, the GBM and the PNMM
mixing models. Note that the RMSE obtained using the
BS algorithms are very close to those obtained using all
bands. Nevertheless the reduction in number of bands obtained
through BS is at least tenfold. The computational complexity
advantage of the BS methods is evidenced by the required
average CPU time, which show reductions by factors ranging
from 50 to 110, depending on the algorithm and parameter
settings. Note also that the number of bands in the final
dictionary tends to be larger than the value M used to initialize
the algorithms. This increase in the anticipated number of
bands is obtained to optimize the dictionary coherence, what is
not possible in the GKKM algorithm. As expected, the number
of bands remained the same for the clique algorithm (CCBS)
for each value of M , and the slight changes in the RMSE
results indicate that the maximum clique is not unique. For the
greedy approach (GCBS), however, different numbers of bands
are obtained at each execution due to initial randomization, and
the results in terms of RMSE and CPU time vary slightly. In
general, randomization did not have any significant impact on
the results. Comparing the coherence levels of the different
dictionaries is not meaningful, as coherence levels are directly
comparable only for dictionaries built using kernels with the
same bandwidth. Nevertheless, one notes from these tables
that the level of coherence of the dictionary generated using
GKKM is more than 20 times larger than the limit in (30).
Even considering that (30) is a sufficient condition, such dis-
crepancy is a strong indication of the possibility of a linearly
dependent basis. The PBS method provided the highest RMSE
in all cases. This result was expected since the unmixing
method operates in a different space. Results similar to those
described above were obtained using the HIs created with data
extracted from the Pavia database. These results are described
in detail in an extended report available at [80].

B. Simulation with real data

When working with real data, ground truth for the fractional
abundances are rarely available. Thus, we compare the perfor-
mances of the different algorithms using the reconstruction
RMSE (RRMSE). The image used is shown in Figure 2. It is
a scene from the Cuprite mining field site in Nevada, acquired
by the AVIRIS instrument. It has originally 224 spectral
bands, from which we have removed the water absorption
bands, resulting in 188 bands. This scene has 7371 pixels and
previous analysis identified five minerals (Sphene, Montmo-
rillonite, Kaolinite, Dumortierite, and Pyrope) to have strong
components in this particular region [81]. The endmember
matrix was extracted using the VCA algorithm [63]. Table III
shows the RRMSEs for this image using the different methods,
where we present results for values of M up to the point
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TABLE I: RMSE. 100 runs, 2000 pxl., 8 endmembers
(Cuprite), SNR=21dB, GBM. µ0 computed using Equa-
tion (31) for a given M , and σ is found solving problem (33).

Strategy RMSE ± STD Av. Time Nb µ

SK-Hype 0.0680 ± 0.0028 301.08 ± 17.93 420 -
GKKM 0.0664 ± 0.0026 25.40 ± 0.22 36 0.5893

M = 5, µ0 = 0.25, σ = 0.2548

CCBS 0.0687 ± 0.0028 3.10 ± 0.14 10 0.2482
CCBS (r) 0.0687 ± 0.0028 3.13 ± 0.12 10 0.2482
GCBS 0.0724 ± 0.0031 2.91 ± 0.02 8 0.2482
GCBS (r) 0.0721 ± 0.0030 3.15 ± 0.15 7.13 0.2331
PBS 0.0766 ± 0.0032 2.68 ± 0.20 10 0.4367

M = 10, µ0 = 0.1111, σ = 0.1320

CCBS 0.0678 ± 0.0027 2.85 ± 0.13 16 0.1108
CCBS (r) 0.0679 ± 0.0027 2.89 ± 0.17 16 0.1108
GCBS 0.0685 ± 0.0028 2.57 ± 0.02 16 0.1104
GCBS (r) 0.0688 ± 0.0028 2.65 ± 0.06 13.09 0.0996
PBS 0.0765 ± 0.0033 2.54 ± 0.08 16 0.8213

M = 20, µ0 = 0.0526, σ = 0.0965

CCBS 0.0659 ± 0.0026 2.96 ± 0.15 21 0.0520
CCBS (r) 0.0660 ± 0.0026 3.01 ± 0.17 21 0.0520
GCBS 0.0670 ± 0.0027 2.59 ± 0.02 20 0.0525
GCBS (r) 0.0678 ± 0.0027 2.67 ± 0.08 15.95 0.0467
PBS 0.0762 ± 0.0033 2.84 ± 0.10 21 0.8545

M = 30, µ0 = 0.0345, σ = 0.0503

CCBS 0.0637 ± 0.0024 5.54 ± 0.22 42 0.0339
CCBS (r) 0.0637 ± 0.0024 5.74 ± 0.18 42 0.0339
GCBS 0.0637 ± 0.0024 3.32 ± 0.04 41 0.0344
GCBS (r) 0.0644 ± 0.0025 2.83 ± 0.07 33.39 0.0326
PBS 0.0735 ± 0.0031 4.80 ± 0.07 42 0.8999

TABLE II: RMSE. 100 runs, 2000 pxl., 8 endmembers
(Cuprite), SNR=21dB, PNMM. µ0 computed using Equa-
tion (31) for a given M , and σ is found solving problem (33).

Strategy RMSE ± STD Av. Time Nb µ

SK-Hype 0.0728 ± 0.0030 277.03 ± 4.30 420 -
GKKM 0.0729 ± 0.0030 25.52 ± 0.18 36 0.7760

M = 5, µ0 = 0.25, σ = 0.2548

CCBS 0.0748 ± 0.0031 2.99 ± 0.10 10 0.2482
CCBS (r) 0.0749 ± 0.0031 3.12 ± 0.18 10 0.2482
GCBS 0.0764 ± 0.0032 2.85 ± 0.06 8 0.2482
GCBS (r) 0.0776 ± 0.0033 2.99 ± 0.15 7.13 0.2331
PBS 0.1027 ± 0.0049 3.30 ± 0.18 10 0.9081

M = 10, µ0 = 0.1111, σ = 0.1320

CCBS 0.0746 ± 0.0031 2.85 ± 0.19 16 0.1108
CCBS (r) 0.0745 ± 0.0031 2.84 ± 0.14 16 0.1108
GCBS 0.0757 ± 0.0032 2.57 ± 0.04 16 0.1104
GCBS (r) 0.0757 ± 0.0031 2.64 ± 0.10 13.09 0.0996
PBS 0.0828 ± 0.0035 3.32 ± 0.09 16 0.9184

M = 20, µ0 = 0.0526, σ = 0.0965

CCBS 0.0735 ± 0.0029 2.87 ± 0.12 21 0.0520
CCBS (r) 0.0737 ± 0.0029 2.96 ± 0.17 21 0.0520
GCBS 0.0753 ± 0.0031 2.55 ± 0.03 20 0.0525
GCBS (r) 0.0753 ± 0.0031 2.56 ± 0.04 15.95 0.0467
PBS 0.0836 ± 0.0035 3.77 ± 0.09 21 0.9184

M = 30, µ0 = 0.0345, σ = 0.0503

CCBS 0.0740 ± 0.0029 5.41 ± 0.18 42 0.0339
CCBS (r) 0.0740 ± 0.0029 5.62 ± 0.19 42 0.0339
GCBS 0.0737 ± 0.0029 3.24 ± 0.04 41 0.0344
GCBS (r) 0.0742 ± 0.0030 2.74 ± 0.07 33.39 0.0326
PBS 0.0776 ± 0.0033 5.45 ± 0.08 42 0.9456

of diminishing improvements (M = 150). The RRMSE
performance is compatible to that obtained using synthetic
images, and the savings in computational complexity can be
inferred from the CPU time reduction by a factor of at least
4 (for M = 150). The parameters used for the SK-Hype
and GKMM were σskp = 0.5σ = 0.0088545, λ = 2 and
σkkm = 0.1006.

TABLE III: Reconstruction RMSE for the Cuprite Scene.

Strategy RRMSE ± STD Time Nb µ

SK-Hype 0.0006 ± 0.0000 184.2852 188 -
GKKM 0.0064 ± 0.0000 17.0144 13 0.7982

M = 5, µ0 = 0.2500, σ = 0.0916

CCBS 0.0155 ± 0.0002 13.5109 9 0.2454
GCBS 0.0129 ± 0.0001 15.9691 9 0.2454

M = 30, µ0 = 0.0345, σ = 0.0174

CCBS 0.0101 ± 0.0001 26.1530 36 0.0336
GCBS 0.0102 ± 0.0001 26.1337 35 0.0341

M = 50, µ0 = 0.0204, σ = 0.0113

CCBS 0.0099 ± 0.0001 38.1907 49 0.0199
GCBS 0.0092 ± 0.0001 19.4064 49 0.0202

M = 70, µ0 = 0.0145, σ = 0.0087

CCBS 0.0089 ± 0.0001 24.5304 61 0.0141
GCBS 0.0089 ± 0.0001 26.5687 61 0.0130

M = 120, µ0 = 0.0084, σ = 0.0059

CCBS 0.0079 ± 0.0000 42.4282 84 0.0084
GCBS 0.0077 ± 0.0000 62.1598 84 0.0084

M = 150, µ0 = 0.0067, σ = 0.0051

CCBS 0.0074 ± 0.0000 55.4628 93 0.0067
GCBS 0.0076 ± 0.0000 56.0754 92 0.0067

A second example using real data was performed using
the RELAB data from Brown University. These data include
laboratory measured reflectances, and thus provide ground
truth information. It consists of intimate mixtures of miner-
als (Anorthite, Olivine, Enstatite, and Magnetite) that were
crushed and mixed together. The data is composed by the
reflectances of the 4 pure minerals (endmembers) and of binary
(Olivine/Enstatite, Olivine/Magnetite, and Olivine/Anorthite)
and ternary (Olivine/Anorthite/Enstatite) mixtures. Each bi-
nary combination of minerals has 5 mixtures with different
abundances for each endmembers (ranging form 0.1 to 0.95).
The ternary mineral combinations have 7 spectra, considering
also different abundances. Detailed information about this
dataset can be found in [7], [82].

We performed simulations following the same procedure
used for the Cuprite data. The results, however, are mea-
sured using the RMSE for the abundance estimations (not
reconstruction error) since ground truth is available for
this data. Table IV (Olivine/Enstatite mixture) and Table V
(Olivine/Arnothite/Enstatite mixture) are representative of the
results obtained, and show a good performance of the proposed
BS methods. Although the full band SK-Hype presents the
smallest RMSEs, the RMSEs obtained using the proposed
BS methods (CCBS and GCBS) are comparable, specially
for M = 30, indicating the possibility of a significant
reduction in computational complexity. One should consider
the statistical significance of these RMSE results with caution
due to the small number of samples available. One also notes
the considerable effect of dealing with a reduced amount of
data on the CPU time, as it includes BS and unmixing. One
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note, for instance, that the greedy approach GCBS needs CPU
times that are 12 to 15 times smaller than the full band solution
for M = 30. One notices, however, a large variation in CPU
times for the MCP based algorithm (CCBS), especially for
M = 30. The noticeable differences for different data sets are
due to the solution of the maximal clique problem. Since MCP
are NP-hard problems, the required CPU time for its solution
can significantly change for different data sets. The fact that
binary RELAB mixtures considered here are composed of only
small numbers of mixtures (5 pixels) makes the processing
time of solving a MCP more evident. This required MCP time
is greatly diluted when larger data sets are considered, as could
be verified in the other results presented. This indicates that
the CCBS method is more advantageous for larger datasets, a
common situation in hyperspectral image processing.

TABLE IV: Olivine/Enstatite

Strategy RMSE ± STD Time Nb µ

SK-Hype 0.0442 ± 0.0011 0.2499 211 -
GKKM 0.1883 ± 0.0317 1.8460 14 0.7969

M = 5, µ0 = 0.2500, σ = 0.1034

CCBS 0.2045 ± 0.0375 0.1001 7 0.2490
GCBS 0.2441 ± 0.0500 0.0374 5 0.2097

M = 10, µ0 = 0.1111, σ = 0.0524

CCBS 0.1430 ± 0.0192 0.0702 14 0.1079
GCBS 0.1505 ± 0.0209 0.0191 13 0.1078

M = 20, µ0 = 0.0526, σ = 0.0273

CCBS 0.0907 ± 0.0069 0.2874 24 0.0517
GCBS 0.0941 ± 0.0081 0.0245 21 0.0492

M = 30, µ0 = 0.0345, σ = 0.0182

CCBS 0.0705 ± 0.0035 0.6403 34 0.0339
GCBS 0.0674 ± 0.0034 0.0162 32 0.0331

TABLE V: Olivine/Arnothite/Enstatite

Strategy RMSE ± STD Time Nb µ

SK-Hype 0.1320 ± 0.0161 0.3034 211 -
GKKM 0.1325 ± 0.0150 1.8930 15 0.7694

M = 5, µ0 = 0.2500, σ = 0.1084

CCBS 0.1358 ± 0.0154 0.0550 7 0.2441
GCBS 0.1585 ± 0.0229 0.0227 5 0.2212

M = 10, µ0 = 0.1111, σ = 0.0589

CCBS 0.1224 ± 0.0125 0.0740 14 0.1110
GCBS 0.1323 ± 0.0158 0.0172 12 0.1076

M = 20, µ0 = 0.0526, σ = 0.0341

CCBS 0.1132 ± 0.0118 0.0731 22 0.0506
GCBS 0.1179 ± 0.0131 0.0204 20 0.0491

M = 30, µ0 = 0.0345, σ = 0.0242

CCBS 0.1123 ± 0.0131 0.1679 29 0.0339
GCBS 0.1166 ± 0.0143 0.0248 28 0.0323

More simulation results were obtained using hyperspectral
images created with data extracted from the Pavia database and
using real data from the RELAB database at Brown University.
These results are described in detail in an extended report
available at [80].

VIII. CONCLUSIONS

In this paper we proposed a centralized method for nonlin-
ear unmixing of hyperspectral images, which employs band
selection in in the reproducing kernel Hilbert space (RKHS).
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Fig. 2: Cuprite scene used in [81].

The proposed method is based on the coherence criterion,
which incorporates a measure of the quality of the dictionary
in the RKHS for the nonlinear unmixing. We showed that the
proposed BS approach is equivalent to solving a maximum
clique problem (MCP). Contrary to competing methods that
do not include an efficient choice of the model parameters, the
proposed method requires only an initial guess on the number
of selected bands. Simulation results employing both synthetic
and real data illustrate the quality of the unmixing results
obtained with the proposed method, which leads to abundance
estimations as accurate as those obtained using the full-band
SK-Hype method, at a small fraction of the computational
cost.
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