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† Laboratoire Lagrange, Université Côte d’Azur, OCA, CNRS, Nice 06108, France

‡Ecole Polytechnique Fédérale de Lausanne, Switzerland
Email: fei.hua@oca.eu; roula.nassif@epfl.ch; cedric.richard@unice.fr; hywang@nwpu.edu.cn; ali.sayed@epfl.ch

ABSTRACT

In this work, we consider the problem of estimating the coefficients of linear shift-invariant FIR graph filters. We assume
hybrid node-varying graph filters where the network is decomposed into clusters of nodes and within each cluster all nodes
have the same filter coefficients to estimate. We assume that there is no prior information on the clusters composition and
that the nodes do not know which other nodes share the same estimation task. We are interested in distributed, adaptive, and
collaborative solutions. In order to limit the cooperation between clustered agents sharing the same estimation task, we propose
an extended diffusion preconditioned LMS strategy allowing the nodes to perform automatic network clustering. Simulation
results illustrate the effectiveness of the proposed unsupervised method in clustering and collaborative estimation.

EXTENDED SUMMARY

A. Graph filter and data model

We consider an undirected weighted graph G that consists of a set N of N nodes, and a set E of edges such that if node k is
connected to node `, then (k, `) ∈ E . We denote by Nk the neighborhood of node k with respect to E , including node k. Graph
signals are defined as x = [x1, . . . , xN ]> ∈ RN where xk is the signal sample at node k. Let x(i) denote the graph signal at
time i. We assume that the graph is endowed with a graph-shift operator defined as an N ×N shift matrix S whose entry sk`
can be non-zero only if k = ` or (k, `) ∈ E . Possible choices include the adjacency matrix, the graph Laplacian matrix, and
their normalized counterparts [1]–[3]. We consider linear shift-invariant FIR graph filters defined by the linear operator:

H ,
M−1∑
m=0

hmS
m, (1)

with ho = {hm}M−1m=0 denoting the filter coefficients and M its order. One common filtering model assumes that the filtered
graph signal y(i) is generated from the input graph signal x(i) as follows [4]:

y(i) =

M−1∑
m=0

hmS
mx(i−m) + v(i), i ≥M − 1. (2)

where v(i) is an i.i.d. zero-mean noise with covariance matrix Rv . With this model, each shift Sm is carried out in m time
slots. By retaining the following shifted signals at each node `:

x`(i− 1), [Sx(i− 2)]`, . . . , [S
M−2x(i−M + 1)]`,

note that only one graph shift is required at each time i to carry out the filtered signal. From model (2), sample yk(i) at node k
can be written as:

yk(i) = z
>
k (i)h

o + vk(i) (3)

with i ≥M − 1, where zk(i) is given by:

zk(i) , col{[x(i)]k, [Sx(i− 1)]k, . . . , [S
M−1x(i−M + 1)]k}. (4)

In order to estimate ho from {yk(i), zk(i)} in a collaborative, distributed, and adaptive manner, diffusion LMS strategies can
be employed [5]–[7], as explained in [4]. However, since the shift matrix S is not energy preserving in general [8], this may
result in a large eigenvalue spread and a slow convergence rate of LMS type strategies. Preconditioned diffusion LMS strategy
is then proposed in [9] to solve this problem.



The model (1) is referred to as the node-invariant graph filter where the coefficients ho are the same for all the nodes. A
more flexible model was recently introduced in [10]. It is called node-variant graph filter and allows the coefficients to vary
across nodes:

H ,
M−1∑
m=0

diag
{
h(m)

}
Sm, (5)

where h(m) ∈ RN is an N × 1 vector. By setting h(m) = hm1N for all m, model (5) reduces to the node-invariant model (1).
If the entries of h(m) are different, each node applies different weight to the shifted graph signal Smx, and yk(i) in (3) can
be re-written as:

yk(i) = z
>
k (i)h

o
k + vk(i), with i ≥M − 1, (6)

where hok = col{[h(m)]k}M−1m=0 is the M × 1 filter coefficient vector associated with node k. In this work, we consider the
problem of estimating hok at each node k from the signals {yk(i), zk(i)}. We further assume that the graph is decomposed
into Q clusters of nodes Cq and, within each cluster Cq , there is a common filter coefficient vector hoq to estimate, namely,

hok = hoq, if k ∈ Cq.

This model is the so-called hybrid node-varying graph filter [11]. In this paper, we consider unsupervised scenarios where there
is no prior information on the clusters composition, and where the nodes do not know which other nodes share the same filter
coefficient vector. The only available information is that clusters may exist in the network (but their structures are unknown).

B. Diffusion preconditioned LMS for graph signal filtering

Let us first recall the diffusion preconditioned LMS algorithm initially proposed in [9] in order to estimate ho in (3) in a
fully distributed and adaptive manner.{

ψk(i+ 1) = hk(i) + µk[εI + P k]
−1zk(i)

[
yk(i)− z>k (i)hk(i)

]
(7a)

hk(i+ 1) =
∑
`∈Nk

a`kψ`(i+ 1) (7b)

where hk(i) is the estimate of ho at node k and iteration i, ψk(i) is an intermediate estimate, µk > 0 is a local step-size
parameter, ε ≥ 0 is a small regularization parameter, P k is an M ×M preconditioning matrix constructed locally according
to:

P k , diag{‖[S(m−1)]k,•‖2}Mm=1. (8)

and {a`k} are non-negative combination coefficients chosen to satisfy:

a`k > 0,

N∑
`=1

a`k = 1, and a`k = 0 if ` /∈ Nk. (9)

In the adaptation step (7a), each node k uses the data from its one-hop neighbors to compute zk(i), then updates its local
estimate hk(i) to an intermediate estimate ψk(i + 1). In the combination step (7b), node k aggregates all the intermediate
estimates ψ`(i+1) from its neighbors to obtain the updated estimate hk(i+1). When algorithm (7a)–(7b) is applied to estimate
filter coefficient vectors arising from different data models (6), and in order to avoid the bias resulting from combining estimates
in (7b) corresponding to different data models, automatic network clustering strategies should be used to inhibit cooperation
between clustered agents [12]–[15]. In the following, we introduce an unsupervised clustering rule.

C. Unsupervised clustering method

We first introduce an N ×N clustering matrix Ei at time i, whose (`, k)-th element is given by:

[Ei]`k =

{
1, if ` ∈ Nk and k believes that hok = ho` ,

0, otherwise.
(10)

At each time i, node k can infer which neighbors belong to the same cluster based on the non-zero elements of the k-th
column of Ei. We collect these indices into the set Nk,i , {` | [Ei]`k = 1}. Then, node k will only combine the intermediate
estimates from its neighbors in Nk,i and the combination rule (9) becomes:

a`k > 0,

N∑
`=1

a`k = 1, and a`k = 0 if ` /∈ Nk,i. (11)

Since the clustering information is not known beforehand, we propose to learn Ei in an on-line manner by evaluating the
`2-norm distance between the estimates at two different nodes. If the distance is smaller than a predefined threshold, the two



nodes are assigned to the same cluster. At each time i, node k runs a stand-alone adaptation step (7a) and then computes a
Boolean variable within its neighborhood Nk:

b`k(i) =

{
1, if ‖ψ`(i+ 1)− hk(i)‖2 ≤ α,
0, otherwise,

(12)

where α is a predefined threshold. Depending on the spectrum of S, the variance of the shifted signal Smx in some eigen
subspaces of S may dramatically increase or tend to zero as m increases. This numerical ill-conditioning may affect the
accuracy of the estimates of some entries of ψ`(i+ 1), and result in poor clustering performance as illustrated in the sequel.
To address this issue, we suggest to evaluate the distance in (11) based on the dominant principal components of the local
estimates. In order to identify the first Mk dominant entries at each node k (principle components), we propose to use the
following rule:

min
Mk

∑Mk

m=1[diag(P k)]m∑M
m=1[diag(P k)]m

≥ τ, (13)

where P k is the diagonal preconditioning matrix defined in (8), with diagonal entries arranged in descending order. Parameter τ
denotes a threshold in [0, 1]. The rationale of this rule is that, in (7a), matrix P k approximates the covariance matrix (up to a
scaling factor) of the observations zk(i); see [9] for details. As P k is diagonal, (13) then represents the ratio of total inertia
explained by the first Mk principal components (or entries, as P k is diagonal) of the observations. Once Mk is computed,
each node k uses the following rule to compute the Boolean variable b`k(i) instead of the rule (12):

b`k(i) =

1, if

∥∥∥[ψ`(i+1)−hk(i)]1:Mk

∥∥∥2∥∥∥[hk(i)]1:Mk

∥∥∥2 ≤ α′,

0, otherwise,
(14)

where α′ is a small positive value. Compared with (12), note that we suggest to use a normalized distance in order to simplify
parameter α′ setting. To reduce the influence of noise, we further introduce a smoothing step:

t`k(i+ 1) = νt`k(i) + (1− ν)b`k(i), (15)

with 0 < ν < 1 a forgetting factor and t`k(i) a trust level. Once t`k(i) exceeds a given threshold θ, node k sets [Ei]`k = 1, i.e.,
it believes that node ` belongs to its cluster. Thus, the clustering matrix Ei and the neighborhood set Nk,i , {` | [Ei]`k = 1}
are learned in an on-line manner. Note that the set Nk in the combination step (7b) is replaced by Nk,i which contains only
the neighbors ` ∈ Nk that node k believes they belong to its cluster. Parameters a`k must satisfy (11) and have to be modified
accordingly.

D. Simulation results
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Fig. 1: Network MSD performance for different algorithms.

We tested the proposed clustering algorithm over an undirected weighted graph of N = 60 nodes. In particular, we considered
a sensor network generated by GSPBOX [16] where each node is connected to its 5 nearest neighbors. The graph shift operator
was chosen as the normalized adjacency matrix S = A

1.3λmax(A) withA the adjacency matrix and λmax(A) its largest eigenvalue.
The graph signal process x(i) was i.i.d. zero-mean Gaussian with covariance matrix Rx = diag{σ2

x,k}Nk=1. The variances σ2
x,k

were randomly generated from the uniform distribution U(1, 1.5). The noise v(i) was zero-mean Gaussian with covariance
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Fig. 2: (Left) Topology of the graph (adjacency matrix). (Right) Inferred cluster matrix at steady-state.

matrix Rv = diag{σ2
v,k}Nk=1. The variances σ2

v,k were randomly generated from the uniform distribution U(0.1, 0.15). The
filter degree was set to M = 3. The nodes were decomposed into three clusters Cq with C1 = {1, . . . , 20}, C2 = {21, . . . , 40},
and C3 = {41, . . . , 60}. The optimal graph filter coefficients hok were set according to [0.5 0.4 0.9]> if k ∈ C1, [0.3 0.1 0.4]>

if k ∈ C2, and [0.9 0.3 0.7]> if k ∈ C3. The simulation results were averaged over 200 Monte-Carlo runs. We compared the
proposed algorithm with the ground truth algorithm where the clusters are assumed to be known a priori, the non-cooperative
algorithm (where a`k = 1 if k = ` and zero otherwise), the diffusion preconditioned LMS (PLMS) algorithm in (7a)–(7b)
without clustering, and algorithm (7a)–(7b) with the clustering rule that updates the Boolean variable according to (12) where
all the entries of the estimates are used (Mk = M for all k). Note that all algorithms used the preconditioned LMS (PLMS)
in the adaptation step. As shown in Fig.1, the proposed algorithm performs well compared to the ground truth. Figure 2 (left)
shows the topology of the graph given by the adjacency matrix A (and the shift matrix S). Figure 2 (right) shows the clusters
inferred by the proposed method. These clusters perfectly match the ground truth clusters.
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