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Abstract—Multitask distributed optimization over networks
enables the agents to cooperate locally to estimate multiple related
parameter vectors. In this work, we consider multitask estimation
problems over mean-square-error (MSE) networks where each
agent is interested in estimating its own parameter vector, also
called task, and where the tasks are related according to a set of
linear equality constraints. We assume that each agent possesses
its own cost and that the set of constraints is distributed among
the agents. In order to solve the multitask problem, a cooperative
algorithm based on penalty method is derived. Some results
on its stability and convergence properties are also provided.
Simulations are conducted to illustrate the theoretical results
and show the efficiency of the strategy.

I. INTRODUCTION

Distributed adaptive learning strategies over networks en-
able the agents to accomplish a certain task such as parameter
estimation collaboratively from streaming data, and endow
the agents with continuous adaptation and learning ability
to track possible drifts in the underlying model. Although
a centralized strategy may benefit more from information
collected throughout the network, in most cases, distributed
strategies are more attractive since they are scalable and
robust. There is an extensive literature on distributed adaptive
methods for single-task problems, where all the agents over
the network have a common parameter vector to estimate
[1]–[4]. However, many applications are multi-task oriented
in the sense that the agents have to infer multiple parameter
vectors simultaneously. In this case, the agents do not share
a common minimizer. It is shown in [5] that the network
converges to a Pareto solution corresponding to a multi-
objective optimization problem. Multitask diffusion strategies,
by exploiting prior information about relationships between
the tasks, can let the agents or clusters of agents converge to
their own respective models. One useful way to model relation-
ships among tasks is to formulate optimization problems with
appropriate regularizers between agents [6]–[9]. In [10]–[12],
distributed algorithms are derived to estimate node-specific
parameter vectors that lie in a common latent signal subspace.
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In other works [13], [14], the parameter space is decomposed
into two orthogonal subspaces. The relations among tasks are
modeled by assuming that they all share one of the subspaces.
In [15], it is assumed that each agent has only access to a
subset of the entries of a global parameter vector and only
shares the common entries with its neighbors.

In some applications, it happens that each agent has its
own parameter vector to estimate and these vectors are cou-
pled together through a set of linear constraints. Examples
include the network flow control problem [16], the interference
management problem in communication networks [17], and
the basis pursuit problem [18]. In this work, we consider
multitask estimation problems where the parameter vectors to
be estimated at neighboring agents are related according to a
set of linear equality constraints. Therefore, the objective of
the network is to optimize the aggregate cost across all nodes
subject to all constraints:

minimize
w1,...,wN

Jglob(w1, . . . ,wN ) ,
N∑
k=1

Jk(wk), (1a)

subject to
∑
`∈Ip

Dp`w` + bp = 0, p = 1, . . . , P (1b)

with N the number of agents in the network. Each agent k
seeks to estimate its own parameter vector wk ∈ RMk×1, and
has knowledge of its local cost Jk(·) and the set of linear
equality constraints that it is involved in. The dimension of
the parameter vectors can differ from one node to another.
Each constraint is indexed by p, and defined by the Lp ×M`

matrix Dp`, the Lp × 1 vector bp, and the set Ip of agent
indices involved in the p-th constraint. It is assumed that each
agent k in Ip can collect information from the other agents
in Ip, i.e., Ip ⊆ Nk for all k ∈ Ip where Nk denotes the
neighborhood of agent k.

In a previous work [19], two of the authors of this pa-
per address (1) by combining diffusion adaptation with a
stochastic projection method. The nodes involved in several
constraints are divided into virtual sub-nodes in order to
circumvent the problem of projecting their local parameter
vector onto several constraint subspaces simultaneously. In
this work, we propose an alternative method that consists of
reformulating (1) as an unconstrained problem with penalty



functions. We devise a distributed learning strategy relying
on an adaptation step and a penalization step. Although we
consider only the case of equality constraints, the algorithm
can be easily extended to solve problems with inequality
constraints. We analyze its behavior in the mean and mean-
square-error sense. Simulations are conducted to show the
effectiveness of the proposed strategy.
Notation: The symbol ⊗b denotes the block Kronecker prod-
uct, and the symbol bvec(·) refers to the block vectorization
operation that vectorizes each block of its matrix argument
and stacks the vectors on top of each other.

II. PROBLEM FORMULATION AND DISTRIBUTED SOLUTION

Consider a network of N agents, labeled with k = 1, . . . , N .
At each time instant i ≥ 0, each agent k is assumed to have
access to a zero-mean scalar measurement dk(i) and a real-
valued regression vector xk(i) ∈ RMk×1 with positive covari-
ance matrix Rx,k = E{xk(i)x>k (i)}. The data {dk(i),xk(i)}
are assumed to be related via the linear regression model:

dk(i) = x
>
k (i)w

o
k + zk(i) (2)

where wo
k is an unknown parameter vector, and zk(i) is a

zero-mean measurement noise with variance σ2
z,k assumed to

be spatially and temporally independent.
Let wk ∈ RMk×1 denote the parameter vector associated

with agent k. The objective at agent k is to estimate wo
k by

minimizing the cost function Jk(wk) given by:

Jk(wk) = E|dk(i)− x>k (i)wk|2 (3)

We assume that Jk(·) is strongly convex and second-order
differentiable. In addition, we consider that the optimum
parameter vectors at neighboring agents are related according
to a set of linear equality constraints of the form (1b). Each
agent k has knowledge of its cost and the set of constraints
that it is involved in. We use Jk to denote the set of constraint
indices involving agent k, i.e., Jk , {p|k ∈ Ip}.

We collect the parameter vectors wk and wo
k from across

all nodes into the following N × 1 block vectors:

w , col{w1, . . . ,wN}, wo , col{wo
1, . . . ,w

o
N}. (4)

The constraints in (1b) can be written more compactly as:

Dw + b = 0 (5)

where D is a P×N block matrix, with each block Dp` having
dimension Lp ×M` , and b is a P × 1 block column vector
with each block bp having dimensions Lp× 1. We assume D
is full row rank to ensure that (5) has at least one solution.
This leads to the network constrained optimization problem:

minimize
w

N∑
k=1

E|dk(i)− x>k (i)wk|2

subject to Dw + b = 0.

(6)

Let rdx,k , E{dk(i)xk(i)} and σ2
d,k , E|dk(i)|2. Problem (6)

can be written equivalently as:

minimize
w

w>Rxw − 2r>dxw + σ>d 1N×1,

subject to Dw + b = 0
(7)

where the N×N block diagonal matrix Rx , the N×1 block
vector rdx , and the N × 1 vector σd are given by:

Rx , diag{Rx,1, . . . ,Rx,N}, (8)

rdx , col{rdx,1, . . . , rdx,2}, (9)

σd , col{σ2
d,1, . . . , σ

2
d,N}. (10)

Because Rx is positive definite, problem (7) is a positive
definite quadratic program with equality constraints. It has a
unique global minimum given by:

w? = wo −R−1x D>(DR−1x D>)−1(Dwo + b). (11)

By augmenting the objective function with a penalty term,
problem (1) can be approximated into an unconstrained prob-
lem of the following form:

minimize
w1,...,wN

N∑
k=1

Jk(wk) + η

P∑
p=1

‖
∑
`∈Ip

Dp`w` + bp‖2 (12)

where η > 0 is a scalar parameter that controls the relative
importance of adhering to the constraints. The approxima-
tion (12) of (1) improves in quality as η increases [20], [21].
Problem (12) can be written alternatively as:

minimize
w

Jglob
η (w) , Jglob(w) + η‖Dw + b‖2 (13)

where Jglob(·) is given in (1a). The above problem is strongly
convex for any η and its closed form solution parameterized
by η is given by:

wo(η) = (Rx + ηD>D)−1(Rxw
o − ηD>b). (14)

Node k can apply a steepest-descent iteration to minimize
the cost in (12) with respect to wk. Starting from an initial
condition wk(0), we obtain the following steepest descent
iteration at node k:

wk(i+ 1) = wk(i)− µ
[
Rx,kwk(i)− rdx,k+

η
∑
p∈Jk

D>pk
( ∑
`∈Ip⊆Nk

Dp`w`(i) + bp
)]
.

(15)
Replacing the second-order moments Rx,k, rdx,k by instan-
taneous approximations:

Rx,k ≈ xk(i)x>k (i), rdx,k ≈ dk(i)xk(i) (16)

and implementing the update iteration into two successive
steps by introducing the intermediate estimate φk(i+ 1), we
obtain the following adaptive algorithm at agent k:

φk(i+ 1) = wk(i) + µxk(i)
(
dk(i)− x>k (i)wk(i)

)
, (17a)

wk(i+ 1) = φk(i+ 1)

− µη
∑
p∈Jk

D>pk

( ∑
`∈Ip⊆Nk

Dp`φ`(i+ 1) + bp

)
. (17b)



Note that in the second step (17b), w`(i) is replaced by the
intermediate estimate φ`(i + 1) which is a better estimate
for the solution at agent `. In the first step (17a), which
corresponds to the adaptation step, node k uses its data to
update its estimatewk(i) to an intermediate estimate φk(i+1).
In the second step (17b), which is the penalization step, node k
collects the intermediate estimates φ`(i+1) from its neighbors
and moves along the gradient of the penalty function. Note
that, in this step, instead of sending φ`(i + 1) to agent k,
agent ` may send the vector Dp`φ`(i+ 1). In this sense, our
algorithm has privacy-preserving property.

III. PERFORMANCE ANALYSIS

We shall now analyze the mean and mean-square-error
behavior of the adaptive algorithm (17) with respect to wo,
wo(η), and w?. Due to space limitations, detailed proofs or
derivations are omitted. Before proceeding, let us introduce
the following assumption.

Assumption 1. The regressors xk(i) arise from a zero-
mean random process that is temporally white and spatially
independent.

Under this assumption, xk(i) is independent of w`(j) for
all i ≥ j and for all `. This assumption is commonly used in
the adaptive filtering literature because it helps to simplify the
analysis without constraining the conclusions [22].

A. Mean error behavior analysis

Let us introduce the error vectors w̃k(i) , wo
k−wk(i) and

collect them into the network block error vector:

w̃(i) = col{w̃1(i), . . . , w̃N (i)}. (18)

We also introduce the following notations:

H , [IM − µηD>D], (19)

B , H[IM − µRx], (20)

fo , D>(Dwo + b), (21)

where M ,
∑N
k=1Mk. It can be verified that the network

mean error vector E w̃(i) evolves according to:

Ew̃(i+ 1) = BEw̃(i) + µηfo. (22)

Recursion (22) converges as i→∞ if the matrix B is stable.
The stability of B is ensured by choosing µ such that:

0 < µ < min
{ 2

λmax(Rx,k)
,

2

η · λmax(D>D)

}
, k = 1, . . . , N.

(23)
In this case, the asymptotic mean bias is given by:

Ew̃(∞) = lim
i→∞

Ew̃(i) = µη(IM −B)−1fo. (24)

Using similar arguments, we can derive the mean error recur-
sion with respect to wo(η) and w?. Let wδ

η , wo(η) −wo,
wδ
? , w? − wo. Let us introduce the network error vectors

w̃′(i) = wo(η) − w(i) and w̃′′(i) = w? − w(i). The mean
error recursions with respect to wo(η) and w? are given by:

Ew̃′(i+ 1) = BEw̃′(i) + µ(re + ηfe), (25)

Ew̃′′(i+ 1) = BEw̃′′(i) + µrs, (26)

where

re , HRxw
δ
η,

rs , HRxw
δ
?,

fe , D>(Dwo(η) + b).

Under condition (23), the asymptotic biases are given by:

Ew̃′(∞) = µ(IM −B)−1(re + ηfe), (27)

Ew̃′′(∞) = µ(IM −B)−1rs. (28)

Observe that when wo satisfies the linear constraints, i.e.,
wo = wo(η) = w?, all the biases reduce to zero.

B. Mean-square-error behavior analysis

To analyze the mean-square-error stability, we evaluate the
weighted mean-square deviation weighted by any positive
semi-definite matrix Σ. The freedom in selecting Σ allows us
to extract various types of information about the network. It is
convenient to introduce the alternative notation ‖w‖2σ to refer
to the weighted square quantity ‖w‖2Σ , where σ , bvec(Σ).
We shall use these two notations interchangeably. It can be
verified that E{‖w̃(i+ 1)‖2σ} evolves according to:

E{‖w̃(i+ 1)‖2σ} = E{‖w̃(i)‖2Fσ}+ [bvec(Y(i))]>σ, (29)

where F is the M2 ×M2 matrix given by:

F , E{B>(i)⊗b B>(i)}. (30)

The matrix Y(i) is given by:

Y(i) , µ2G> + µ2η2fof
>
o + 2µηf0Ew̃

>(i)B>, (31)

where G is the M ×M matrix given by:

G , Hdiag{σ2
z,kRx,k}Nk=1H

>. (32)

The algorithm is mean-square stable if F is stable1. For
sufficiently small-step size, neglecting the influence of high-
order terms in µ, F can be approximated by F ≈ B>⊗bB>
[1], [2] and condition (23) ensures mean-square stability. It
can be verified that E{‖w̃(i+1)‖2σ} evolves according to the
following recursion:

E{‖w̃(i+ 1)‖2σ} = E{‖w̃(i)‖2σ}+[
bvec(E{w̃(0)w̃>(0)})

]>
(F − IM2)F iσ+

[bvec(Y(i))]>σ + Γ(i)σ

(33)

where w̃(0) is the initial condition and Γ(i+1) is a 1×M2

vector that can be evaluated from Γ(i) according to:

Γ(i+ 1) = [bvec(Y(i))]>(F − IM2) + Γ(i) (34)

1Note that, in the case of zero-mean Gaussian regressors, the matrix F can
be calculated in closed form, see [19, Appendix B].
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Fig. 1: Multitask MSE network with local constraints.

with Γ(0) = 0M2 .
The steady-state network MSD is given by:

ζ? = lim
i→∞

1

N
E{‖w̃(i)‖2}. (35)

If the matrix F is stable, from the recursion (29), we obtain
as i→∞ :

lim
i→∞

E{‖w̃(i)‖2(IM2−F)σ} = [bvec(Y(∞))]>σ. (36)

Replacing σ in (36) by 1
N (IM2 −F)−1bvec(IM ) we obtain:

ζ? =
1

N
[bvec(Y(∞))]>(IM2 −F)−1bvec(IM ) (37)

where Y(∞) can be obtained from (24) and (31).
The transient and steady-state behaviors of E{‖w̃′(i)‖2σ}

and E{‖w̃′′(i)‖2σ} can be derived from the model for w̃(i)
according to:

E{‖w̃′(i)‖2σ} = E{‖w̃(i)‖2σ}+ 2E{w̃(i)}Σwδ
η + ‖wδ

η‖2Σ,
E{‖w̃′′(i)‖2σ} = E{‖w̃(i)‖2σ}+ 2E{w̃(i)}Σwδ

? + ‖wδ
?‖2Σ.

IV. SIMULATIONS

We shall now provide simulation examples to illustrate
the behavior of algorithm (17). We considered a network
consisting of 15 nodes with connections shown in Fig. 1.
The regression vectors xk(i) were zero-mean Gaussian with
covariance matrix Rx,k = σ2

x,kI2. The noises zk(i) were
zero-mean i.i.d. Gaussian random variables independent of any
other signal with variances σ2

z,k. The variances σ2
x,k and σ2

z,k

are shown in Fig. 2. We randomly sampled 9 linear constraints
of the form

∑
`∈Ip dp`w` = bp · 12×1, where the coefficients

dp` and bp were randomly chosen from {−2,−1, 1, 2}. The
results were averaged over 200 Monte-Carlo runs.

In the first scenario, we considered the case of a perfect
model where the parameter vector wo satisfies the constraints,
i.e. wo = w?. The step size µ was set to 0.02 for all nodes.
In Fig. 3, we compare three algorithms: the non-cooperative
LMS algorithm, the centralized CLMS algorithm [23], and
the proposed algorithm (17). We observe that the simulation
results match well the actual performance. Furthermore, com-
pared to the non-cooperative strategy, the network MSD is
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Fig. 2: Regression and noise variances.
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Fig. 3: MSD comparison of different algorithms for the perfect
model scenario.

improved by the penalty term which, in this case, promotes
the relationship between tasks. Finally, our algorithm performs
well compared to the centralized solution and the gap w.r.t.
centralized performance decreases as η increases.

In a second scenario, we considered the case when wo does
not satisfy the constraints. We perturbedwo aswpert = w

o+u.
The entries of u were sampled from Gaussian distribution
N (0, σ2). We set µ = 0.02 and η = 8. The theoretical and
simulated learning curves with respect to wo, wo(η), and w?

are depicted in Fig. 4. Although the performance with respect
to wo deteriorates as σ increases, the algorithm performs well
with respect to wo(η) and w?.

Next, we illustrate in Fig. 5 (left) the MSD curves of the
centralized algorithm and the proposed algorithm w.r.t. w? for
different values of σ. We set µ = 0.02 and η = 8. Observe
that the performance gap between the proposed distributed
algorithm and the centralized solution increases as the error
vector wδ

? increases.
Finally, we illustrate in Fig. 5 (right) the influence of µ

and η on the performance of the proposed algorithm (17).
For comparison purposes, we set σ = 1 for all the µ and η.
We observe that, as expected, the larger µ is, the faster the
convergence rate is but the worse the MSD performance is. In
addition, the performance improves by increasing η.

V. CONCLUSION

In this work, we proposed a distributed multitask LMS
algorithm for solving problems that require the simultane-
ous estimation of multiple parameter vectors that are related
locally via linear equality constraints. We approximate the
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original constrained problem by an unconstrained one based on
the penalty method. The behavior of the algorithm in the mean
and in the mean-square-error sense was analyzed. Finally, the
simulations showed the efficiency of the proposed method.
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