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Abstract—We consider distributed estimation problems over multitask
networks where the parameter vectors at distinct agents are coupled via
a set of linear equality constraints. Unlike previous existing works, the
current work assumes that each constraint involves agents that are not
necessarily one-hop neighbors. At each time instant, we assume that each
agent has access to the instantaneous estimates of its one-hop neighbors
and to the past estimates of its multi-hop neighbors through a multi-hop
relay protocol. A distributed penalty-based algorithm is then derived and
its performance analyses in the mean and in the mean-square-error sense
are provided. Simulation results show the effectiveness of the strategy and
validate the theoretical models.

I. INTRODUCTION

Distributed estimation is used in a wide range of applications
including communication [1], spectrum sensing [2], distributed lo-
calization [3], and power system monitoring [4]. Several useful
distributed solutions, such as incremental strategies [5], diffusion
strategies [6]–[11], and consensus strategies [12], [13] have been
proposed in the literature to address single-task problems where all
agents in the network collaborate to estimate a common parameter
vector from noisy measurements. Among them, diffusion strategies
are advantageous in terms of stability range, robustness, and perfor-
mance [8]–[10].

In many applications, however, it happens that the agents in the
network have to infer multiple parameter vectors simultaneously.
Networks of this type are referred to as multitask networks [14], [15].
Multitask diffusion strategies were derived by exploiting prior infor-
mation on the relationships among tasks. For example, appropriate
regularization terms can be used to promote similarities between the
tasks [14], [16], [17]. In [18], a diffusion-based algorithm is proposed
to solve node-specific estimation problems where each node consists
of a set of local parameters and a set of network global parameters.
In [19], [20], the parameter space is decomposed into two orthogonal
subspaces. The relations among tasks are modeled by assuming that
they all share one of the subspaces. In some applications, such as
the network flow problem [21], the basis pursuit problem [22], and
the interference management problem [23], the parameter vectors
may be related via a set of linear equality constraints. Distributed
projection-based [24] and penalty-based [25] estimation algorithms
were proposed to solve multitask estimation problems where each
agent is interested in estimating its own parameter vector and where
the parameter vectors at neighboring agents are related according to
a set of linear equality constraints. In the current work, we consider

The work of F. Hua was partly supported by China Scholarship Council and
NSFC grant 61471298. The work of R. Nassif and C. Richard was supported
in part by ANR and DGA grant ANR-13-ASTR-0300 (ODISSEE project).
The work of H. Wang was partly supported by NSFC under grants 61571365
and 61671386.

a more general multitask scenario where each equality constraint
involves agents that are not necessarily one-hop neighbors.

Let N denote the number of agents in the network and P the total
number of constraints. We are interested in devising a distributed
adaptive solution to solve the following optimization problem:

minimize
w1,...,wN

Jglob(w1, . . . ,wN ) ,
∑N

k=1
Jk(wk), (1a)

subject to
∑

`∈Ip
Dp`w` + bp = 0, p = 1, . . . , P (1b)

Each agent k seeks to estimate its parameter vector wk ∈ RMk×1,
and has knowledge of its local cost Jk(·) and the set of linear equality
constraints that it is involved in. Each constraint is indexed by p,
and defined by the Lp ×M` matrices Dp`, the Lp × 1 vector bp,
and the set Ip of agent indices involved in the p-th constraint. The
previous works [24], [25] assumed that Ip ⊆ Nk for all k ∈ Ip
with Nk denoting the one-hop neighborhood of agent k that consists
of all agents that are connected to k by an edge. In this paper, we
relax this assumption by considering scenarios where the constraints
involve agents that are not necessarily one-hop neighbors. In order
to derive a distributed solution relying solely on local interactions
between neighbors, we shall employ multi-hop relay protocols to
enable non-neighboring agents to share their estimates in order
to satisfy their constraints. A penalty-based distributed estimation
algorithm is derived and its stochastic behavior in the mean and in
the mean-square-error sense is analyzed. Simulations are conducted
to illustrate the effectiveness of the proposed algorithm and to validate
the theoretical models.
Notations: All vectors are column vectors. The all-one vector of
length N is denoted by 1N and the identity matrix of size N is
denoted by IN . The (k, `)-th block of a block matrix is denoted
by [·]k,`. The operator col{·} stacks its vector entries on top of each
other. The symbol ⊗ refers to the Kronecker product. The symbol
vec(·) denotes the vectorization operator that stacks the columns of
a matrix on top of each other. The symbol N (h)

k refers to the h-hop
neighborhood of agent k, that is, ` ∈ N (h)

k means that the smallest
number of hops from agent k to agent ` is equal to h.

II. PROBLEM FORMULATION AND PENALTY-BASED SOLUTION

Consider a strongly connected network of N agents. At each time
instant i, each agent k has access to a zero-mean scalar observation
dk(i), and to a zero-mean regression vector xk(i) ∈ RMk×1 with
positive definite covariance matrix Rx,k = E{xk(i)x>k (i)}. The
observations {dk(i),xk(i)} are assumed to satisfy a linear regression
model:

dk(i) = x
>
k (i)w

o
k + zk(i), (2)



where wo
k is an Mk×1 unknown parameter vector to be estimated by

agent k, and zk(i) is a zero-mean noise with variance σ2
z,k assumed to

be spatially and temporally independent. In order to estimate wo
k, we

associate with agent k the mean-square-error cost which is strongly
convex and second-order differentiable :

Jk(wk) = E|dk(i)− x>k (i)wk|2. (3)

Let us collect the parameter vectors wk and wo
k from across the

network into the following vectors of length M =
∑N
k=1Mk:

w , col{w1, . . . ,wN}, wo , col{wo
1, . . . ,w

o
N}.

Problem (1) can be written equivalently as:

minimize
w

∑N

k=1
E|dk(i)− x>k (i)wk|2, (4a)

subject to Dw + b = 0. (4b)

where D is a P ×N block matrix with block entries Dp` and b is a
P × 1 block column vector with block entries bp. We shall assume
that P < N and that D is full row rank, so that (4b) has at least
one solution.

The positive-definite quadratic problem (4) has a unique global
minimum given by:

w? = wo −R−1
x D>(DR−1

x D>)−1(Dwo + b), (5)

where Rx , diag{Rx,1, . . . ,Rx,N}.
Instead of using (5), we are interested in an adaptive distributed

solution that is able to learn from streaming data and that relies on
local interactions between neighboring agents. Penalty methods offer
a simple way for tackling constrained optimization problems. These
methods consist of approximating the constrained problem (4) into
an unconstrained one by adding to the objective function a penalty
term that penalizes any violation of the constraints:

minimize
w

Jglob
η (w) ,

∑N

k=1
Jk(wk) + η‖Dw + b‖2, (6)

with η > 0 a scalar parameter that controls the relative importance
of adhering to the constraints. Increasing η improves the approxima-
tion (6) in quality [26]–[29], i.e., wo(η) gets closer to w?. The above
problem is strongly convex for any η and its closed form solution
parameterized by η is given by:

wo(η) = (Rx + ηD>D)−1(Rxw
o − ηD>b). (7)

Applying a steepest-descent iteration to minimize the cost in (6)
with respect to wk and starting from an initial condition wk(0), we
obtain the following algorithm at node k:

wk(i+ 1) = wk(i)− µ
[
Rx,kwk(i)− rdx,k+

η
∑
p∈Jk

D>pk
( ∑
`∈Ip

Dp`w`(i) + bp
)]
,

(8)

where rdx,k , E{dk(i)xk(i)}, Jk denotes the set of constraint
indices involving agent k, i.e., Jk , {p|k ∈ Ip}. In order to evaluate∑
`∈Ip Dp`w`(i)+bp in (8), agent k needs the estimatesw`(i) from

all agents ` ∈ Ip. These agents are not necessarily in the one-hop
neighborhood of k, and need to employ multi-hop relay protocols
to share their own estimate. We shall assume that the route from
agent ` ∈ Ip to agent k with the smallest number of relays or hops,
which is often the most energy-efficient route [30], is known. Instead
of using w`(i) since it may not be available, agent k will use past
estimate w`(i − j) of agent ` where the delay j depends on the
smallest number of hops from agent ` to agent k, denoted by h`k. In

this work, we shall assume that j = h`k−1. With this multi-hop relay
protocol, at each time instant i, agent k has access to w`(i+1−h`k).

Usually, the second-order moments Rx,k and rdx,k in (8) are
not available beforehand. We replace them by the instantaneous
approximations [31]:

Rx,k ≈ xk(i)x>k (i), rdx,k ≈ dk(i)xk(i), (9)

Replacing w`(i) in (8) by w`(i+1− h`k), and splitting the update
iteration into two incremental steps by introducing the intermediate
estimate φk(i + 1), we obtain the following adaptive algorithm at
agent k:

φk(i+ 1) = wk(i) + µxk(i)
(
dk(i)− x>k (i)wk(i)

)
, (10a)

wk(i+ 1) = φk(i+ 1)

− µη
∑
p∈Jk

D>pk

( ∑
`∈Ip

Dp`φ`(i+ 2− h`k) + bp
)
, (10b)

where in the second step (10b), we replaced w`(i+1− h`k) by the
intermediate estimate φ`(i+2−h`k)) which is a better estimate for
the solution at agent `. We set φ`(i+2−h`k) = 0 if i+2−h`k <
0, and hkk = 1. In the first step (10a), which is the adaptation
step, node k uses its own data to update its estimate wk(i) to an
intermediate estimate φk(i + 1). In the second step (10b), which
corresponds to the penalization step, node k collects the intermediate
estimates φ`(i+ 2− h`k) from nodes ` ∈ Ip for all p ∈ Jk.

III. STOCHASTIC BEHAVIOR ANALYSIS

In this section, we study the mean and the mean-square-error
behavior of algorithm (10) with respect to wo(η) (7) and w? (5). Let
w̃k(i) , wo

k(η) − wk(i) and φ̃k(i) , wo
k(η) − φk(i) denote the

error vectors at agent k. Taking into account the delayed information
emerging from the multi-hop protocol, we introduce the extended
network error vectors:

w̃e(i) , col
{
w̃1(i), . . . , w̃N (i), φ̃1(i), . . . , φ̃N (i), . . . ,

φ̃1(i−H + 2), . . . , φ̃N (i−H + 2)
}
, (11)

φ̃e(i) , col
{
φ̃1(i), . . . , φ̃N (i), φ̃1(i− 1), . . . , φ̃N (i− 1),

. . . ,φ̃1(i−H + 1), . . . , φ̃N (i−H + 1)
}
, (12)

where H = maxk,`{h`k}. We define wδ , wo(η) − wo, wδ
e ,

1H⊗wδ and wδ′ , w?−wo, wδ′
e , 1H⊗wδ′. Before proceeding,

we introduce the following assumption on the regressors.

Assumption 1. The regressors xk(i) arise from a zero-mean random
process that is temporally white and spatially independent.

This assumption is commonly used in the adaptive filtering liter-
ature [31]. It helps to simplify the derivations without constraining
the conclusions.

A. Mean error behavior analysis

Using recursion (10) and data model (2), the H × 1 block vector
w̃e(i) can be written as:

w̃e(i+ 1) = B(i)w̃e(i)− µg(i) + µr(i) + µηf , (13)

where

B(i) , H [IMH − µRx,e(i)] , (14)

g(i) , Hpzx,e(i), (15)

r(i) , HRx,e(i)w
δ
e, (16)

f , col
{
D>(Dwo(η) + b),0M×1, . . . ,0M×1

}
, (17)



with H an H ×H block matrix, Rx,e(i) an H ×H block diagonal
matrix, and pzx,e(i) an H × 1 block vector:

H , [I − µη CD,e] , (18)

Rx,e(i) , diag {Rx(i),0M×M , . . . ,0M×M} , (19)

pzx,e(i) , col {pzx(i),0M×1, . . . ,0M×1} , (20)

where

I =

[
IM 0M×M(H−1)

IM(H−1) 0M(H−1)×M

]
, (21)

CD,e = =

[
CD,1 CD,2 · · · CD,H

0M(H−1)×MH

]
, (22)

Rx(i) = diag
{
xk(i)x

>
k (i)

}N
k=1

, (23)

pzx(i) = col
{
xk(i)zk(i)

}N
k=1

. (24)

and CD,h is an N ×N block matrix with (k, l)-th block given by:

[CD,h]k,l =

{∑
p∈Jk

D>pkDp` if ` ∈ Ip ∩N (h)
k ,

0 otherwise.
(25)

Note that
∑H
h=1CD,h = D>D.

Taking the expectation of both sides of (13) and using the fact that
E{g(i)} = 0, we obtain:

Ew̃e(i+ 1) = BEw̃e(i) + µr + µηf , (26)

where

B , H [IMH − µRx,e] , (27)

r , HRx,ew
δ
e, (28)

Rx,e , diag {Rx,0M×M , . . . ,0M×M} . (29)

The mean error vector E{w̃e(i)} converges as i→∞ if the matrix
B is stable, i.e., the spectral radius of B is less than 1. In this case,
the asymptotic mean bias is given by:

Ew̃e(∞) = lim
i→∞

Ew̃e(i) = µ(IM −B)−1(r + ηf). (30)

Using similar definition with (11), we find that the extended mean
error recursion Ew̃′e(i) with respect to w?evolves according to:

Ew̃′e(i+ 1) = BEw̃′e(i) + µrs. (31)

where rs , HRx,ew
δ′
e . When B is stable, we obtain:

Ew̃′e(∞) = lim
i→∞

Ew̃′e(i) = µ(IMH −B)−1rs. (32)

We observe that, when wo satisfies the constraints, we have wo =
wo(η) = w?, r = 0, f = 0, and rs = 0. In this case, the asymptotic
mean biases Ew̃e(∞) and Ew̃′e(∞) reduce to zero.

B. Mean-square-error behavior analysis

We shall evaluate the weighted variance E{‖w̃e(i+1)‖2Σ} where
Σ is a positive semi-definite matrix that we are free to choose.
Let σ , vec(Σ). In the following, we use the alternative notation
‖w‖2σ to refer to the same weighted squared norm ‖w‖2Σ. Following
the same line of reasoning as in [7], [10] for single-task diffusion
strategies, and extending the arguments to our multitask scenario, we
find:

E{‖w̃e(i+ 1)‖2σ} = E{‖w̃e(i)‖2Fσ}+ [vec(Y(i))]>σ, (33)

where F is the (MH)2 × (MH)2 matrix given by:

F , E{B>(i)⊗B>(i)}. (34)

It is sufficient in this work to consider the case of sufficiently small
step-sizes where the influence of terms involving higher-order powers
of µ can be ignored [10], [31]. In this case, F can be approximated
by F ≈ B> ⊗ B>. Under this approximation, the stability of F is
ensured if the matrix B is stable.

The matrix Y(i) in (33) is given by:

Y(i) ,µ2G> + µ2Q> + 2µP>(i) + µ2η2ff>+

2µηfEw̃>e (i)B> + 2µ2ηfr>, (35)

where G and Q are H ×H block matrices given by:

G , E{g(i)g>(i)}
= Hdiag {T ,0M×M , . . . ,0M×M}H>,

(36)

Q , E{r(i)r>(i)}
= Hdiag {T 1,0M×M , . . . ,0M×M}H>,

(37)

with T , diag{σ2
z,kRx,k}Nk=1, T 1 , E{Rx(i)K1Rx(i)}, and

K1 , wδ(wδ)>. The evaluation of T 1 depends on higher order
moments of the regressors. In the following, we shall evaluate T 1

when the regressors are zero-mean real Gaussian. For any square
matrix A and zero-mean Gaussian regressors, we have [32]:

E{xk(i)x>k (i)Ax`(i)x>` (i)} = Rx,kARx,`+

δk,`(Rx,kA
>Rx,k +Rx,ktr(Rx,kA)).

(38)

Using (38), it can be verified that T 1 can be expressed as:

T 1 = RxK1Rx +

N∑
k=1

(
Sk(IN ⊗Rx,k)K>1 (IN ⊗Rx,k)Sk+

Sk(IN ⊗Rx,k)ZkSk
)
, (39)

where Sk , diag(e>k ) ⊗ IMk is an N × N block diagonal matrix
and ek is the column vector with a unit entry at position k and zeros
elsewhere. Zk is an N ×N block matrix with the (m,n)-th block
given by:

[Zk]m,n = [vec(Rx,k)]
>vec([K1]m,n)IMk . (40)

The H ×H block matrix P(i) is given by:

P(i) , E{B(i)w̃e(i)r
>(i)}

= Hdiag {T 2,0M×M , . . . ,0M×M}H>
(41)

with

T 2(i) , E{Rx(i)K2(i)(IM − µRx(i))}, (42)

K2(i) , E{w̃(i)}(wδ)>. (43)

Note that, following similar arguments as the one for Q, P(i) can
be evaluated for zero-mean real Gaussian regressors.

Starting from the initial condition w̃e(0) in (33) and comparing
the expressions of E{‖w̃e(i+1)‖2σ} and E{‖w̃e(i)‖2σ}, we obtain:

E{‖w̃e(i+ 1)‖2σ} = E{‖w̃e(i)‖2σ}+[
vec(E{w̃e(0)w̃

>
e (0)})

]>
(F − I(MH)2)F iσ+ (44)

[vec(Y(i))]>σ + Γ(i)σ,

where Γ(i) is an (MH)2 × 1 vector that evolves according to:

Γ(i+ 1) = [vec(Y(i))]>(F − I(MH)2) + Γ(i), (45)

with Γ(0) = 0(MH)2×1.
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Fig. 1: Multitask MSE network with constraints.
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Recursion (33) converges to a steady-state value if the matrix F is
stable and the mean error vector E{w̃e(i)} converges. In this case,
we obtain from (33):

lim
i→∞

E{‖w̃e(i)‖2(I
(MH)2

−F)σ} = [vec(Y(∞))]>σ, (46)

where Y(∞) can be obtained from (30) and (35). Define the network
mean-square-deviation (MSD) as: ζ? = limi→∞

1
N
E{‖w̃(i)‖2}. In

this case, the steady-state network MSD can be written as:

ζ? = lim
i→∞

1

N
E{‖w̃e(i)‖2σss

} (47)

with σss = vec (diag{IM ,0M×M , . . . ,0M×M}), then the network
MSD can be obtained from (46) by selecting σ that satisfies:

(I(MH)2 −F)σ =
1

N
σss. (48)

Replacing σ in (46) by 1
N
(I(MH)2 −F)−1σss we have:

ζ? =
1

N
[vec(Y(∞))]>(I(MH)2 −F)−1σss. (49)

Finally, the transient and steady-state behavior of E{‖w̃′e(i)‖2σ}
can be derived from the following relation:

E{‖w̃′e(i)‖2σ} = E{‖w̃e(i)‖2σ}+ 2E{w̃e(i)}Σwd,e + ‖wd,e‖2Σ

with wd,e = 1H ⊗ (w? −wo(η)).

IV. SIMULATIONS

In this section, we provide experimental results to illustrate the
convergence of algorithm (10) and to validate our theoretical models.
We considered a network of 15 nodes with the topology and the con-
straints shown in Fig. 1. We randomly sampled 10 linear constraints
of the form

∑
`∈Ip dp`w` = bp · 12, where the coefficients dp`

and bp were randomly chosen from {−2,−1, 1, 2}. The regression
vectors xk(i) were zero-mean Gaussian with covariance matrix
Rx,k = σ2

x,kI2. The noises zk(i) were zero-mean i.i.d. Gaussian
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random variables independent of any other signal with variances σ2
z,k.

The variances σ2
x,k and σ2

z,k used in the simulations are shown in
Fig. 2. The results were averaged over 200 Monte-Carlo runs.

We considered two scenarios: i) the parameter vector wo = wo

where wo satisfies the constraints, i.e. wo = w?(Fig.3); ii) wo

does not satisfy the constraints, specifically, we perturbed it as
wo = wo + u where u ∼ N (0, I) (Fig.4). The step-size µ was
set to 0.02. We compared our algorithm (10) with the centralized
CLMS algorithm [24], [33]. Furthermore, for comparison purposes,
we assumed additional links connecting nodes 1 to 6, 5 to 12, 10
to 14, and 14 to 15. In this case, the constraints are local and
the algorithm derived in [25] can be applied. We set µ = 0.018
for the centralized CLMS algorithm and for algorithm [25] (with
additional links) so that their steady-state MSD match. Observe that
the simulation results match well the theoretical models. Furthermore,
our algorithm performs well in the mean-square-error compared
to the centralized solution. Finally, observe that, as expected, the
delays emerging from the multi-hop protocols required in non-local
constraints scenarios will lead to a slower convergence rate.

V. CONCLUSION

We proposed a distributed multitask algorithm for estimating
multiple parameter vectors that are coupled through non-local linear
equality constraints. Based on the penalty method, we solved the orig-
inal constrained problem by approximating it into an unconstrained
one. A multi-hop relay protocol was employed in order to deal with
the non-local constraints and to devise a distributed algorithm. The
stochastic behavior of the algorithm in the mean and in the mean-
square-error sense was studied. Simulation results were conducted to
show the effectiveness of the proposed method and to validate our
theoretical performance analysis.
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