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Geometric Unmixing of Large Hyperspectral Images:
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Abstract—In hyperspectral imaging, spectral unmixing is one
of the most challenging and fundamental problems. It consists
of breaking down the spectrum of a mixed pixel into a set of
pure spectra, called endmembers, and their contributions, called
abundances. Many endmember extraction techniques have been
proposed in literature, based on either a statistical or a geometrical
formulation. However, most, if not all, of these techniques for
estimating abundances use a least-squares solution. In this paper,
we show that abundances can be estimated using a geometric for-
mulation. To this end, we express abundances with the barycentric
coordinates in the simplex defined by endmembers. We propose to
write them in terms of a ratio of volumes or a ratio of distances,
which are quantities that are often computed to identify endmem-
bers. This property allows us to easily incorporate abundance
estimation within conventional endmember extraction techniques,
without incurring additional computational complexity. We use
this key property with various endmember extraction techniques,
such as N-Findr, vertex component analysis, simplex growing
algorithm, and iterated constrained endmembers. The relevance
of the method is illustrated with experimental results on real
hyperspectral images.

Index Terms—Abundance estimation, Cramer’s rule, endmem-
ber extraction, hyperspectral image, iterated constrained end-
members algorithm, N-Findr, orthogonal subspace projection,
simplex, simplex growing algorithm, unmixing spectral data, ver-
tex component analysis.

I. INTRODUCTION

THE EMERGENCE of hyperspectral imaging sensors in
recent years has brought new opportunities and challenges

in image analysis. Hyperspectral images are cubes of data, mea-
suring spectral composition within a spatial view. As opposed
to conventional three-channel color systems, the spectral infor-
mation provides in-depth analysis of the composition of objects
in the image scene. Since the early 1990s, hyperspectral imag-
ing has been adopted as an airborne technique for military and
environmental remote sensing and, more recently, to identify
chemical species on the surface and atmosphere of Mars [1].
Hyperspectral imaging provides abundant information about
ground composition, owing to an improved resolution in the
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spatial dimensions, with a high sensitivity in the spectral range,
up to hundreds of contiguous bands covering visible- and short-
wavelength infrared spectral ranges.

Even with high spatial resolution, a single pixel may consist
of different materials. Spectra in a hyperspectral image can be
seen as a mixing of some spectral signatures of pure physi-
cal components over the ground [2]. Despite the potential of
nonlinear unmixing techniques [3], the linear mixing model
has a suitable physical interpretation widely accepted within
the remote sensing community. In this case, pure spectral sig-
natures, called endmembers, are linearly combined with some
abundance fractions. The key challenges for spectral unmixing
are twofold: finding the collection of endmembers and esti-
mating their abundances for each pixel in the hyperspectral
image.

To identify the endmembers, early techniques were based
on a predefined library of laboratory minerals, unrelated to the
image under investigation [4]. Because these spectra are rarely
acquired under the same conditions, this brings several diffi-
culties in atmospheric correction and variations in the sensor
intrinsic parameters. Current approaches avoid such problems
by inducing the endmembers from the scene, which falls into
the class of blind source separation problems (see [5] for
an early study and [6] for a more recent one). Therefore, a
natural tool to blind unmixing is the independent component
analysis. Concerning hyperspectral data, the assumption that
sources are statistically independent is violated since, due to
physical constraints in the data acquisition process, the sum
of the abundance fractions is constant, implying dependence
among abundances [7]. Such limitations have contributed to the
development of new unmixing techniques, which are roughly
divided into two classes, geometric approaches and statistical
ones (see [8] for a recent survey). Whereas the latter requires
probabilistic foundations with some prior knowledge, the ge-
ometric approach exploits the theory of convex set. In this
paper, we give particular attention to the geometric formulation.
Prior to the endmember extraction, most of these techniques
are never used on the original spectra. To correct the redun-
dancy in the spectral dimension as opposed to the low number
of endmembers, a dimensionality reduction transformation is
often applied, such as the principal component analysis (PCA)
or the minimum noise fraction (MNF).

From the linear mixing model, mixed-pixel spectra are lin-
ear mixtures of endmembers. As a consequence, they can
be viewed as the vertices of a simplex enclosing all mixed
spectra. Geometric techniques exploit this insight by seeking
the vertices of a simplex englobing all the image data. One of
the most widely used automatic endmember extraction method
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is Winter’s N-Findr algorithm [9]. It starts with a random
set of candidate endmembers (see [10] and [11] for several
implementations of N-Findr). Iteratively, one at a time, each
pixel spectrum is considered as a candidate to replace each
endmember. It is accepted as a new endmember if the volume
of the simplex of endmembers increases. The N-Findr is a
fast endmember extraction algorithm successfully applied to
many hyperspectral images. Sequential algorithms can provide
further reduction in computational complexity by growing the
simplex gradually, vertex by vertex. The Simplex Growing
Algorithm (SGA) is a sequential version of the N-Findr [12].
Starting with one vertex, it finds a simplex with the maximum
volume by sequentially adding a new (optimal) vertex at a time.
The Vertex Component Analysis (VCA) algorithm is another
sequential algorithm [13]. It exploits the fact that the orthogonal
subspace projection (OSP) of a simplex is also a simplex, and
thus, vertices of the latter are vertices of the initial one. The
VCA gradually selects vertices by performing OSPs, sequen-
tially starting from a 1-D subspace. The Iterated Constrained
Endmembers (ICE) algorithm fits an enclosing simplex to the
data cloud while penalizing its volume [14]. To this end, an
alternating optimization scheme is used by minimizing, on the
one hand, a quadratic cost function for fitness and, on the other
hand, the distance between endmembers for penalization. A
sparsity-promoting version of ICE is presented in [15].

Two physical constraints are generally imposed on the
linear mixing model, enforcing constraints on the fractional
abundances for each pixel: 1) the sum-to-one (or equality)
constraint, which indicates that the endmember contribution
must add up to 100%, and 2) the nonnegativity constraint,
since negative contributions are physically unrealistic. The
most straightforward approach to estimate abundances is by an
unconstrained least-squares minimization, with the abundances
of a given pixel determined by a matrix inversion [16]. For
each pixel, the computational complexity is cubic in the number
of endmembers. The sum-to-one constraint can be imposed
to the least-squares solution using, for instance, Lagrangian
multipliers. The nonnegativity constraint is more difficult to
address, since it does not have a closed-form solution. Many
iterative approaches have been proposed to this end, including
nonnegative matrix factorization techniques [17], [18], as well
as general iterative techniques [19], [20]. A fully constrained
solution requires more advanced optimization methods [21],
[22]. Solutions to these problems involve computational exten-
sive algorithms, which are not appropriate for a large number
of hyperspectral pixels (for implementation issues, see, for
instance, [23] and [24]). It is worth noting that if the endmem-
bers were properly identified, i.e., the vertices of a simplex
englobing all the data, both sum-to-one and nonnegativity con-
straints would be naturally fulfilled. For this reason, extraction
techniques often directly apply the unconstrained least-squares
method [9], [13], [25].

In this paper, we give a geometric formulation to solve
the abundance estimation problem. To this end, we redefine
the fractional abundances as barycentric coordinates (or areal
coordinates) in the reduced dimensional space. We derive two
expressions of these coordinates, either as a volume ratio of
simplexes or as a ratio of distances. It is amazing to observe

that these volumes and distances are often computed by well-
known endmember extraction methods in order to identify the
endmembers. This is the case of N-Findr and SGA algorithms,
which compute volumes, whereas VCA and ICE estimate dis-
tances. By taking advantage of this situation, we show that
one can easily incorporate abundance estimation within con-
ventional endmember extraction techniques, without essentially
incurring additional computational cost.

The remainder of this paper is organized as follows. In
Section II, we present barycentric coordinates for the estima-
tion of fractional abundances. In Section III, we demonstrate
that our approach is natural to many endmember extraction
techniques and we outline its application to N-Findr, SGA,
VCA, and ICE. The effectiveness of the method is illustrated
in Section IV by comparing it to the fully constrained least-
squares solution. Finally, Section V summarizes this work and
describes ongoing efforts. However, first, we give a mathemat-
ical formulation of the linear mixing/unmixing model.

A. Linear Mixing/Unmixing Model

Given a hyperspectral image, let x� be the spectrum of the
�-th pixel, with each pixel indexed using a single index. The
linear mixing model takes the form

x� =
n∑

i=1

αixωi
(1)

where {xω1
,xω2

, . . . ,xωn
} denotes the collection of the n end-

members. In matrix form, the linear mixing model is given by

x� = Xα (2)

where X = [xω1
xω2

. . .xωn
] and α = [α1 α2 . . . αn]

� are the
vectors of the abundances to be determined. We suppose for
now that the endmembers have been identified using any off-
the-shelf endmember extraction technique.

The fractional abundance αi represents the contribution in x�

of the pure material defined by xωi
. In order to adopt a physical

interpretation of this mixing model, the abundances must satisfy
two constraints:

1) the sum-to-one constraint (also called the equality con-
straint) with

n∑
i=1

αi = 1

2) the nonnegativity constraint with

α1, α2, . . . , αn ≥ 0.

These constraints can be written in matrix form as 1�α = 1
and α ≥ 0, where 1 is the unit column vector of n entries and
the inequality is taken componentwise.

Ignoring these constraints, the optimal solution of the prob-
lem (2), with optimality in the least-squares sense, is given by
the normal equation

αLS = (X�X)
−1
X�x�. (3)
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The equality constraint is the simplest constraint to enforce and
can be incorporated by using Lagrangian multipliers, resulting
into the optimal solution

αeqLS=αLS−
1

1�(X�X)−11
(X�X)−11(1�αLS−1). (4)

Enforcing the nonnegativity constraint is not as easy to address
as the equality constraint since no closed-form solution exists.
In the least-squares sense, the problem consists of minimiz-
ing f(α) = (1/2)‖x� −Xα‖2 while maintaining α ≥ 0. Let
∇f(α) = X�(Xα− x�) denote the gradient of f(α). Then,
the Karush–Kuhn–Tucker optimality conditions [26] for this
problem are α ≥ 0, ∇f(α) ≥ 0, and ∇f(α)�α = 0. This can
be solved using iterative techniques, such as an alternating
strategy applied to both expressions

α�X�(Xα− x�) = 0, and α ≥ 0. (5)

The most commonly used algorithm to compute the solution
is the Lawson–Hanson algorithm [19], which uses the active
set scheme. Other iterative algorithms include multiplicative
iterative strategies [20]. The problem of estimating the abun-
dances using the linear model subject to both equality and
nonnegativity constraints, the so-called fully constrained solu-
tion, requires advanced iterative optimization methods [21]. All
these solutions are optimal, in the least-squares sense, and can
be considered even when the number of bands (dimension) is
greater than the number of endmembers.

In practice, the spectral dimension is reduced to n− 1 in
order to have the mixing model (1) satisfied. Such represen-
tations allow the extraction of the endmembers. We shall now
give a direct geometric formalism to estimate the abundances in
the same low-dimensional representation. To this end, we solve
the equality-constrained optimization problem geometrically
and give a straightforward interpretation to the violation of the
nonnegativity constraint.

II. BARYCENTRIC COORDINATES

FOR ABUNDANCE ESTIMATION

Suppose, for now, that the endmembers have been extracted
using, for instance, any of the aforementioned techniques, such
as N-Findr or SGA algorithms. We seek to estimate the abun-
dances, i.e., α1, α2, . . . , αn, for each spectrum in the image.
Given any x�, we consider the linear mixing model with the
equality constraint, namely

x� =

n∑
i=1

αixωi
(6)

subject to

n∑
i=1

αi = 1. (7)

Since both are equality expressions, we combine them into a
single matrix expression, with the augmented linear system[

1 1 · · · 1
xω1

xω2
· · · xωn

]
[α] =

[
1
x�

]
. (8)

It is worth noting that this is a linear system with as many
equations as unknowns, i.e., n. Linear algebra provides many
elegant methods to solve such systems [16].

We propose to solve this problem using Cramer’s rule
[16, p. 259]. The consequences of this choice will be clear
throughout this paper. Cramer’s rule states that the solution of a
linear system can be expressed in terms of the determinants of
the system matrix and of the matrices obtained from it with one
column substituted by the right-hand-side vector. With this rule
applied to the aforementioned augmented linear system (8), the
solution can be written as

α1 =

det

[
1 1 · · · 1
x� xω2

· · · xωn

]

det

[
1 1 · · · 1

xω1
xω2

· · · xωn

]

α2 =

det

[
1 1 · · · 1

xω1
x� · · · xωn

]

det

[
1 1 · · · 1

xω1
xω2

· · · xωn

] ,

...

αn =

det

[
1 1 · · · 1

xω1
xω2

· · · x�

]

det

[
1 1 · · · 1

xω1
xω2

· · · xωn

] (9)

where det is the determinant operator. The amazing thing
about Cramer’s rule is that one only needs to compute the
determinants in order to solve a linear system, as opposed to
conventional matrix inversion techniques. In fact, both methods
are equivalent. Moreover, when the rule is applied to the pro-
posed augmented linear system, we get an intuitive geometric
interpretation, natural in the context of simplexes with vertices
defined by hyperspectral data.

A. Geometric Formulation

Now, we recall the expression of the volume of a simplex.
Let X = {xω1

,xω2
, . . . ,xωn

} be the set of linearly indepen-
dent vectors in an (n− 1)-dimensional space, thus defining a
nondegenerated simplex in that space. This assumption is true
in the case of endmembers. We define the oriented volume of
the simplex with vertices X , as follows:

VX =
1

(n− 1)!
det

[
1 1 · · · 1

xω1
xω2

· · · xωn

]
. (10)

This expression gives a signed value, either positive or neg-
ative depending on the order of the simplex vertices, i.e.,
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Fig. 1. Volume of a tetrahedron (3-D simplex) is given by the third of the area
of the base times the height from the base to the apex. Since both (blue and
red) tetrahedrons share the same (gray) base, the ratios of their volumes are
proportional to the (dashed lines) ratios of their heights.

the sequence xω1
,xω2

, . . . ,xωn
. The consequences of the use

of the oriented (signed) volume, rather than the use of the
conventional positive-valued expression |Vx|, will be justified.

Let \ denote the set difference operator, with X \ {xωi
} ∪

{x�} as the set defined by set X , where xωi
has been removed

and x� added. From Cramer’s rule (9), each coefficient αi can
be written as a ratio of two oriented volumes of simplexes,
namely, on the one hand, the simplex with vertices X given
by the endmembers and, on the other hand, the same simplex
with xωi

replaced by x�. In a compact form, we have

αi =
VX\{xωi}∪{x�}

VX
(11)

for all i = 1, 2, . . . , n. As shown below, these volumes are
often computed by the endmember extraction techniques, as
in the case of the N-Findr algorithm, for instance. Therefore,
one can estimate abundances with essentially no computa-
tional cost.

B. Distance-Based Formulation

All the abundances can be estimated using (11) or, equiv-
alently, from (9). This illustrates the fact that, for each abun-
dance, the two considered simplexes have n− 1 identical
vertices and only one different vertex xωi

, which has been
substituted in the numerator by x�. Since these n− 1 vertices
provide a common base for both simplexes, we can further
simplify the expression (11) (see Fig. 1 for a 3-D illustration).
In fact, remember that the volume of a simplex of n vertices can
be given in terms of the content (length, area, volume, . . .) of a
base of n− 1 vertices and the distance of the remaining vertex
to the subspace including the base, that is, we have

VX =
1

n− 1
δ (xωi

)VX\{xωi}

where δ(xωi
) is the (signed) distance between the vertex xωi

and the subspace spanned by the other vertices in X . By using
this notation, we get

αi =
δ(x�)

δ (xωi
)

(12)

for all i = 1, 2, . . . , n. This formulation is more adapted to
incremental endmember extraction techniques, as opposed to
the volume ratio in (11). This is mainly due to the fact that
this expression does not require explicit relations between pre-
viously selected endmembers. Only distances to the subspace
spanned by the latter are considered. This results in low compu-
tational complexity algorithms, as illustrated, for instance, with
the VCA.

C. On the Nonnegativity Constraint

As defined earlier, the oriented volume of a simplex can
be either positive or negative, depending on the order of the
sequence defined by its vertices. In order to study the sign
of any coefficient αi, we need to compare the volumes in
(11) or, equivalently, the corresponding determinants. The only
difference resides in one column, the ith column, which is either
xωi

or x�. Therefore, one only needs to compare the orientation
of these simplexes. If both simplexes have the same orientation,
the coefficient is positive; otherwise, when they have opposite
orientations, it is negative.

To illustrate this point, we consider the 2-D example in
Fig. 2. Consider that the first coefficient is given by α1 =
VX\{xω1

}∪{x�}/VX . Therefore, we compare the simplexes
X = {xω1

,xω2
,xω3

} and {x�,xω2
,xω3

}. Fig. 2 (left) shows
the case where both simplexes have the same orientation, i.e.,
counterclockwise in the sequences xω1

xω2
xω3

and x�xω2
xω3

.
In this case, α1 is nonnegative. Fig. 2 (right) shows the case
of opposite orientations, with a clockwise orientation in the
sequence x�xω2

xω3
as opposed to the counterclockwise in

xω1
xω2

xω3
. This results in α1 < 0. Applying the same argu-

ment for the other coefficients, we find that α2 and α3 are
nonnegative in both cases (left and right figures).

Now, consider the signed distances in (12). As shown in
Fig. 3, xω2

xω3
divides IR2 into two regions. Coefficient α1 is

positive if both x� and xω1
lie on the same side (left figure).

Otherwise, it is negative (right figure).
The results obtained for all the coefficients are in accordance

with the definition of a convex hull, indicating that x� is inside
the simplex if and only if all the αis are nonnegative. Moreover,
we can derive a simple inclusion test as follows: x� is inside the
simplex if and only if all the determinants in (9) have the same
sign (either positive or negative); otherwise, if it is outside,
there exists at least one determinant with an opposite sign.
This provides an elegant inclusion test, where only determinant
evaluation is required, a step carried out by the endmember
extraction stage, as derived in the next section.

It is worth noting that the nonnegativity constraints are not
imposed in the proposed method. However, the violation of
these constraints, i.e., the existence of at least one negative αi,
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Fig. 2. Illustration of the (triangle) simplex in a 2-D Euclidean space to study the sign of the coefficient α1. In the left figure, x� and xω1 are on the same side
of the line defined by xω2 and xω3 ; thus, α1 is nonnegative. In the right figure, α1 is negative since they lie on opposite sides.

Fig. 3. Two-dimensional illustration of α1 computation using the heights. In this case, α1 = δ(x�)/δ(xω1 ). In the left figure, x� and xω1 are on the same side
of the line, defined by xω2 and xω3 , and α1 is nonnegative. In the right figure, α1 is negative since x� and xω1 lie on both sides.

means that x� is outside the simplex. Such a result implies that
both equality and nonnegativity constraints cannot be satisfied
by the resulting linear combination of endmembers. This il-
lustrates the limitations of geometric approaches for endmem-
ber extraction (described hereafter) in properly identifying the
endmembers.1

1Such a result is also related to the uniqueness of the unmixing solution (or
the endmember identifiability condition, as given in [27, Theorem 1]). In fact,
let x�1 ,x�2 , . . . ,x�n be the spectra corresponding to some arbitrary pixels.
Then, we have, from (8)[

1 · · · 1
x�1 · · · x�n

]
=

[
1 · · · 1

xω1 · · · xωn

]
[α�1 · · · α�n ]

where the equality also holds for the volumes as defined in (10), namely∣∣∣V{x�1
,...,x�n}

∣∣∣ = ∣∣∣V{xω1
,...,xωn}

∣∣∣ ∣∣det [α�1 · · · α�n

]∣∣ .
The determinant in this expression can be upper bounded using Hadamard’s
inequality, with

∣∣det [α�1 · · · α�n

]∣∣ ≤ n∏
j=1

∥∥α�j

∥∥
where the inequality becomes an equality when the matrix is a permutation
matrix. If the sum-to-one and the nonnegativity constraints are satisfied, then
this upper bound equals 1. Therefore, the volume of the simplex defined by any
arbitrary set cannot be greater than the one defined by the endmembers.

III. ABUNDANCE ESTIMATION USING STATE-OF-THE-ART

ENDMEMBER EXTRACTION TECHNIQUES

Many endmember extraction techniques determine endmem-
bers as vertices of a simplex englobing all the spectra. In
this section, we show how one can easily take advantage of
some of these techniques in order to estimate the abundances
using barycentric coordinates. To keep the presentation as
simple as possible, we restrict ourselves to classical well-known
techniques.

A. N-Findr Algorithm

The N-Findr algorithm seeks the simplex with the largest vol-
ume in an iterative manner by visiting each pixel to inflate the
simplex. In a preprocessing stage, a dimensionality reduction
method, such as PCA or MNF, is applied to get data into an
(n− 1)-dimensional space, with n being the number of end-
members. At initialization, an initial set of n endmember can-
didates is selected randomly.2 Let X = {xω1

,xω2
, . . . ,xωn

}
be the set of corresponding spectra.

2The initial set influences the resulting endmembers and, therefore, the
estimated abundances. More efficient selection techniques may also be applied
to construct the initial set. See, e.g., [28]. We keep the exposition clear with the
original N-Findr algorithm.
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Fig. 4. Illustration of endmember extraction incremental algorithms in a 2-D Euclidean space. From two previously extracted endmembers, xω1 and xω2 , the
third endmember is determined (left) using SGA by comparing simplex volumes or (right) using VCA by comparing distances to the subspace spanned by previous
endmembers. The abundance α3 is given by (left) the ratio of volumes or (right) the ratio of distances.

The following process is iterated for each pixel, with x�

being its spectrum. One at a time, each endmember is replaced
by the spectrum under investigation and the oriented3 volume
of the resulting simplex is evaluated. We get n new volumes,
VX\{xωi

}∪{x�}, as well as the initial volume VX . Comparing
these volumes, we get the following decision rule.

1) If the tested volumes are less than the initial one, in
absolute values, namely, maxi |VX\{xωi

}∪{x�}| < |VX |,
then the initial set of endmembers remains unchanged.

2) Otherwise, in order to inflate the volume, some entry
of the endmember set is replaced by x�. The outgoing
spectrum xωi

is identified as follows: ωi=argmax |
VX\{xωi

}∪{x�}|.
It turns out that the volumes already computed for endmem-

ber extraction can be used to estimate the abundances using
(11), namely, by defining the contribution of xωi

in x� by

αi =
VX\{xωi}∪{x�}

VX
.

As given in this expression, the contribution of any endmember
requires only an arithmetic division for each pixel. Therefore,
estimating all the abundances for all the pixels can be done with
a simple arithmetic division applied nN times.

B. SGA

The SGA improves the N-Findr in two main aspects:
1) At initialization, the starting set is not randomly selected,
and 2) the simplex is growing one endmember at a time until
all endmembers are extracted.

At initialization, a single dimension is considered, using,
for instance, PCA, where a simplex is a nontrivial line seg-
ment. The first endmember xω1

is determined by maximizing
|V{xω1

,x0}|, where x0 is randomly selected. Iteratively, the

3The original algorithm uses a positive-valued volume, here recasted into a
signed one. Although this turns out to be very useful, the algorithm remains
essentially the same.

endmembers are extracted one at a time. At step i for 2 ≤ i ≤ n,
with the dimensionality reduced to i− 1, the ith endmember is
determined by the index ωi as follows:

ωi = argmax
�

∣∣VX∪{x�}
∣∣

where X corresponds to the set of endmembers previously
extracted. This is shown in Fig. 4 (right).

In the same way as the N-Findr, the volumes computed by the
SGA allow the estimation of the abundances, as given by (11).
The difference resides in that, at a given step i, the computed
volumes give the contributions of ωi in all x� in the (i− 1)-
dimensional space and not in the final (n− 1)-dimensional
space defined by the n-order mixing model.

C. VCA

The VCA exploits the fact that an affine transformation of a
simplex is also a simplex, particularly by projection operation.
The incremental scheme projects the data onto a direction
orthogonal to the subspace spanned by previously selected
endmembers. The extreme of this projection specifies the new
endmember. The algorithm iterates until it reaches the desired
number of endmembers.

Roughly speaking, the VCA considers the distance of candi-
date data to the subspace spanned by the endmembers already
determined. The new endmember corresponds to the farthest
data, as shown in Fig. 4 (left). It turns out that these distances
are the same as those introduced in (12) and, consequently,
allow us to estimate abundances as follows:

α3 =
δ(x�)

δ (xω3
)
.

Once again, only one arithmetic division is required to estimate
the contribution of any endmember for each pixel. Moreover,
the VCA selection criteria, i.e., xω3

= argmaxx�
δ(x�), gives

a natural framework for both equality and nonnegativity con-
straints. If there exists some x� such that δ(xω3

) < δ(x�), then
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from the aforementioned expression, α3 > 1, and consequently,
the constraints are violated.

D. Connections to the ICE Method

The ICE method seeks the simplex englobing the data by
minimizing the residuals in a least-squares sense. Essentially,
the algorithm minimizes, on the one hand, the mean squared
error

1

N

N∑
�=1

∥∥∥∥∥x� −
n∑

i=1

αixωi

∥∥∥∥∥
2

and, on the other, the sum of squared distances between all
endmembers, namely

n∑
i�=j

i,j=1

∥∥xωi
− xωj

∥∥2 .

The former enlarges the simplex englobing the data, whereas
the latter constrains its volume. ICE uses an alternating min-
imization scheme to extract endmembers (from a quadratic
objective function) and estimate their contributions (solving a
quadratic programming problem).

The ICE method considers (squared) distances between all
couples of data, endmembers and non-endmembers. Using the
distances between vertices of a simplex, we can easily compute
its volume, owing to the Cayley–Menger determinants [29].
The square volume of a simplex in an (n− 1)-dimensional
space is given by

V2
X = cn−1 det

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 · · · 1
1 0 δ21,2 δ21,3 · · · δ21,n
1 δ22,1 0 δ22,3 · · · δ22,n
1 δ23,1 δ23,2 0 · · · δ23,n
...

...
...

...
. . .

...
1 δ2n,1 δ2n,2 δ2n,3 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

where δi,j denotes the distance between two vertices and cn =
(−1)n+1/2n(n!)2.

Whereas the Cayley–Menger expression computes the
determinant of an (n+ 1)-by-(n+ 1) matrix, its particu-
lar form results in a lower computational cost. To show
this, consider the case of n− 1 = 2 dimensions. Then,
the Cayley–Menger determinant leads to Heron’s formula
of triangles, with V2

X = 1/16(δ1,2 + δ1,3 + δ2,3)(δ1,2 + δ1,3 −
δ2,3)(δ1,2 − δ1,3 + δ2,3)(−δ1,2 + δ1,3 + δ2,3), where only four
arithmetic multiplications are required.

E. Connection to Subspace Projection Techniques

The OSP method is a general technique for detection, dis-
crimination, and classification in hyperspectral imaging [30].
When this method is applied for endmember extraction, the

Fig. 5. By applying the intercept theorem for the (blue) two dashed lines in
the (red) triangle, we get αk = δ(x�)/δ(xωk ).

abundances are often given using a least-squares estimate [31].
It is described by writing (1) as

x� = αkxωk
+

n∑
i=1
i�=k

αixωi

for any k = 1, 2, . . . , n. To extract xωk
, an operator (matrix) is

designed to annihilate the second term in the right-hand side.
By letting U = X \ {xωk

}, one can consider the projection
operator

I −U(U�U)−1U�. (13)

This operator projects the data into the null space of U , as

shown in [32]. In [33], the abundances are estimated using a
geometric point of view in the same way as the barycentric
approach proposed in this paper. The connection between both
techniques is shown in Fig. 5 where, by applying the intercept
theorem, one obtains (12), namely

αk =
δ(x�)

δ (xωk
)
.

It is worth noting that our method does not require any matrix
inversion, as opposed to subspace projection techniques, as
shown in (13).

IV. EXPERIMENTATIONS

In this section, we study the relevance of the proposed
abundance estimation scheme. To this end, we compare it to
the results obtained with the least-squares solutions, the un-
constrained (3), the equality-constrained (4), the nonnegativity
constraint (5), and the fully constrained [21] solutions. We
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Fig. 6. AVIRIS Cuprite Nevada hyperspectral subimage at a wavelength of
1.3 μm (band 100).

emphasize on the fact that all these least-squares solutions
are computed from the spectral data, without any dimension
reduction, as opposed to our approach which exploits the
PCA (or MNF) representation, which is already computed for
endmember extraction. As we work in a lower dimension, one
should expect to have lower performance.

The study of the optimality of the dimensionality reduction
technique and of the endmember extraction method are beyond
the scope of this paper.

A. Real Hyperspectral Image

The studied hyperspectral image is the scene of the Cuprite
mining district in western Nevada, U.S., captured by NASA’s
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS).
Over the past years, this site has been extensively studied by
the remote sensing community [34], providing a high-accuracy
ground truth map [35], [36]. The AVIRIS sensor collects 224
contiguous spectral bands covering wavelengths ranging from
0.38 to 2.5 μm, with a spectral resolution of approximately
0.01 μm. Atmospheric correction is applied (removing bands
1–2, 104–113, 148–167, and 221–224), which yields a total of
188 bands. Previously studied in [13] and [37] for endmember
extraction, the subimage consists of 250 lines of 191 pixels
each, as shown in Fig. 6.

In the experiments, we used N-Findr to extract the endmem-
bers, set in this paper to n = 3 for illustration purposes (the
2-D representation and RGB map are presented later in this
paper). This is not the optimal number of endmembers for this
image, with an estimated virtual dimensionality equal to 12 as
studied in [13] or 9 for almost the same scene in [37]. The
identified endmembers are the first three endmembers obtained
from the VCA, namely, Alunite, Kaolinite, and Sphene, a result
conforming to the ground truth information. The spectra of
these endmembers are shown in Fig. 7.

Fig. 7. Three extracted endmembers, mainly representing Alunite, Kaolinite,
and Sphene.

Fig. 8. Three-channel color composite, with • red, • green, and • blue for
the first, second, and third extracted endmembers, respectively. The location of
each endmember, indicated by x, is consistent with ground truth measurements.

We applied barycentric coordinates, i.e., using (11), to esti-
mate the abundances of these endmembers within the hyper-
spectral image. These results are shown on the map in Fig. 8,
using a three-channel color composite, with red, green, and blue
for the first, second, and third extracted endmembers, respec-
tively. With both the endmember extraction and the abundance
estimation operated in the 2-D space given by the PCA, we
represented the data in Fig. 9. With 30% of the data outside
the simplex defined by these endmembers, 14 586 data (out
of 47 750) violated the nonnegativity constraint, with at least
one estimated negative αi. The spatial distribution of the pixels
violating the nonnegativity constraint indicate the specific areas
where the linear model does not hold (see, for instance, [1]
and [38]). As shown in Fig. 10, where the largest negative
αis are shown (pixels with zero value correspond to pixels
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Fig. 9. Cuprite hyperspectral data (·) in the 2-D space defined by the PCA,
with endmembers (◦) identifying a triangle enclosing 70% of the data.

Fig. 10. Spatial distribution of the pixels violating the nonnegativity con-
straint. The value at each pixel corresponds to the smallest αi when negative
and zero otherwise, i.e., when all αis of the pixel are nonnegative.

with all abundances nonnegative), the violation of the linear
model clearly exhibits a spatial structure, which could result
from regions with undetected endmembers. These negative
abundances were set to zero for the RGB map in the three-
channel color Fig. 8. This can be considered as a drawback
of using a dimensionality reduction technique, which is PCA
in this paper. However, applying the sum-to-one constrained
least squares, (4) on the hyperspectral data, without any dimen-
sionality reduction, yielded up to 29% of the data, violating
the nonnegativity constraint. Table I presents a quantitative
comparison of the constraint violation for different abundance
estimation techniques.

In order to measure the performance of the abundance
estimation technique, we considered the spectral angle. For

TABLE I
NUMBER OF HYPERSPECTRAL DATA FROM THE CUPRITE SCENE

(OUT OF 47 750) WITH ESTIMATED ABUNDANCES VIOLATING

THE NONNEGATIVITY AND THE SUM-TO-ONE CONSTRAINTS

each data, it is defined between the initial spectrum x� and
the one computed with the linear mixture using the estimated
abundances x̂� with

θ(x�, x̂�) = cos−1

(
〈x�, x̂�〉
‖x�‖‖x̂�‖

)
. (14)

The spectral angle is invariant with respect to the energy,
making it a widely used measure of error for hyperspectral
data [39]. The performance of the proposed approach was
measured using the spectral angle and compared with the fully
constrained least squares. For this purpose, we considered the
spectral angle between the initial spectra and, on the one
hand, the ones reconstructed using the fully constrained least
squares and, on the other, the barycentric coordinates. Fig. 11
shows the histograms of both distributions, demonstrating the
small angular error for either techniques, with a mean angle
of 0.0866 and 0.0848, respectively. The study of the spectral
angle between spectra estimated by each technique showed a
very small difference, as shown in Fig. 12.

V. CONCLUSION AND ONGOING WORK

In this paper, we presented a new abundance estimation
method based on pure geometry, as opposed to conventional
matrix inversion techniques. We showed that, once a di-
mensionality reduction technique such as PCA is applied, it
is useless to perform a least-squares estimation. Owing to
barycentric coordinates, the abundances are expressed as a ratio
of volumes or as a ratio of distances. Since these quantities
are often computed for endmember identification, we showed
that this method is inherent to well-known endmember ex-
traction techniques, such as N-Findr, SGA, VCA, and ICE.
Experimental results showed the relevance of the proposed
approach.

The goal of our ongoing work is twofold. On the one hand,
we are working on imposing the nonnegativity constraint to
barycentric coordinates. This can be applied using simple ge-
ometry, as done in this paper. On the other hand, we are in-
terested in a parallel implementation, using graphics hardware
(see for instance [40]). It turns out that barycentric coordinates
have been largely used in computer graphics applications, such
as defining an inclusion test in rasterization or linear interpo-
lation for shading. Therefore, a parallel implementation of the
proposed method is natural to graphics hardware.
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Fig. 11. Histogram of the spectral angle between the initial spectra and the ones obtained using the abundances estimated with the (left) fully constrained least
squares and the (right) proposed technique.

Fig. 12. Histogram of the spectral angle of the estimated spectra, between the
ones obtained from the barycentric coordinates and the fully constrained least-
squares techniques.
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