
SOLVING THE PRE-IMAGE PROBLEM IN KERNEL MACHINES:
A DIRECT METHOD

Paul Honeine, Cédric Richard

Institut Charles Delaunay (FRE CNRS 2848), LM2S, Université de technologie de Troyes, 10010 Troyes, France

ABSTRACT

In this paper, we consider the pre-image problem in kernel
machines, such as denoising with kernel-PCA. For a given
reproducing kernel Hilbert space (RKHS), by solving the pre-
image problem one seeks a pattern whose image in the RKHS
is approximately a given feature. Traditional techniques in-
clude an iterative technique (Mikaet al.) and a multidimen-
sional scaling (MDS) approach (Kwoket al.). In this paper,
we propose a new technique to learn the pre-image. In the
RKHS, we construct a basis having an isometry with the in-
put space, with respect to a training data. Then representing
any feature in this basis gives us information regarding itspre-
image in the input space. We show that doing a pre-image
can be done directly using the kernel values, without having
to compute distances in any of the spaces as with the MDS
approach. Simulation results illustrates the relevance ofthe
proposed method, as we compare it to these techniques.

Index Terms— kernel machines, pre-image problem,
kernel matrix regression, denoising

1. INTRODUCTION

Kernel machines have gained wild popularity in the last
decade, providing a breakthrough in statistical learning the-
ory, together with low computational cost nonlinear algo-
rithms, thanks to thekernel trick. Initiated by Vapnik’s Sup-
port Vector Machines (SVM) [1], this led to the proliferation
of nonlinear algorithms, including kernel Fisher discriminant
analysis [2] and least-squares SVM [3] for supervised learn-
ing, and kernel principal component analysis (kernel-PCA)
[4] and one-class SVM [5] for unsupervised learning. The
kernel trick provides a mean to transform conventional linear
algorithms into nonlinear ones, under the only requirement
that the algorithm can be expressed only in terms of inner
products between data. For this purpose, data from the in-
put space are (nonlinearly) mapped into a feature space. One
may not need to exhibit this map, since this action can be
done implicitly by substituting the inner product by a positive
definite kernel. This is the essence of the kernel trick. From
a functional framework, this kernel is called thereproducing
kernel, and the induced feature space is the so-calledrepro-
ducing kernel Hilbert space(RKHS).

The extracted features, or functions to be more precise,
are linear in the RKHS, resulting into non-linear features with
the input data. This is the main idea behind using kernels. In
most supervised problems, one seeks a decision from a statis-
tic, given by the evaluation of the feature functions. How-
ever, this is not often the case for unsupervised problems in
pattern recognition. For instance, while we can apply denois-
ing or compression techniques in the RKHS with the virtues
of the kernel trick, we need to go back into the input space
for the final result. This is the case in denoising a signal (or
image), the reconstructed signal belongs to the input space
of the original signals. However, getting back to the input
space from the RKHS is not so obvious, in general, as most
elements of the latter may not have a pre-image in the for-
mer. This is the pre-image problem in kernel machines, as
we seek an approximate solution. Solving this problem has
received a growing amount of attention, with the most break-
through given in [6] and [7]. In the former work, Mikaet
al. present the problem and its ill-posedness, and derive an
iterative scheme to find an approximate solution. As always
with iterative techniques, there is no guarantee that this leads
to a global optimum, and may be unstable. In the latter work,
Kwok et al. determine a relationship between the distances in
the RKHS and the distances in the input data, based on a set of
training data. Applying a multidimensional scaling technique
(MDS) leads to the pre-image. This approach opens the door
to a range of other techniques, such as manifold learning and
out-of-sample methods [8, 9].

In this paper, we introduce a novel approach to find the
pre-image. We learn a basis, not necessarily orthogonal, inthe
RKHS having an isometry with the input space, with respect
to a set of training data. In other words, their inner products
are (approximately) equal in both spaces. Thus, by represent-
ing any feature function of the RKHS in this basis, we get
an estimate of the inner products between its counterpart in
the input space and the training dataset. We show that setting
the pre-image estimate follows easily from this information.
It turns out that this approach is natural to kernel machines,
and can be done using linear algebra. The proposed method
is universal, in the sense of being independent, in its formula-
tion, of both the type of the used kernel and of the feature un-
der investigation. Moreover, once the basis constructed, more
than one feature can be directly pre-imaged, using only linear



algebra. Comparing the proposed method to previous work,
we have the following: It does not suffer from numerical in-
stabilities or local minima as opposed to the iterative scheme
in [6]. Compared to the MDS-based technique, we show that
we don’t need to compute and work on the distances in both
spaces, inner products are sufficient. It is worth noting that the
reproducing kernel gives us the inner products in the RKHS.
This is the main idea behind the kernel trick.

The rest of this paper is organized as follows. In section
2, we begin by a brief review of the framework behind kernel
machines, and derive the pre-image problem. The proposed
method is presented in section 3, and its use for denoising
with kernel-PCA illustrated. We conclude in section 4 with
simulations.

2. KERNEL MACHINES AND THE PRE-IMAGE
PROBLEM

2.1. Kernel machines

Let X be a compact ofIRp, endowed with the natural Eu-
clidean inner product〈· , ·〉 defined byx⊤

i xj for anyxi,xj ∈
X . Let κ : X × X → IR be a positive definite kernel onX ,
where the positive definitness is defined by the property

∑

i,j

αiαjκ(xi,xj) ≥ 0

for all αi, αj ∈ IR and xi,xj ∈ X . The Moore-
Aronszajn theorem [10] states that for every positive defi-
nite kernel, there exists a unique reproducing kernel Hilbert
space (RKHS), and viceversa. LetH be the RKHS associ-
ated withκ, and let〈· , ·〉H be the inner product in this space.
This means that we have the representer of evaluation at any
xj ∈ X , with

ψ(xj) = 〈ψ(·), κ(·,xj)〉H, (1)

for all ψ ∈ H. Replacingψ(·) by κ(·,xi) yields

κ(xi,xj) = 〈κ(·,xi), κ(·,xj)〉H, (2)

for all xi,xj ∈ X . This is the reproducing property from
which the name of reproducing kernel is derived. Denoting
by φ(·) the map that assigns to each inputx ∈ X the ker-
nel functionκ(·,x), the reproducing property (2) implies that
κ(xi,xj) = 〈φ(xi), φ(xj)〉H. The kernel then evaluates the
inner product of any pair of elements ofX mapped intoH,
without any explicit knowledge of either the mapping func-
tionφ(·) or the RKHSH. This is the well-known kernel trick.

In combination with the kernel trick, the representer the-
orem [11] provides a powerful theoretical foundation for ker-
nel machines. Classical applications to this theorem include
SVM and kernel-PCA, where one seeks to maximize the mar-
gin or the output variance, respectively. This theorem states

that any functionϕ(·) of a RKHSH minimizing a regularizes
cost functional of the form

n∑

i=1

J(ϕ(xi), yi) + g(‖ϕ‖2
H),

with predicted outputψ(xi) for input xi, and eventually the
desired outputyi, andg(·) a strictly monotonically increasing
function onIR+, can be written as a kernel expansion in terms
of available data

ϕ∗(·) =

n∑

i=1

γi κ(xi, ·). (3)

This theorem shows that even in an infinite dimensional
RKHS, as with the Gaussian kernel, we only need to work in
the subspace spanned by then kernel functions of the training
data,κ(·,x1), . . . , κ(·,xn).

2.2. The pre-image problem

By virtue of the representer theorem, evaluating the optimal
functionϕ∗(·) at anyx ∈ X is given by

∑n

i=1
γi κ(xi,x).

This gives the prediction ofx, and comparing its value to
a threshold yields a decision rule. This is done in super-
vised learning, such as regression and classification problems.
However for pattern recognition with unsupervised learning,
one might also be interested inϕ∗(·), or more precisely in its
counterpart in the input space. Sinceϕ∗(·) might not have a
pre-image, this is an ill-posed problem, where one seeks an
approximate solution, i.e.x∗ in X whose mapκ(·,x∗) is as
close as possible toϕ∗(·).

This is the pre-image problem. One may solve the opti-
mization problem [9]

x∗ = arg min
x∈X

‖ϕ∗(·) − κ(·,x)‖2
H,

which minimizes the distance, or

x∗ = arg max
x∈X

〈 ϕ∗(·)

‖ϕ∗(·)‖H
,

κ(·,x)

‖κ(·,x)‖H

〉

H

,

which maximizes the collinearity, where‖ · ‖H denotes the
norm in the RKHS. In [6], Mikaet al. propose an iterative
scheme to solve the pre-image problem, which can only be
applied to the Gaussian kernel, or any other radial basis ker-
nel. Next, we show the relevance of solving such problem, in
the case of denoising with kernel-PCA. It is worth noting that
the proposed method is independent of such results, and can
be applied to any kernel machine.

2.3. Kernel-PCA for denoising

The kernel-PCA [4] is an elegant nonlinear extension of the
mostly used dimensional reduction and denoising technique,
the principal component analysis (PCA). With PCA, we seek



principal axes that capture the highest variance in the data,
that is, useful information as opposed to noise. These princi-
pal axes are the eigenvectors associated with the largest eigen-
values of the covariance matrix of data. There exists a dual
formulation of PCA involving only the inner products of the
training data. This can be applied implicitly in a RKHS, by
substituting the inner products by kernel values.This is the
kernel-PCA1. Each of the resulting principal functions takes
the form (3), where the the weighting coefficients are obtained
from the eigen-decomposition of the so-called Gram matrix,
whose entries areκ(xi,xj), for i, j = 1, . . . , n.

In the same spirit of the conventional PCA, one constructs
a subspace ofH spanned by the most relevant principal func-
tions. Using kernel-PCA for denoising any givenx ∈ X ,
we project its kernel functionκ(x, ·) onto that subspace. Let
ϕ∗(·) be this projection which, by virtue of the PCA approach,
is assumed to be noise-free. Thus, we need to get its counter-
part in the input space, denotedx∗, by solving the pre-image
problem.

3. THE PROPOSED PRE-IMAGE METHOD

For anyϕ∗(·) of the RKHSH, we learn the pre-imagex∗ ∈
X from a set of available training data,{x1, . . . ,xn}. To de-
velop the proposed method, we proceed in two stages. In the
first stage, we construct a basis inH having an isometry with
the input space basisX , where isometry is given with respect
to the training data. In the second stage,ϕ∗(·) is represented
in this basis, yielding the values of the inner products inX of
its pre-image with the training data. From these inner prod-
ucts, we extract the pre-imagex∗.

Constructing the basis

The main idea of the proposed method is to construct a ba-
sis in the RKHS that is isometric with the input space. For
this purpose, we use the training data, and by virtue of the
representer theorem, we only have to consider the subspace
spanned by the training kernel functions. Within this sub-
space, we construct a set ofℓ basis functions, each takes the
form

ψk(·) =

n∑

i=1

αk,i κ(xi, ·), (4)

for k = 1, 2, . . . , ℓ, with at mostℓ = n basis functions,n be-
ing the number of the training data. The coordinate onψk(·)
of any kernel functionκ(·,x) is given by

〈ψk(·), κ(·,x)〉H = ψk(x) =

n∑

i=1

αk,i κ(xi,x),

1The kernel-PCA algorithm requires a normalization and centering the
kernel matrix. These details are omitted for the sake of simplicity; see [4].

where (1) is used. Therefore, its representation in this basis is
given by theℓ coordinates, written vector-wise

Ψx = [ψ1(x) ψ2(x) · · · ψℓ(x)]⊤,

where thek-th entry depends on theαk,i, for i = 1, . . . , n.
In order to construct the basis ofℓ basis functions, we

consider the model defined by

Ψ⊤
xi

Ψxj
= x⊤

i xj + ǫij , (5)

for all the training set, i.e.i, j = 1, 2, . . . , n, and whereǫij
corresponds to the unfitness of the model. We don’t impose
any constraint in this model, such as the orthogonality be-
tween the basis functions. We only require the equivalence
between the inner products in that basis, and their counter-
parts in the input space. Minimizing the variance ofǫij yields
the optimization problem

min
ψ1,...,ψℓ

1

2

n∑

i=1

n∑

j=1

(
x⊤
i xj − Ψ⊤

xi
Ψxj

)2
+ λR(ψ1, . . . , ψℓ).

As preconized in machine learning literature, we introducein
this expression a regularization term,λR(·), with λ a tun-
able parameter controlling the tradeoff between the fittness to
the model (5) and the regularity of the solution. In this pa-
per, we consider a more specific case withR(ψ1, . . . , ψℓ) =∑ℓ

k=1
‖ψk‖

2
H

, in order to penalize high norm functions.
FromΨx, we collect the unknown and the known infor-

mation into a matrix and a vector, respectively, and write

Ψx = A κx,

whereκx = [κ(x1,x) κ(x2,x) · · · κ(xn,x)]⊤ andA is a
ℓ×nmatrix of unknowns whose(k, i)-th entry isαk,i. Thus,
the resulting optimization problem is

Â = argmin
A

1

2

n∑

i,j=1

(
x⊤
i xj − κ⊤

xi
A⊤Aκxj

)2

+λ
ℓ∑

k=1

n∑

i,j=1

αk,iαk,j κ(xi,xj).

By denoting‖ ·‖F the Frobenius norm of a matrix, this yields

Â = arg min
A

1

2
‖P− K A⊤AK‖2

F + λ tr(A⊤AK),

whereP andK are the Gram matrices with entries〈xi,xj〉 =
x⊤
i xj andκ(xi,xj), respectively. Taking the derivative of

the above cost function with respect toA⊤A, rather thanA,
and setting it to zero, we get

Â
⊤

Â = K−1
(
P − λK−1

)
K−1. (6)

In what follows, we show that onlyA⊤A is required to find
the pre-image, rather thanA. Thus we don’t need to compute
the coefficients defining the basis in the RKHS, since only
their inner products are needed.



Back to the input space

Since the model (5) is valid for all the training data, we ap-
ply it to do the pre-image, as illustrated here. Letϕ∗(·) be
any optimal function resulting from a kernel machine, with
ϕ∗(·) =

∑n
i=1

γi κ(xi, ·) as given in (3). By virtue of the
representer theorem, it belongs to the subspace spanned by
the training kernel functions, and therefore can be expressed
in terms of the computed basis. Thek-th coordinate ofϕ∗(·)
is

〈ϕ∗(·), ψk(·)〉H =

n∑

i,j=1

αk,iγjκ(xi,xj).

Computed on each basis function, theℓ coordinates are col-
lected into one vector, denotedΨϕ∗ with some abuse of nota-
tion. Thus, we write the model (5) as

Ψ⊤
xi

Ψϕ∗ = x⊤
i x∗, for i = 1, . . . , n

wherex∗ is the resulting pre-image to be estimated. Matrix-
wise, this is written as

KÂ
⊤

Â Kγ = X⊤x∗

whereγ = [γ1 γ2 · · · γn]
⊤ andX = [x1 x2 · · · xn]. By

injecting the constructed basis model (6) into this expression,
we get

X⊤x∗ = (P − λK−1)γ. (7)

To find the pre-imagex∗ using this expression, different
techniques may be considered. For instance, one can use an
iterative scheme by solving the optimization problem

min
x∗

‖X⊤x∗ − (P − λK−1)γ‖2.

Another non-iterative techniques may also be used to solve
(7), such as the eigen-decomposition2, in the spirit of the Nys-
tröm method, or the pseudo-inverse. Next, we use the pseudo-
inverse, and show two interpretations of the proposed method

Interpretation 1

By using the pseudo-inverse from matrix algebra, we have the
identity (XX⊤)−1X = X(X⊤X)−1, which is only true for
linearly independent training data. Thus, we can write

x∗ = XP−1
(
P − λK−1

)
γ. (8)

Therefore, the resulting pre-image belongs to the span of the
training data in the input space, in coherence with previous
work on solving the pre-image problem [6, 7]. To show the

2Doing eigen-decomposition gives the pre-image relative tothe eigen-
basis in the input space. A post-processing is required to set the pre-image
relative to the training data; this is called the procrustesproblem.

impact of the regularization term, we set to zero the control
parameterλ, which yields

x∗ = Xγ =
n∑

i=1

γi xi. (9)

This means that
∑
i γi κ(xi, ·) has the pre-image

∑
i γi xi,

thus having the same weighting coefficients in the RKHS and
the input space. This is only true when no regularization is
applied.

Interpretation 2

These expressions can be applied directly to a set of functions
in the RKHS to get their pre-images in the input space. For
this purpose, we write (7) as

X⊤X∗ = (P − λK−1)Γ,

where each column of matrixΓ represents the coefficient vec-
tor γ, and each column ofX∗ the corresponding pre-image.
From (8), we see that the matrix

M = XP−1
(
P − λK−1

)

is computed only once, and then applied withX∗ = M Γ.
This corresponds to a matrix completion scheme, or more
specifically the kernel matrix regression approach, as given
in [12, 13].

4. SIMULATION RESULTS

In this section, we compare the proposed method with two
state-of-the art methods3: the iterative technique [6] and the
MDS-based approach [7]. For this purpose, we consider four
datasets, apply the kernel-PCA for denoising, with one of
these three pre-image methods. While our method can op-
erate on any positive definite kernel, the iterative method in
[6] is limited to the Gaussian kernel. For this reason, we only
consider the Gaussian kernel defined by

κ(xi,xj) = e
‖xi−xj‖2

2σ2 ,

whereσ is its bandwidth.
For visualization, we consider a family of four datasets

in 2-D (see [14] for more information), each having a geo-
metric form corrupted by a noise with a bandwidth parameter
ν. Within this area, data are uniformly randomly drawn. We
generatentrain data to train theneigen eigenfunctions and to
construct the basis. Then, we apply these results on another
set ofnpre-imagegenerated data, in order to denoise using the

3Matlab codes for these algorithms are available from the
Statistical Pattern Recognition Toolbox, at the internet address
http://cmp.felk.cvut.cz/cmp/software/stprtool/



Table 1. Values of the parameters for the different datasets.

frame banana spiral sine
ntrain 350 300 70 420
npre-image 850 200 250 330
ν 0.1 0.2 0.3 0.5
neigen 5 3 10 10
σ 0.4 0.5 0.3 0.4

pre-image techniques. Values for these parameters as givenin
Table 1 for each dataset.

The frame dataset consists of a square of four lines of
length 2. Data are uniformly randomly drawn within these
lines and corrupted by a noise uniformly drawn from[−ν, ν].
The banana dataset is given by the parabola defined by the
coordinates(x, x2 + ξ), with x uniformly randomly drawn
from [−1, 1], and ξ normally distributed with a standard
deviation of ν. The spiral is defined by the coordinates
(A(ϕ) cos(ϕ), A(ϕ) sin(ϕ)), with A(ϕ) = 0.07ϕ+ ξ, where
ϕ andξ are uniformly randomly drawn from[0, 6π] and[0, ν],
respectively. The sine dataset is defined by the coordinates
(ϕ, 0.8 sin(2ϕ)), whereϕ is uniformly randomly drawn from
[0, 2π], and where the data are corrupted by a uniformly ran-
dom noise drawn from[0, ν]2.

For the iterative algorithm, the stopping criterion is set
to a maximum of 100 iterations, which gives a reasonable
cpu time. The required initial guess is set as in (9), with the
weighting coefficientsγi are uniformly randomly drawn from
[−1, 1]. For the MDS-based algorithm, a global optimization
scheme is used, as opposed to a neighborhood approach. As
this algorithm is based on an eigen-decomposition technique,
it yields a new basis in the input space. Thus we operate a
procrustes technique to align this basis with the initial one, by
minimizing the mean-squares error.

Figure 1 illustrate the denoising approach for the four
datasets. In these figures, we show the training data with blue
dots, and with red dots the denoised estimates obtained from
another set (not shown explicitly, but given by the free ends
of green lines). Green lines show the distance between the
denoised and the initial noisy data. Consider for instance the
frame dataset. Besides instability in many denoised data for
the iterative technique, data within the upper border of the
frame for instance (y-axis close to1) are not denoised to the
same area, as given by the proposed technique. It is obvious
that the MDS is less adapted to any of the four given datasets.
The iterative technique seems be sharper in denoising. How-
ever, as illustrated here, it suffers from numerical instabilities
and local minima, as shown by long green lines, mostly in
the frame and the sine applications. With all these datasets,
the proposed method gives good results, which tend to fold at
the tip of the dataset. This is illustrated for instance withthe
banana data, however, it folds less than the MDS results.

5. CONCLUSION

In this paper, we proposed a new method to solve the pre-
image problem. The proposed method does not suffer from
numerical instability, nor require computing the distances in
the input and the RKHS. We showed that using only inner
products between data in both spaces, the ones in the RKHS
being defined by the kernel, we can construct a basis in the
RKHS to make pre-image. We compared our method to
state-of-the-art techniques. Perspectives include a morein-
depth description of the regularization term, and applyingthis
method on real data, for instance to denoise faces.
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Fig. 1. Results obtained using the iterative (left), the MDS-based(middle), and the proposed (right) algorithm, for the frame(first row),
the spiral (second row), the banana (third row), and the sine(fourth row) datasets. Training data are represented by blue dots, estimated
pre-images by red dots, and green lines illustrate the distance between these denoised pre-images and the initial noisydata (not shown).


