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NONSTATIONARY SIGNAL ANALYSIS WITH KERNEL MACHINES 
 
 
ABSTRACT 
 
This chapter introduces machine learning for nonstationary signal analysis and 
classification. It argues that machine learning based on the theory of reproducing 
kernels can be extended to nonstationary signal analysis and classification. The 
authors show that some specific reproducing kernels allow pattern recognition 
algorithm to operate in the time-frequency domain. Furthermore, the authors study 
the selection of the reproducing kernel for a nonstationary signal classification 
problem. For this purpose, the kernel-target alignment as a selection criterion is 
investigated, yielding the optimal time-frequency representation for a given 
classification problem. These links offer new perspectives in the field of 
nonstationary signal analysis, which can benefit from recent developments of 
statistical learning theory and pattern recognition. 
 



INTRODUCTION 
 
 
Time-frequency and time-scale distributions have become increasingly popular 
tools for analysis and processing of nonstationary signals. These tools map a one-
dimensional signal into a two-dimensional distribution, a function of both time 
and frequency. Such joint description reveals the time-varying frequency content 
of nonstationary signals, unlike classical spectral analysis techniques a la Fourier. 
Over the years, a large variety of classes of time-frequency distributions have 
been proposed to explain the diversity of the treated problems. Linear and 
quadratic distributions have been extensively studied, and among them Cohen’s 
class of time-frequency distributions as (quasi) energy distribution jointly in time 
and frequency, and most notably the Wigner-Ville distribution, see for instance 
(Cohen, 1989; Flandrin, 1999; Auger & Hlawatsch, 2008). From these, one can 
choose the optimal representation for the problem under investigation, such as 
increasing the representation immunity to noise and interference components  
(Auger & Flandrin, 1995, Baraniuk & Jones, 1993), or selecting the best class of 
representations for a given decision problem  (Heitz, 1995; Till & Rudolph, 2000; 
Davy, Doncarly, & Boudreaux-Bartels, 2001). 
 
Over the last decade, multiple analysis and classification algorithms based on the 
theory of reproducing kernel Hilbert space (RKHS) have gained wide popularity. 
These techniques take advantage of the so-called kernel trick, which allows 
construction of nonlinear techniques based on linear ones. Initiated by state-of-
the-art support vector machines (SVM) for classification and regression  (Vapnik, 
1995), the most popular ones include the nonlinear generalization of principal 
component analysis or kernel-PCA  (Schölkopf, Smola, & Müller, 1998), and 
nonlinear Fisher’s discriminant analysis or kernel-FDA  (Mika, Rätsch, Weston, 
Schölkopf, & Müller, 1999); see  (Shawe-Taylor & Cristianini, 2004) for a survey 
of kernel machines. Kernel machines are computationally attractive, with 
outstanding performance, validated theoretically by the statistical learning theory 
(Vapnik, 1995; Cucker & Smale, 2002). Despite these advances, nonstationary 
signal analysis and classification still has not benefited from these developments, 
although such techniques have been brought to the attention of the signal 
processing community. Few work combine kernel machines and time-frequency 
analysis, of these Davy et al. (2002) apply the SVM algorithm for classification 
with a reproducing kernel expressed in the time-frequency domain. More recently, 
Honeine et al. (2007) applied a large panel of kernel machines for nonstationary 
signal analysis and classification, while in Honeine et al. (2006) and in Honeine 
and Richard (2007) the optimality of the representation space is treated. 
 
This chapter shows how the most effective and innovative kernel machines can be 
configured, with a proper choice of reproducing kernel, to operate in the time-
frequency domain. Further, this approach is extended to the selection of the 
optimal time-frequency domain for a given classification task. For this purpose, 
the strength of the kernel-target alignment criterion is investigated for time-
frequency distributions. The performance of the proposed approach is illustrated 
with simulation results. But before, a brief review of the principal elements of the 
theory behind kernel machines is presented. 
 



 
 
RKHS AND KERNEL MACHINES: A BRIEF REVIEW 
 
The theory behind RKHS serves as a foundation of the kernel machines. The main 
building blocks of these statistical learning algorithms are the kernel trick and the 
Representer Theorem. In this section, these concepts are presented succinctly, 
after a short introduction on reproducing kernels. 
 
 
REPRODUCING KERNELS AND RKHS 
 
Let X be a subspace of L2(C) the space of finite-energy complex signals, 
equipped with the usual inner product defined by  and its 
corresponding norm, where xj

*(t) denotes the complex conjugate of the signal xj(t). 
A kernel is a function κ(xi, xj) from X X to C, with Hermitian symmetry. The 
basic concept of reproducing kernels is described by the following two definitions  
(Aronszajn, 1950).  
 
Definition 1. A kernel κ(xi, xj) is said to be positive definite on X if the following 
is true: 
 

 (1) 

 
for all , x1, …, xn ∈ X and a1, …, an ∈ C.

  
 
Definition 2. Let (H, 〈 ⋅ , ⋅ 〉

H
 ) be a Hilbert space of functions from X to C. The 

function κ(xi, xj) from X X to C is the reproducing kernel of H  if, and only if, 
1.  the function   belongs to H, for all xj ∈ X;  
2.  one has  for all xj ∈ X and .  

 
It can be shown that every positive definite kernel κ is the reproducing kernel of a 
Hilbert space of functions from X to C. It suffices to consider the space H0 
induced by the functions {κx}x∈X 

, and equip it with the inner product 
 

 (2) 

 
where  and  are elements of H0. Then, this 

incomplete Hilbertian space is completed according to (Aronszajn, 1950), so that 
every Cauchy sequence converges in that space. Thus, one obtains the Hilbert 
space H induced by the reproducing kernel κ, usually called a reproducing kernel 
Hilbert space. It can also be shown that every reproducing kernel is positive 



definite (Aronszajn, 1950). A classic example of a reproducing kernel is the 
Gaussian kernel κ(xi, xj) = exp(-||xi - xj||2/2σ2), where σ is a tunable parameter 
corresponding to the kernel bandwidth. Other examples of reproducing kernels, 
and rules for designing and combining them can be found in  (Vapnik, 1995; 
Shawe-Taylor & Cristianini, 2004). 
 
 
THE KERNEL TRICK, THE REPRESENTER THEOREM 

 
Substituting  by  in item 2 of Definition 2, one gets the following 

fundamental property of RKHS 
 

 (3) 

 
for all . Therefore, κ(xi, xj) gives the inner product in H, the so-called 
feature space, of the images  and  of any pair of input data xi and xj , 

without having to evaluate them explicitly. This principle is called the kernel 
trick. It can be used to transform any linear data processing technique into a 
nonlinear one, on the condition that the algorithm can be expressed in terms of 
inner products only, involving pairs of the input data. This is achieved by 
substituting each inner product 〈xi, xj〉 by a nonlinear kernel κ(xi, xj), leaving the 
algorithm unchanged and incurring essentially the same computational cost. 
 
In conjunction with the kernel trick, the Representer Theorem is a solid 
foundation of kernel machines for pattern recognition, such as SVM, kernel-PCA, 
and kernel-FDA  (Schölkopf, Herbrich, & Smola, 2001). 
 
Theorem (Representer Theorem). Any function  of H minimizing a 
regularized cost function of the form 
 

 (4) 
 
with  a strictly monotonic increasing function on , can be written as a 
kernel expansion in terms of the available data, namely 
 

 (5) 

 
Sketch of proof. Any function  of the space H can be decomposed as 

, where  for all . Using 
this with (3), it is obvious that  does not affect the value of , for all 

. Moreover, one can verify that the n-order model defined in (5) 
minimizes  since  with equality 
only if . This is the essence of the Representer Theorem. 

 



 
 
TIME-FREQUENCY KERNEL MACHINES: THE WIGNER-VILLE 
DISTRIBUTION 

 
In this section, we investigate the use of kernel learning machines for pattern 
recognition in the time-frequency domain, by taking advantage of both the kernel 
trick and the Rerpesenter Theorem. To clarify the discussion, we will first focus 
on the Wigner-Ville distribution. This will be followed by an extension to other 
time-frequency distributions, linear and quadratic. Below, An denotes a training 
set of  instances xi ∈ X and the desired outputs or labels yi ∈ Y, with Y = {±1} 
for a binary (2 classes) classification problem. 
 
THE WIGNER-VILLE DISTRIBUTION 

 
The Wigner-Ville distribution is considered fundamental among the large class of 
time-frequency representations. This is mainly due to many desirable theoretical 
properties such as the correct marginal conditions for instance, as well as the 
unitary condition. The latter propells this distribution into a suitable candidate for 
detection based on the time-frequency domain. The Wigner-Ville distribution of a 
finite energy signal x(t) is given by 
 

 (6) 
 
Consider applying conventional linear pattern recognition algorithms directly to 
time-frequency representations. This means that one should optimize a given 
criterion J of the general form (4), where each signal xi, for i=1,2,…,n, is 
substituted by its time-frequency distribution . Therefore, one seeks to 
determine a function φ of the form 
 

, (7) 
 
or equivalently the time-frequency pattern . The main difficulty 
encountered in solving such problems is that they are typically very high 
dimensional, the size of the Wigner-Ville distributions calculated from the 
training set being quadratic in the length of signals, leading to manipulating n 
representations of size l2 for signals of length l. This makes pattern recognition 
based on time-frequency representations time-consuming, if not impossible, even 
for reasonably-sized signals. With both the kernel trick and the Representer 
Theorem, kernel machines eliminate this computational burden. For this purpose, 
one may consider the inner product between the Wigner-Ville distributions, which 
is given by the kernel 
 

 (8) 

 
Note however that the time-frequency distributions,  and  here, do not 

need to be computed in order to evaluate κW. For this purpose, one may consider 



the unitarity of the Wigner-Ville distribution illustrated by Moyal’s formula 
, yielding 

 
 (9) 

 
It is evident that  is a positive definite kernel, since the condition given by 
Definition 1 is clearly verified as . Therefore, we are now in a 

position to construct the RKHS induced by this kernel, and denoted by HW. It is 
obtained by considering the space H0 defined below, and complete it with the 
limit of every Cauchy sequence 
 

.
 

(10) 
 
Thus, the kernel (9) can be considered with any kernel machine proposed in the 
literature to perform pattern recognition tasks in the time-frequency domain. By 
taking advantage of the Representer Theorem, the solution  
allows for a time-frequency distribution interpretation, since it can be written as 
φ(x) = 〈 Wx , ΦW 〉, with the time frequency signature 
 

 
(11) 

 
This expression is directly obtained by combining (5) and (7). One should keep in 
mind that the n coefficients aj that determine the solution are estimated without 
calculating any Wigner-Ville distribution, since only their inner products are 
required. Subsequently, the time-frequency pattern ΦW can be determined with 
(11) in an iterative manner, without suffering the drawback of storing and 
manipulating a large collection of Wigner-Ville distributions. Moreover, most of 
the kernel machines speed-up the calculation of the time-frequency pattern ΦW 
since a large number of the resulting coefficients aj is null. This sparsity of the 
solution made a breakthrough in the machine learning community with the highly-
performant SVM algorithms.  
 
 
 
EXAMPLE OF TIME-FREQUENCY KERNEL MACHINE: THE WIGNER-VILLE-BASED 
PCA 

  
In order to emphasize the main idea behind time-frequency kernel machines, the 
Wigner-Ville-based PCA approach is illustrated here, by considering the Wigner-
Ville distribution and the kernel-PCA algorithm. The latter is a nonlinear form of 
PCA, and allows to extract principal components of variables that are nonlinearly 
related to the input variables. Given  centered observations x1, … , xn, a dual 
formulation of the standard PCA algorithm consists of diagonalizing the Gram 
matrix K whose (i,j)-th entry is 〈 xi , xj 〉. The i-th coordinate of the k-th principal 
component is then given by , where the aj,k's are the components 



of the k-th eigenvector of K. In kernel-PCA, a nonlinear transformation of the 
input data is carried out implicitly by replacing each inner product 〈 xi , xj 〉 with a 
kernel function κ(xi, xj). A major interest of this method is that it performs PCA in 
feature spaces of arbitrarily large, possibly infinite, dimension. In particular, it can 
be adjusted to operate on the Wigner-Ville distributions of n signals x1, … , xn via 
an eigendecomposition of the Gram matrix KW whose (i,j)-th entry is κW(xi, xj). 
The k-th principal component can then be extracted from any signal x as follows  
 

 (12) 

 
where the aj,k's are the components of the k-th eigenvector of KW. Now we can 
state an equivalent time-frequency formulation to the expression above: 
φk(x) = 〈Wx , Φk 〉, with the signature 
 

. (13) 

 
We call Φk the k-th principal distribution, although it may not be a valid time-
frequency distribution. 

 
 
 

 
Figure 1: First principal distribution resulting from the Wigner-Ville-based kernel-PCA 
(left), and the Born-Jordan-based kernel-PCA (right). 
 
 
To illustrate kernel-PCA as a potentially useful tool in nonstationary signal 
processing, a collection of 500 signals of 256 samples each is considered. Each 
signal consists of a quadratic frequency modulation between 0.1 and 0.4 in 
normalized frequency, corrupted with an additive white Gaussian noise at a 
signal-to-noise ratio of 0 dB. Figure 1 (left) shows the first principal distribution 
obtained by applying the kernel-PCA based on the Wigner-Ville time-frequency 
distribution. This is done by applying the classical kernel-PCA technique with the 
Wigner-Ville kernel (9), and then injecting the resulting weighting coefficients 
into (13). As illustrated in the figure, the quadratic frequency modulation and 
interference terms can be clearly identified in Φ1. In order to reduce interference 
components in the resulting principal distribution, one may consider a different 
time-frequency distribution, as illustrated in Figure 1 (right) with Born-Jordan 



distribution. In the following section, we extend the proposed approach to other 
time-frequency distributions of Cohen’s class, whose elements include the 
Wigner-Ville distribution, the Born-Jordan distribution and the Choï-Williams 
distribution, only to name a few.  
 
But before it is worth noting the gain in computational complexity by the 
proposed approach. Applying standard PCA directly to the set of Wigner-Ville 
distributions would lead to the same result. However, this approach suffers from 
the high computational cost of calculating, storing and manipulating a set of 500 
matrices, each having size 2562 by 2562. In addition, it requires calculating and 
diagonalizing a 2562 by 2562 covariance matrix, which is computationally 
intensive if not impossible. This conclusion remains valid for standard pattern 
recognition machines such as FDA and GDA. 
 
 
 
EXTENSION TO OTHER TIME-FREQUENCY DISTRIBUTIONS 
 
Obviously, the concept of time-frequency machines for pattern recognition is not 
limited only to the Wigner-Ville distribution. This section illustrates it with other 
popular time-frequency distributions, linear and quadratic. More particularly, the 
choice of the optimal representation for a given classification task is studied in 
next section, with the kernel-target alignment criterion.  

 
LINEAR REPRESENTATIONS 

 
The short-time Fourier transform (STFT) remains the most widely used linear 
time-frequency distribution. For a given analysis window w(t), well localized 
around the origin of the time-frequency domain, it is defined for a signal x by 
 

 (14) 
 
or, in an equivalent way, Fx(t, f) = 〈 x, wt, f 〉 with wt, f  (τ) = w(τ – t) e 2 j

π
f
τ. We now 

consider the following kernel function , namely,  

 
. (15) 

 
It is obvious that this is a positive definite kernel, since condition (1) takes the 
form  which is trivially satisfied. Therefore, kernel κF induces a 
RKHS and can be used with any kernel machine to operate on the short-time 
Fourier domain. From the Representer Theorem, equation (5) offers a time-
frequency distribution interpretation, as  with the time-frequency 
signature . Moreover, since the considered representation is linear 

with respect to the signal, this is equivalent to  with  being the signal 
. Therefore, one needs to evaluate the short-time Fourier transform 

only once. 
 



 
This illustrates the potential use of any kernel machine for pattern recognition 
with the short-time Fourier representation. Obviously, this is not limited only to 
this linear representation. For instance, one may consider the Fourier transform, 
defined by  for a signal x. In a more general case, one may 
also consider a time-scale representation, such as the wavelet transform as 
illustrated next. 
 
 
The (continuous) wavelet decomposition is a very appreciated linear 
representation, relying on a time-translation of t, and a scaling factor a of a mother 
wavelet w, such as  . The wavelet representation of a 
given signal x can be written as 
 

. 

 
In order to be an inversible transformation, the admissible condition 

 must be satisfied. This not-too restrictive condition on 
the mother wavelet is verified for instance by the mexican hat, which is given by 
the second derivative of the Gaussian. This admissibility condition allows an 
identity similar to (15) with 
 

 

 

where dt da / a2 is a natural measure associated to the translation and scaling  
(Flandrin, 1999). Therefore, by normalizing the mother wavelet such that cw = 1, 
we get a unitary transformation. 
 
To summarize, both the short-time Fourier transform and the wavelet transform, 
as well as the Fourier transform, are linear with respect to the studied signal. 
Therefore, they share the same reproducing kernel defined by the linear kernel 

, upto a multiplicative normalization constant. Next, we extend 
this approach to the quadratic class of time-frequency distributions, as defined by 
Cohen’s class.  
 
 
QUADRATIC TIME-FREQUENCY DISTRIBUTIONS 
 
 
The concept of quadratic forms for nonstationary signal analysis is mainly driven 
by the need to study its energy distribution over both time and frequency, 
simultaneously. This has produced a large body of theretical work over the years, 
as many different classes of solutions emerge naturally. From these, the Cohen 
class of time-frequency distributions gained considerable attention in recent years. 
These distributions are covariant with respect to time-frequency shifts applied to 
the signal under scutiny. For a finite energy signal x(t) to be analyzed, a 
distribution belonging to Cohen class distributions is given by 



 
 (16) 

 
where Wx is the Wigner-Ville distribution of the signal x and Π is a two-
dimensional weighting function. The latter determines the properties of the 
distribution. We can easily check that  is a positive definite 

kernel. Then it can be used by any kernel machine, leading to the solution 
φ(x) = 〈 Cx , ΦΠ 〉, with . The Π-tunable kernel κΠ provides a large 

class of solutions adapted for a given task. For instance, one may require solutions 
that are relatively immune to interference and noise for analysis purpose.  The 
kernel can also be exploited to improve classification accuracy, by maximizing a 
contrast criterion between classes. 
 
 
The spectrogram is probably the most popular distribution of the Cohen class. 
Defined as the squared magnitude of the short-time Fourier transform (14), it is 
related to the kernel . Other examples  of 
the Cohen class include distributions verifying the unitary condition, such as the 
Wigner-Ville distribution, the Rihaczek distribution and the Page distribution. 
While these distributions share the same kernel (9), a property resulting from 
Moyal’s formula , they differ by the time-frequency pattern 

ΦC. The latter can be computed directly of using ΦW with 
 

 (17) 
 
Examples of the most used time-frequency distributions of Cohen’s class are 
presented in the table below, with there definitions. 
 
 
Wigner-Ville  
Born-Jordan  
Rihaczek 

 
Margeneau-Hill  
Choï-Williams  
Butterworth 

 
Spectrogram 

 
 
 
 
Without loss of generality, we illustrate this extension to a particular distribution 
of Cohen’s class, the Born-Jordan distribution. Figure 1 (right) shows the first 
principal distribution obtained by considering the kernel-PCA algorithm with the 
reproducing kernel associated to the Born-Jordan distribution, for the same data as 



in Figure 1 (left) for the Wigner-Ville distribution. We recall that this time-
frequency distribution is defined for a given signal x(t) by 
 

 
 
leading to a reduced-interference distribution (Flandrin, 1999). This property is 
inherited into the principal distribution as illustrated in Figure 1 (right). Table 1 
summarizes kernels associated to some time-frequency distributions, linear and 
quadratic, as illustrated all over this chapter. 
 
 
While computing the kernel κW(xi, xj ) is efficient as illustrated for the Wigner-
Ville-based PCA, this is not the case for any arbitrary non-unitary distribution, 
leading to a time consuming process for training a kernel machine. In applications 
where computation time is a major issue, a simple heuristic procedure can be 
considered to derive solutions of the form φ(x) = 〈 Cx , ΦΠ 〉. For this purpose, the 
kernel machine is trained by considering the easy-to-compute Wigner-Ville kernel 
κW( xi, xj ) = |〈 xi, xj 〉|2. By combining the distribution ΦW resulting from (11) with 
equation (17) we get the time-frequency feature ΦC. Clearly, this is a non-optimal 
strategy when the considered distribution does not satisfy the unitary condition. 
 

 
Table 1. Some kernels associated to linear and quadratic time-frequency distributions. 
 
 
 
 
 
OPTIMAL TIME-FREQUENCY REPRESENTATION: THE KERNEL-
TARGET ALIGNMENT CRITERION 
 
In previous sections, we have shown how kernel machines can be configured to 
operate in the time-frequency domain, with the proper choice of reproducing 
kernel. This section is devoted to the question of selecting the appropriate time-
frequency distribution, and therefore the associated reproducing kernel, for a 
given classification task. Next, the kernel-target alignment criterion is studied for 
selecting a time-frequency representation, after this succinct review on different 
available strategies for kernel selection. 

 Distribution name Associated reproducing kernel 
Fourier   

Short-time Fourier (STFT)  

lin
ea

r 

Wavelet   
Wigner-Ville  
Spectrogram  
Page, Rihaczek  

qu
ad

ra
tic

 

Cohen  



 
 
 
KERNEL SELECTION IN MACHINE LEARNING: A BRIEF REVIEW 
 
Many results from the statistical learning theory emphasize on the crucial role of 
prior knowledge in machine learning problems. For the large class of kernel 
machines, the no free kernel theorem  (Cristianini, Kandola, Elisseeff, & Shawe-
Taylor, 2006) shows that no kernel is optimal for all applications, and therefore 
any prior knowledge must contribute to the choice of the appropriate kernel. For 
this purpose, many algorithms have been proposed in order to reveal the 
relationship between the data and their labels. 
 
 
Cross-validation strategies, as well as leave-one-out techniques, are widely used 
in the literature to evaluate the performance for the model. For a given kernel, the 
generalization error is estimated by constructing several classifiers from various 
subsets of the available data, and then validated on the remaining data (Meyer, 
Leisch, & Hornik, 2003). This strategy is conducted on several candidate kernels, 
and the optimal kernel corresponds to the one with the smallest estimated error. 
For a tunable kernel, the optimal value of the tuning parameter is obtained from a 
grid search. The cross-validation approach turns out to be highly time consuming, 
since it requires a large number of train-and-validate stages. In order to speed up 
calculations, schemes to estimate a bound on the generalisation error have been 
recently proposed, requiring only one classifier per candidate kernel. From these, 
we recall the VC-dimension bound (Burges, 1998), the radius-margin criterion 
(Chung, Kao, Sun, Wang, & Lin, 2003), and the generalized approximate cross 
validation  (Wahba, Lin, & Zhang, 2000). Other schemes are studied for instance 
in (Chapelle, Vapnik, Bousquet, & Mukherjee, 2002) (Duan, Keerthi, & Poo, 
2003). While the framework defined by these methods is motivated from a 
theoretical point of view, their computational complexity is often cumbersome. 
 
 
It is worth noting that these methods can be easily adapted to the time-frequency 
domain, as well as their statistical and theoretical properties. Next, a reduced 
computational complexity criterion is considered, the kernel-target alignment, and 
its adaptation for selecting time-frequency distributions is studied. 
 
 
THE KERNEL-TARGET ALIGNMENT CRITERION 
 
Performance of kernel-based pattern recognition methods is essentially influenced 
by the considered reproducing kernel. For a given algorithm such as the SVM, 
results obtained from two different kernels are as close as these kernels are 
similar. For this purpose, the authors of (Cristianini, Shawe-Taylor, Elisseeff, & 
Kandola, 2001) introduced the alignment as a measure of similarity between two 
reproducing kernels. Given a learning set An = {(x1, y1), … , (xn, yn)} of n data 
and their labels, the empirical alignment between two kernels κ1 and κ2 is defined 
by 
 



, (18) 

 
where K1 and K2 the Gram matrices with entries of the form κ1(xi, xj) and κ2(xi, xj) 
respectively, and 〈 ⋅ , ⋅ 〉F denotes Frobenius inner product defined by  〈 K1 , K2 〉F = 
∑i ∑j κ1(xi, xj) κ2(xi, xj). The alignment corresponds to a correlation coefficient 
between both matrices K1 and K2.  
  
Recall that for a classification problem, one seeks a decision rule φ*(⋅) satisfying 
the relation φ*(xi) = yi for i = 1, …, n. For the particular cas of a 2-class problem, 
this relation takes the form φ*(xi) = ±1, depending on which class xi belongs. The 
reproducing kernel corresponding to this ideal transformation can be defined by 
κ*(xi, xj) = yi yj . The associated ideal Gram matrix K* = y y’, where y denotes the 
target column vector whose i-th entry is yi, which leads to 
 

 (19) 

 
In what follows, the 2-class classification problem is studied, with K* as defined 
above. But before, we emphasize on the simplicity of generalizing the proposed 
approach for a multi-class problem. For the case of c classes, the targets 
correspond to the c unit-norm and equiangular vectors, leading to 
κ*(xi, xj) = 1/(1 – c) if xi and xj belong to different classes, and κ*(xi, xj) = 1 
otherwise.   
 
 
In  (Cristianini, Shawe-Taylor, Elisseeff, & Kandola, 2001 ; Cristianini, Kandola, 
Elisseeff, & Shawe-Taylor, 2006), Cristianini et al. suggest to use the alignment 
to measure the similarity between a given reproducing kernel and the ideal target 
matrix K* = y y’, in order to determine its relevance for the classification task in 
hand. Therefore, one considers the an optimization problem of the form 
 

 

 
where the definition of the alignment (18) is considered with K* = y y’. The 
relevance of the alignment criterion is provided by a connection to the error of 
generalization, as demonstrated in (Cristianini, Shawe-Taylor, Elisseeff, & 
Kandola, 2001) on a Parzen estimator of the form . Since the 
first study of Cristianini et al., the concept of maximizing the kernel-target 
alignment has been extended to other problems, including regression problems  
(Kandola, Shawe-Taylor, & Cristianini, On the extensions of kernel alignment, 
2002), metric learning (Wu, Chang, & Panda, 2005 ; Lanckriet, Cristianini, 
Bartlett, Ghaoui, & Jordan, 2002), as well as sudying the optimal combination of 
kernels in order to increase the performance of the classifier  (Kandola, Shawe-
Taylor, & Cristianini, 2002).  
 



 
 
OPTIMAL TIME-FREQUENCY DISTRIBUTION 
 
 
One should emphasize that the kernel-target alignment criterion does not require 
any learning of the decision rule. For this purpose, we investigate this approach to 
optimize a time-frequency representation for a classification task involving 
nonstationary signals. In a decisional framework, conventional strategies for 
determining the proper time-frequency representation mainly consist in selecting 
the one which yields the smallest estimated classification error  (Heitz, 1995 ; 
Atlas, Droppo, & McLaughlin, 1997 ; Davy & Doncarli, 1998). However, this 
empirical approach requires multiple phases of learning the rule and cross-
validating it. As we have seen so far, it is obvious that kernel machines for pattern 
recognition provide a unified context for solving a wide variety of statistical 
modelling and function estimation, for nonstationary signal analysis and 
classification.  
 
The proposed approach involves kernels associated to time-frequency 
distributions, as defined in Table 1, and more particularly Cohen’s class with the 
Π-tunable distributions. Therefore, the kernel-target alignment criterion can be 
written as 
 

 
(20) 

 
and maximizing this score leads to the optimal time-frequency distribution, with 
optimality relative to the given classification task, defined by the available 
learning set of signals and their labels. The relevance of this approach is 
illustrated in next section, for nonstationary signals. 
 
 
 
SIMULATION RESULTS 
 
 
In this section, we study the relevance of the approach proposed in this chapter.  
Previously, we have illustrated the case of the kernel-PCA with the Wigner-Ville 
distribution. In Figure 1, we have shown the resulting principal time-frequency 
distributions for a conventional class of frequency modulated signals. In this 
section, we study learning a decisional problem for a classification/discrimination 
task, involving nonstationary signals. 
 
 
NONSTATIONARY SIGNAL CLASSIFICATION: SVM AND KERNEL-FDA 
 
This first set of experiments concerns a discrimination problem between two 
classes of 64-sample signals embedded in a white Gaussian noise of variance 
1.25. The first class consists of 500 signals with a quadratic frequency modulation 
between 0.1 and 0.4 in normalized frequency, and the second one of 500 signals 



with a Gaussian time-frequency atom in frequency at 0.1 and in time at the middle 
of the signals. 
 

 
 
Figure 2: The resulting distributions obtained from the kernel-FDA algorithm with 
reproducing kernels associated to Wigner-Ville (left), the Choï-Williams (middle), and the 
spectrogram (right). 
 
 
We apply the kernel-FDA algorithm with the quadratic kernel associated to the 
Wigner-Ville distribution. Figure 2 (left) presents the resulting distribution, where 
we get the two key components for the discrimination, on the one hand the 
quadratic frequency modulation with a positive orientation (red color) and on the 
other hand the Gaussian atom represented with a negative orientation (blue color). 
Moreover, some inference components are present in this signature, an inherent 
property of the Wigner-Ville distribution. In order to get rid of these interference 
components, one may consider other time-frequency distributions from Cohen’s 
class, and use the associated reproducing kernel. For this purpose, we use both the 
Choï-Williams time-frequency distribution and the spectrogram, with their 
respective reproducing kernels. The resulting time-frequency signatures are 
illustrated in Figure 2 (middle) and Figure 2 (right), respectively. For each case, 
we found again the quadratic frequency modulation and the Gaussian atom, each 
in an opposed orientation. As opposed to the one obtained from the Wigner-Ville 
distribution, these signatures have reduced interferences. However, the price to 
pay is the relative high computational burden for evaluating the associated 
reproducing kernel. As illustrated in Figure 2, the proposed approach allows a 
time-frequency interpretation as opposed to the conventional linear techniques.  
 
 
Moreover, we can study the relevance of several reproducing kernels for a given 
nonstationary signal classification problem, and using different learning 
algorithms. Two learning algorithms are investigated, the kernel-FDA and the 
classical SVM algorithms. The latter determines a separating hyperplan, with 
maximal-margin between the classes of the training set. This is mainly motivated 
by the statistical learning theory (Vapnik, 1995), and we wish to take advantage of 
this by applying it to the time-frequency domain, using an appropriate 
reproducing kernel as illustrated in this chapter. Therefore, we seek a time-
frequency signature maximizing the distance with the time-frequency distributions 
of the training signals. For experiments, we consider the same discrimination 
problem as above, between quadratic frequency modulation signals and Gaussian 
atom signals. In order to compare the resulting estimated error, signals are 
corrupted further, with a signal-to-noise ratio of -10 dB. For now, we use the 
quadratic reproducing kernel associated to the Wigner-Ville distribution, and 
show in Figure 3 the resulting signatures for kernel-FDA and SVM algorithms. 



The latter shows better performance that the former, as illustrated by comparing 
Figure 3 (right and left), a property resulting from the inherent regularized 
property of the SVM.  
 
 

 
 
Figure 3: Time-frequency distributions obtained with the quadratic Wigner-Ville 
reproducing kernel, using the kernel-FDA algorithm (left) and the classical SVM algorithm 
(right). 
 
 
In order to compare the performance of several time-frequency distributions, we 
estimate the generalization error from a set of 10 000 signals belonging to both 
classes. We show in Table 2 the resulting estimated errors, even though the 
regularization parameter is not optimaly tuned. The Wigner-Ville distribution is 
the best for the given classification task. The spectrogram and other smooth 
distributions are less adapted for this problem. This leads to the open question: 
how to choose the optimal distribution, without the computational burden of 
validating with a large set of test signals ? This is accessible with the kernel-target 
alignment criterion, illustrated next for different time-frequency distributions.  
 
 

Time-frequency distribution Kernel-FDA SVM 
Spectrogram 28.0 19.8 

Smoothed Wigner-Ville 26.5 16.4 
Choï-Williams 26.5 16.8 
Wigner-Ville 19.3 13.5 

 
Table 2: Estimated generalization error (in %) for several time-frequency distributions, 
using the kernel-FDA and the SVM algorithms. 
 
 
 
OPTIMAL TIME-FREQUENCY DISTRIBUTION 
 
 
Consider the classification of two families of signals of the form e2j

πθ
(t) corrupted 

by an additive white Gaussian noise, where θ(t) is a linear phase modulation for 
the first class, increasing from 0.1 to 0.4 normalized frequencies, and quadratic for 
the second class, between .1 and .4 normalized frequencies. It is worth noting that 



signals from both classes share the same spectral support, which is not true in the 
time-frequency domain. For the learning task, consider 500 signals of length 256 
for each family. On the one hand, the kernel-target alignment is computed from 
this training set, as given in expression (20) for different time-frequency 
distributions. On the other hand, these results are confronted with the performance 
of classifiers obtained from the same training set. For a given reproducing kernel, 
two classifiers are constructed, based independently on the SVM and on the 
kernel-FDA algorithms, and their generalization errors are estimated from a set of 
20 000 signals. Figure 4: Error rate of a SVM classifier and a KFD classifier for 
different kernels associated to time-frequency distributions. The corresponding 
kernel-target alignment score is given between parentheses and determines the 
size of the dot. shows the performance of the kernels associated to the Wigner-
Ville (wv), Margenau-Hill (mh), Choï-Williams (cw), Born-Jordan (bj), reduced 
interference with Hanning window (ridh), spectrogram (sp), and Butterworth (bu) 
distributions1. It shows the relationship between the error rate for both classifiers 
and the kernel-target alignment score. Moreover, the ease with which the latter 
can be estimated using only training data, prior to any computationally intensive 
training, makes it an interesting tool for time-frequency distribution selection. 
 

 
Figure 4: Error rate of a SVM classifier and a KFD classifier for different kernels associated 
to time-frequency distributions. The corresponding kernel-target alignment score is given 
between parentheses and determines the size of the dot. 
 
 
 
 
 
 

                                                
1 For tuning parameters, we consider those given by default in the Time-
Frequency Toolbox. 



 
 
 
CONCLUSION 
 
In this chapter, the authors presented the time-frequency kernel machines, a new 
framework for nonstationary signal analysis and processing. It is shown that 
pattern recognition algorithms based on the reproducing kernels can operate in the 
time-frequency domain, with some specific kernels. The choice of the proper 
kernel for a given classification task is studied from the kernel-target criterion, 
yielding new and efficient techniques for optimal time-frequency distribution 
selection. All these links offer new perspectives in the field of nonstationary 
signal analysis since they provide an access to the most recent developments of 
pattern recognition and statistical learning theory. 
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KEY TERMS AND THEIR DEFINITIONS 
 
Positive definite kernel 
A two-variable function defined on X that satisfies 

 
for all 

x1,…, xn ∈ X and a1, …, an ∈ C. 
 
Reproducing kernel Hilbert space 
A Hilbert space of functions from X to C that possesses a reproducing kernel, i.e. 
a (positive definite) kernel κ(xi, xj) with the properties: (1)  belongs to 
that space, and (2)

 
, for all x ∈ X and  

 
Kernel-PCA 
A nonlinear extension of the classical Principal Component Analysis algorithm 
based on the kernel paradigm, yielding a powerful feature extraction technique. 
 
Kernel-target alignment criterion 
A criterion to select and tune a kernel for a given learning task, prior to any 
leaning, by comparing it to an ideal kernel obtained from the available training 
data.  
 
Wigner-Ville distribution 
A High resolution joint time-frequency distribution for nonstationary signals 
analysis, defined by  for a given signal 
x. 
 
Cohen’s class of time-frequency distributions 
The class of distributions covariant with respect to time and frequency shifts 
applied to the studied signal. For a given signal x, a distribution belonging to 
Cohen’s class is given by  where Wx 
is the Wigner-Ville distribution of x and Π is a tunable function.  
 
Short-time Fourier transform 
A linear time-frequency representation of a signal, defined by 

 for a given analysis window w. 
 
Wavelet representation 
A linear time-frequency representation relying on a time-translation and a scaling 
of a mother wavelet w, and defined by  
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