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ABSTRACT Recently, kernel machines for nonlinear functional learn-

In this paper, we propose a distributed learning strategy iHd have gained popularity [5, 6]. Nevertheless, these meth
wireless sensor networks. Taking advantage of recent d@ds are not suitable for distributed learning in sensor aeks
velopments on kernel-based machine learning, we consid&s the order of models scales linearly with the number of de-
a new sparsification criterion for online learning. As opsbs ployed sensors and measurements. In order to circumvent thi
to previously derived criteria, it is based on the estimaed drawback, we propose in this paper to design reduced order
ror and is therefore is well suited for tracking the evolatio Models by using an easy to compute sparsification criterion.
of systems over time. We also derive a gradient descent af*S Opposed to a criterion previously derived in [7, 8, 9], it

gorithm, and we demonstrate its relevance to estimate the dflepends on the estimated error. This approach is, therefore
namic evolution of temperature in a given region. more relevant in updating the model since it is based on-avail
able measurements. Based on this criterion and a projection
scheme, we derive the learning algorithm by incrementieg th
model order if necessary, leaving it unchanged, or even de-
. creasing it. We illustrate the proposed approach for legrni
Wireless ad-hoc sensor networks have emerged as an in- 9 ) brop PP riegy
a temperature field and tracking its evolution over time. Be-

They rely on sensor devices deployed in an environment tgoerreng;o;:ﬁg?tlsn%n\l/ivneek;reutatfilr)]/grewew functional learning with

support sensing and monitoring, including temperature, hu
midity, motion, acoustic, etc. Low cost and miniaturizatio
of sensors involve limited computational resources, power 2. ONLINE LEARNING WITH KERNELS

and communication capacities. Consequently, wireless ad- . )

hoc sensor networks require collaborative execution ofa di Consider a reproducing kemel: X' x &' — IR. Let us de-

tributed task on a large set of sensors, with reduced comm{iot€ byt its reproducing kernel Hilbert space (RKHS) with

nication and computation burden. inner product-, -)%. This means that every(-) of H can t_)e
In this paper, we consider the problem of modeling phys_evaluated atang € X by ¢(z) = (¥(), k(- ))2. This

ical phenomena, such as a temperature field, and track if/OWS US 10 writex(z;, x;) = (k(-, &), k(- x;))», which
evolution. Many approaches have been proposed in the si lefines the so-called reproducing property. One of the most

nal processing literature to address this issue with coflab Widely used reproducing kernel is the Gaussian kernelngive
rative sensor networks. See [1] for a survey. As explaine®Y #(%i, ;) = e~z /2f7 with o the kernel bandwidth.

in [1], the incremental subgradient optimization scheme de Within the context of d|str|bgted learning in a wireless
rived in [2] for (a single) parameter estimation is not appro SENsor network, we model physical phenomena, e.g., a tem-
priate for large-order models. In [3], the authors use botfperature field, as a function of the locationLet us denote it
spatial correlation and time evolution of sensors to pregos PY ¥n(-) € H whereX’ represents the 2-D space. We seek to
reduced-order model. However, this approach highly depencEStimate the functior, () at senson based on newly avail-
on the modeling assumption. Recently, model-independefP!e Position-measurement data,, ), and the previous
methods have been investigated. A distributed learnireg-str €Stimatey,(-). For this purpose, we consider the follow-
egy in sensor networks is studied in [4], where each sensd?9 Problem

acquires information from neighboring sensors to solve lo- b = argmin |1 — V|2, 1)
cally a least-squares problem. Unfortunately, this braatic Ve

leads to high energy consumption. subjectto ¢, (x,) = dy,. (2)

1. INTRODUCTION



This optimization problem can be interpreted as a classicainline learning. We also derived some properties of the re-
adaptive filtering problem, applied here to functionalresti ~ sulting model as well as connections to other sparsification
tion in a RKHS. Expression (1) corresponds to the classicakchniques. In [9], we investigated such a criterion forewir
principle of minimum disturbance, and the constraint (23 se less sensor networks. Unfortunately, it depends only on the
to zero thea posteriorierror. Though a large class of adaptive sensor positions and not on the measurements or estimated
filtering techniques can be used here, we restrict oursehaes error. In this paper, we propose to overcome this limitation
gradient descent approach as studied in [10] and we considby using the concept of coherence betweenjfs.

the updating step The functionw,, defined in (3) is selected as the new

model if

Y = Pp_1 + 77n(dn - 1/}7L—1($7L))K($7La ) max |<¢n, wk>H| <y (7)

In what follows, we set the tunable positive stepsizgte= 1 _ =l M’”_”””””” - o
as used in [11]. In addition, we consider unit-norm kernewith v a threshold. Otherwise, we use the projection/pf
functions, i.e.x(x,z) = 1 foranyxz € X. The above ex- ©Onto the spacé(,,_; spanned by the: — 1 previously added

pression yields the updating rule kernel functions. It is obvious that solving this problem is
untractable in practice since we need to know all previous es
U = Yn_1 + €nk(Ty, ), (3)  timated functionsy, v, . . ., ¥,_1. However, because these

functions belong td+,,,_1, we can circumvent this difficulty

wheree,, = d,, — ¥,,—1(x,,) IS thea priori estimation error. .
n = dn = Y1 (@n) P as explained below.

Applying this updating rule sequentially tosensors leads to

then-order model Proposition 1. Let;- be the projection of,, onto the space
n spanned by the: — 1 kernel functions. If we have
T/Jn = QiR\Ls,y - ), (4)
; ( ) <wn7 w#>H

o Mol =" @
where all the coefficients; are identical to those af,, 1, ex-
cepta,, = €,,. Itis obvious that this updating rule is not suit- then the inequality7) is satisfied.
able for large-scale data problems or online learning. Eveg
though this drawback is a consequence of the problem formu-
lation (1)-(2) in the present case, it its worth noting thatsin 1 (Y, D)1
kernel machines leads to models of the form (4) with orders n =88 ¢€r§1f}f,l lVnllrll Bl
equal to the number of available data. To overcome this bar-

fier, one can control the model order as illustrated in the ne Since the estimated functions, ¢, . .., 1, belong to the
section with a new online sparsification technique. spaceH,—1, the criterion (8) directly leads to (7). O

ketch of proof.To prove this, note that

Upon the arrival of a new data,,, d,, ), one of the follow-
3. THE PROPOSED SPARSIFICATION CRITERION ing two alternatives holds. If (8) is satisfied, the kerneldu
tion (., -) is then added to the model according to (3). Oth-
We consider am-order model, withn several orders of mag- erwise, the model order is not incremented and we consider

nitude lower tham, defined by the closest function te,, in H,,_1, that is,).-. Addition-
m ally to this rule, we propose a strategy to decrease the model
Un(-) = Z g (T, ), (5) order. With sensors being revisited in order to follow the-ev
1 lution of the system over time, new data may correspond to a

sensot that was incorporated in the model in a previous pass.
Let k(x,, -) be a kernel function that is already in the model.
Its relevance depends now on the new measuremgnin

hat case, criterion (8) is evaluated to determine whettier t

where {w1,...,w,} is a subset of{1,...,n}. In other
words, we restrict the expansion ta kernel functions
carefully selected among the ones. In [9], we proposed

a spgrsificatit_)n technique for designing mode!s With _kerne ernel function should be kept or removed from the model.
functions having small coherence, the latter being defiryed b According to (3), it clearly appears that this rule depends

maxi (5@, ), 6@, )l /5(@or, ) rllm(@ay, )l o the estimated error. It is thus relateddipas opposed to
The sparsification rule was conS|st.|ng of mcludmg, forteac rule (6). It can be shown that the order of the model resulting
sensom, the kernel functiom:(z.,, -) into the model if from rule (8) remains finite as goes to infinity, even when

|1 (X, Ty )| the decreasing scheme is not used. Due to limited space, the

e (@ T (g Ty < vo, (6) proof of this property is beyond the scope of this paper.

. . .. . 1Sensors are assumed motionless in this study. Otherwisemay in-
with vy a threshold in0, 1] deter_mmln_g the |eY§‘| OT sparsity cjyde a tolerance range for the positions. The latter is,evew beyond the
of the model. In [7, 8], we studied this sparsification rule fo scope of this contribution.



4. ONLINE LEARNING ALGORITHM

In this section, we derive our online learning algorithmthwi

recursive techniques for both incremental and decrement
stages. Before proceeding, we formulate the projectiobh{ro

lem in a RKHS.

4.1. Projectionin a RKHS

Lety- = Zﬁ;’;‘ll Bik(z,,, ) be the projection of),, defined
by equation (3) onto the space spanned by(the- 1) kernel
functionsk(x.,, , ), ..., k(x,, _,,-). The function);- is ob-
tained by minimizing||v,, — ;- ||2, with respect to they;’s,
namely,

m—1

Z (ﬂz - ai) /{(mwm )”3—{

=1

l[ensi(@n, ) —

By expressing this norm in terms of inner products and us-
ing the reproducing property, we formulate the optimizatio

problem as

H}Bln(/@ - a)TKm—l(IB - a) + Gi - 2€n(/3 - a)—r":'na

wherea, 3 andk,, are(m — 1)-length column vectors with
entriesw;, §;, andk(x.,, ,), respectively, ands,,_; is a
(m — 1)-by-(m — 1) matrix whose(z, j)-th entry is given by

4.3. Incremental and decremental steps

Increasing the model order by includirgz,,, -) into the ker-
FFI expansion requires augmenting the Gram matrix as fol-
ows

K, _
Km: |: Tl

Kn

(10)

Kn
K(xn, ) |’

with k(x,,, x,) = 1. The inverse oK ,,, can be computed by
using the rank-one update given by

I e R il b

(D-CA'B)"'[-CA™" I],(11)

A B
C D

with I the identity matrix. We obtain the updating rule

_ K ' 0,1 ] 1
K 1 _ m—1 m + %
" [ Op—1' 0 -k, K,! [ Kn
_K:nlf Kn T —1
[ 1 ! :| [_K’n Km—l 1] )

where0,,,_; is a(m — 1)-length column vector of zeros.

In the decremental stage(x,,,-) is removed from the
model. This reduces the model order fromto m — 1. The
Gram matrixK ,, 1 is obtained fromK,,, by considering ex-
pression (10), where the latter matrix is arranged in oozt t
its last column and row have entries relativedg. Using the

k(x.,, T, ). By taking the derivative of the above objective notation

function with respect t@, and setting it to zero, we get
/8 =a+ €7LK7_77,171I{’TL7 (9)

where we have assumed that the Gram mdifix_, is non-

singular. We can now present the different building blodks o

the algorithm.

4.2. The sparsification criterion

|

m

mel q
a" q |’

we obtain from (11) the following matrix update equation

qq’

—1
Km—l = mel - % :

5. SIMULATION RESULTS

The sparsification criterion needs to be evaluated by eath seTo illustrate the relevance of the proposed technique, we co

sor noden. The corresponding kernel functiot{x,, -) is

sider a classical application of estimating a temperatetd fi

added to the model if it satisfies the rule (8). If it already be governed by the partial differential equatfon
longs to the model, this rule is used to verify whether it can

be removed or not. By expanding each term in the left-hand

side of expression (8), we get the rule

T T 2, T g1
o' K, 1ja+20 &y +ek, K~ kny )2
a' K, 10+ 2Tk, + €2 -

This expression as well as equation (9) require to comput
the inverse of the Gram matriK ,,, 1. This operation can be

performed by using a rank-one update, which requites?)

operations, as derived next for both incremental and decr

mental stages.

@) _ 027 (a, 1) = Qa, 1),
ot
HereT(x,t) denotes the temperature as a function of space
and time ¢ is a medium-specific paramet&f? is the Laplace
spatial operator, an@(x, t) is the heat added. We studied the
roblem of monitoring the evolution of the temperature in a
-by-2 square region with open boundaries and conductivity
¢ = 0.1, using N = 100 sensors deployed randomly on a

g_rid. Two heat sources of intens290 W were placed within

2Data simulated using MATLAB’s PDE toolbox.



Fig. 1. Snapshots of the evolution of the estimated temperature=at 00 (left), ¢ = 150 (center) and = 200 (right). Selected sensors at
these instances are shown with big red dots, whereas théniemaensors are represented by small blue dots.

the region, the first one was activated from 1 to ¢ = 100, 6. CONCLUSION

and the second one frotn= 100 to ¢ = 200. _ _ . .
Preliminary experiments were conducted to tune the pal—n this paper, we proposed an onh_ne learning algorithm f_or
It consisted of a kernel machine

o ' wireless sensor networks.
rameters, yielding = 0.5 andv = 0.995. In order to refine . . . o o
the results, 10 passes through the network were conduct gsomated with a new sparsification criterion. We higtiégh

at each instant. Fig. 1 illustrates the estimated temperature & relevance of this criterion and derived a learning digor

field at different times. It is can be observed that the setkct W'th model-order control. Applications to temperaturesira

sensors for each snapshot follows the dynamic behavioeof t N9 with dynamic heat sources were considered, and simula-

heat sources. The convergence of the proposed algorithm 1N results showed the relevance of the proposed approach.

illustrated in Fig. 2 where we show the evolution over time of
the normalized mean-square prediction error, defined on all
the sensors by

(1]

i al (dn B wn—l($n))2 [2]
P D
n=1 n

[3]

The abrupt change in heat sources at 100 is clearly visi-
ble, and highlights the convergence behavior of the praphose

algorithm. 4]

(5]

9]

(10]

[11]
Fig. 2. Learning curve obtained fromm = 1 tot = 200. Time
t = 100 corresponds to a system modification.
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