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ABSTRACT

In this paper, we propose a method for tuning time-frequency
distributions with radially Gaussian kernel within a classi-
fication framework. It is based on a criterion that has re-
cently emerged from the machine learning literature: the
kernel-target alignement. Our optimization scheme is very
similar to that proposed by Baraniuk and Jones for signal-
dependent time-frequency analysis. The relevance of this ap-
proach of improving time-frequency classification accuracy is
illustrated through examples.

1. INTRODUCTION

Bilinear time-frequency distributions provide a powerful tool
for non-stationary signal analysis since they reveal their time-
varying frequency content. Amongst the myriad of existing
distributions, selecting the optimal one for a given application
has always been a critical issue. The most notorious is the
adaptive distribution by Baraniuk and Jones, whose radially
Gaussian kernel (RGK) is designed to smooth interference
terms that usually limit the interpretability of time-frequency
representations while preserving signal components [1, 2].
This distribution was also used in [3] to improve performance
of time-frequency based classifiers.

Over the last decade, the theory of reproducing kernels has
made a major breakthrough in the field of pattern recognition.
This has led to new algorithms, such as Support Vector Ma-
chines (SVM), with improved performance and lower com-
putational cost [4]. In a recent work [5], we extended this
framework to time-frequency analysis and proposed a new
class of powerful tools for non-stationary signal analysis and
classification. In that case, reproducing kernels simply cor-
respond to an inner product between time-frequency distri-
butions. Choosing a suitable time-frequency distribution for
a given classification problem can then be seen as optimal
reproducing kernel selection. A solution to objectively pick
time-frequency distributions that best facilitate the classifica-
tion task has recently been developed in [6] through the con-
cept of kernel-target alignment. This criterion was originally

proposed in [7] to select appropriate reproducing kernels for
classification without training any kernel machine.

In this paper, we use the alignment criterion to estimate the
parameters of a time-frequency distribution with RGK kernel.
The problem of maximizing this criterion reveals to be sim-
ilar to that proposed in [1] for signal analysis. The gradient
ascent algorithm introduced in this paper is therefore adapted
to a classification framework. This paper is organized as fol-
lows. We start by introducing time-frequency distributions,
in particular the RGK distribution, and their use in machine
learning. Next, we propose a classification framework within
which the parameters of RGK kernel are estimated through
maximization of the alignment criterion. Finally, we illustrate
the proposed approach.

2. TIME-FREQUENCY KERNEL MACHINES

Any time-frequency distribution of Cohen’s class with a pa-
rameter function Φ is defined in the Doppler-Lag domain by

Cx(t, f) =

∫∫

Φ(ν, τ) Ax(ν, τ) e−j2π(fτ−tν)dν dτ,

where Ax(ν, τ) is the ambiguity function of signal x given
by Ax(ν, τ) =

∫

x(t + τ/2) x(t − τ/2) e2jπνtdt in rectan-
gular coordinates. While the two-dimensional function Φ de-
termines the properties of the distribution, one often seeks to
parameterize it with a one-dimensional function, say σ, and
denote it Φσ . This is the essence of the RGK time-frequency
distribution [1], whose parameter function is defined by
Φσ(ν, τ) = e−(ν2+τ2)/2σ2(θ), where θ = arctan(τ/ν) is the
angle between the radial line through (ν, τ) and the Doppler
axis. It is more convenient to express the RGK kernel in po-
lar coordinates1, with Φσ(r, θ) = e−r2/2σ2(θ) where r =√

ν2 + τ2 is the radial variable, as opposed to the angular
variable θ. The function σ(·) is called the spread function. It
determines the shape of Φσ in the ambiguity plane, and the
properties of the time-frequency distribution.

1For convenience of notation, we denote by Φσ(ν, τ) and Φσ(r, θ) the
function Φσ represented respectively in rectangular and polar coordinates of
the ambiguity plane, as well as Ax(ν, τ) and Ax(r, θ).



Kernel machines are non-linear pattern recognition tech-
niques obtained from classical linear ones by using the kernel
trick and a reproducing kernel. The latter corresponds to an
inner product in a transformed space. Taking advantage of
new theoretical advances, kernel machines are attractive by
their reduced algorithmic complexity, mainly due to the ker-
nel trick. This key idea exploits the fact that a great number
of pattern recognition techniques does not depend explicitly
of the data itself, but rather of their inner products. A gener-
alization of these are the reproducing kernels, corresponding
to an inner product of implicitly transformed data, while ev-
ery reproducing kernel determines the transformation, up to a
unitary transformation.

For non-stationary signal analysis and classification, a nat-
ural class of signal transformations are Cohen’s class of time-
frequency distributions. Given any pair of signals (xi, xj),
the reproducing kernel associated to such spaces of transfor-
mations can be expressed by

κ(xi, xj) =

∫∫

|Φ(ν, τ)|2 Axi
(ν, τ) Axj

(ν, τ) dν dτ,

where the ambiguity functions are in rectangular coordinates,
or equivalently in polar coordinates

κ(xi, xj) =

∫∫

r |Φ(r, θ)|2 Axi
(r, θ) Axj

(r, θ) dr dθ.

In the particular case of the RGK distribution, its reproducing
kernel is obtained by injecting Φσ(r, θ) = e−r2/2σ2(θ) in the
expression above, which leads to the expression

κσ(xi, xj) =

∫∫

r Axi
(r, θ) Axj

(r, θ) e−
r2

σ2(θ) dr dθ, (1)

where the ambiguity functions are in polar coordinates. The
use of this reproducing kernel allows a wide class of pattern
recognition methods to operate on the RGK distribution, as
studied in [5] for other time-frequency distributions. In what
follows, we consider a criterion initially proposed within the
framework of kernel machines, in order to optimize the pa-
rameters of the reproducing kernel (1), and therefore the cor-
responding RGK distribution.

3. CLASSIFICATION-DEPENDENT
TIME-FREQUENCY DISTRIBUTION

We consider a 2-class classification problem of signals, from
a training set {(x1, y1), · · · , (xn, yn)} of n signals xk with
their labels yk = ±1. Let Kσ be the Gram matrix of the train-
ing set, whose (i, j)-th entry is κσ(xi, xj) defined in equa-
tion (1), and Kt the target matrix whose (i, j)-th entry is yiyj

(product of the outputs of the ideal classifier, given the input
xi and xj). To measure the similarity between the reproduc-
ing kernel and the class labels, we consider the kernel-target

alignment, defined by

A(Kσ, Kt) =
〈Kσ, Kt〉F

‖Kσ‖F‖Kt‖F
, (2)

where 〈·, ·〉F is Frobenius scalar product, defined by summing
up the products of the corresponding components of both in-
put matrices, and ‖·‖F its norm, that is ‖·‖2

F = 〈·, ·〉F . In [8],
Cristianini et al. proposed to select appropriate reproducing
kernels by maximizing this score. Theoretical and experimen-
tal results show that good generalization performance may
be expected by using kernels with large alignment score [7].
Note that this criterion does not require any computational
intensive stage for designing and testing classifiers.

The optimal spread function σ∗(·) is determined by maxi-
mizing the alignment score, with

σ∗ = argmax
σ

A(Kσ , Kt).

This can be formulated as a constrained optimization problem
where the numerator of (2) is maximized subject to a constant
denominator, namely,

max
σ

n
∑

i,j=1

yi yj κσ(xi, xj), (3)

subject to
n

∑

i,j=1

κσ(xi, xj)
2 = V0, (4)

where V0 is a preset normalization parameter. By expanding
the objective functional in (3), we can write

n
∑

i,j=1

yi yj κσ(xi, xj)

=

n
∑

i,j=1

yiyj

∫∫

r Axi
(r, θ) Axj

(r, θ) e−
r2

σ2(θ) dr dθ

=

∫∫

r
[

n
∑

i,j=1

yiyj Axi
(r, θ) Axj

(r, θ)
]

e−
r2

σ2(θ) dr dθ

(5)

We obtain the same form of objective functional to be maxi-
mized as in [1], which was

∫∫

r|Ax(r, θ)|2 e−r2/σ2(θ) dr dθ,
where the signal dependent term |Ax(r, θ)|2 is substituted by
the equivalent representation

∑

i,j yiyj Axi
(r, θ) Axj

(r, θ).
Since the latter depends only on the training signals and their
labels, we can evaluate it prior to any optimization scheme.
Exactly the same algorithm as in [1] can then be used to solve
this problem. In particular, we relax the computationally ex-
pensive constraint (4) by substituting it with a constraint on
the volume of the parameter function, i.e.,

∫

σ2(θ)dθ = V ′

0

as recommended in [1]. We shall now describe the algorithm
in more details.
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Fig. 1. Results obtained in the first (left) and second (right) studied cases. The optimal spread function is presented in polar coordinate, from
the initial shape σ0(θ) to the final one σ(θ), where the initial shape is obtained from the constraint V

′

0 = 2.

4. THE ALGORITHM

By considering discrete signals of l samples each, the result-
ing Doppler-Lag plan is often sampled on a rectangular grid,
of size l2 × l2. For the discrete RGK kernel, it is natural to
consider a polar grid, obtained by an interpolation from the
rectangular one, as described in [1]. With some abuse of no-
tation, we define the resulting discrete RGK kernel by

Φσ(r, θ) = e−(r∆r)2/σ
2(θ),

where henceforth r and θ designate the radial and angular2

discrete variables, respectively, and ∆r = 2
√

π/l is the ra-
dial step size. In this expression, σ(θ) designates the θ-th
entry of the spread vector, obtained by sampling the spread
function. The reproducing kernel associated to the discrete
RGK distribution can be written as

κσ(xi, xj) =
∑

r,θ

r Axi
(r, θ) Axj

(r, θ) e−(r∆r)2/σ
2(θ).

From its continuous form (5), the discrete objective functional
can be expressed as

∑

r,θ

r
[

n
∑

i,j=1

yiyj Axi
(r, θ) Axj

(r, θ)
]

e−(r∆r)2/σ
2(θ), (6)

while the constraint can be written as
∑

θ

σ
2(θ) = V ′

0 . (7)

To solve the (discrete) constrained optimization problem
above, we adopt a classical iterative scheme with two steps, a

2In its discrete version, θ = 0, · · · , l − 1 spans [0, π], which can be
extended into the whole Doppler-Lag domain by considering the symmetry
in the latter.

gradient ascent step to maximize (6) and a projection step to
take into account the constraint (7). Prior to the optimization
step, we evaluate the equivalent representation of the training
set,

Ψ(r, θ) =
n

∑

i,j=1

yiyj Axi
(r, θ) Axj

(r, θ),

which leads to the objective functional fσ =
∑

r,θ r Ψ(r, θ) e−(r∆r)2/σ
2(θ). The gradient of this

functional evaluated at the spread vector σ(θ) can be written
as

∇fσ =

[

∂fσ

∂σ(0)
, · · · ,

∂fσ

∂σ(l − 1)

]

, (8)

where, for any value of θ = 0, · · · l − 1, we have

∂fσ

∂σ(θ)
=

2∆2
r

σ
3(θ)

∑

r

r3 Ψ(r, θ) e−(r ∆r)2/σ
2(θ).

We are now in a position to apply a gradient ascent scheme
to maximize the objective functional fσ, with the updating
recursion defined at iteration k + 1 by

σk+1 = σk + µk ∇fσk
,

where µk is a step-size control parameter.
While this allows an increase in the objective function, such

a recursion yields an increase in the volume of the RGK ker-
nel, and thus a violation of the constraint (7). To take into
consideration this constraint, we project the solution onto the
feasible set of spread vectors verifying (7), which can be writ-
ten as ‖σk+1‖ = V ′

0 for the k + 1 iteration, where ‖ · ‖ is the
vector Euclidean norm. This can be done by rescaling the
spread vector at each iteration with ‖σk+1‖/V ′

0 . This step
does not affect the shape of the RGK kernel corresponding to
this spread vector. Now we are ready to do some experimen-
tations.
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Fig. 2. The optimal RGK kernel obtained in the first (left) and second (right) studied cases.

5. SIMULATIONS

In what follows, we illustrate the proposed approach with two
classification problems, each consisting of two sets of 200
signals of 64 samples, with a monocomponent embedded in
a white Gaussian noise background of variance 4, leading to
a signal-to-noise ratio of -9 dB. In the first case, signals have
a linear frequency modulation (chirp) for the first class, from
0.2 to 0.4 (in normalized frequency), and signals from the
second class have a Gaussian atom, at time and frequency in-
dexes 32 and 0.2, respectively. In the second case, the signals
have a chirp of increasing modulation for the first class, from
0.1 to 0.4, and a decreasing modulation, from 0.4 to 0.1 for
the second class. In both cases, the relevant regions for the
classification are overlapping in the time domain, as well as
in the frequency domain, while they are distinguished in the
time-frequency plane.

By applying the proposed optimization algorithm to each
case, we got optimal RGK functions that correspond to rele-
vant regions, in terms of classification, of the ambiguity do-
main. We illustrate the shape of the optimal spread function
in Fig. 1(a) and in Fig. 1(b), obtained from the first and sec-
ond studied cases, respectively. These shapes determine the
relevant regions for classification, in the Doppler-Lag plan.
The resulting optimal RGK obtained from these spread func-
tions, are illustrated in Fig. 2(a) and in Fig. 2(b), for both
studied cases. We underline the fact that these results are ob-
tained from the algorithm with the constraint (4) on the vol-
ume being substituted by ‖σ‖/V ′

0 , where in simulations we
set V ′

0 = 2. To illustrate the convergence of the algorithm,
we represent in Fig. 3 the evolution of the alignment score at
each iteration, averaged over 20 realizations.

The relevance of using the kernel-target alignment criterion
to improve classification is illustrated with an SVM classifier
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Fig. 3. Evolution of the alignment score versus iterations, averaged
on 20 realizations, for the first (lower) and second (upper) studied
cases.

associated with the Wigner distribution or the optimal RGK
distribution, for each studied case. Table 1 represents the error
rate, estimated on a test set of 2000 signals, and the number of
support vectors, both averaged over 20 realizations. Note that
the optimal RGK distribution minimizes the classification er-
ror, and also results in almost half the number of support vec-
tors as compared to the Wigner distribution. This is mainly
due to the optimality of the resulting distribution on the one
hand, and on the other hand to its regularity, i.e. robustness
caused by reduced interference terms.



First case Error rate (%) Number of SV

Wigner distribution 23.9± 1.3 172.6± 5.5

Optimal distribution 21.4± 2.0 87.5± 4.1

Second case Error rate (%) Number of SV

Wigner distribution 19.4± 1.5 163.7± 4.6

Optimal distribution 17.8± 1.5 84.5± 6.1

Table 1. Comparison of the error rates (%) and the number of sup-
port vectors (SV) obtained from a SVM algorithm applied to the
Wigner distribution on the one hand, and to the optimal RGK distri-
bution on the other hand, for both studied cases.

6. CONCLUSION

In this paper, we presented a classification-dependent time-
frequency distribution, based on the kernel-target alignment.
We showed that this strategy can benefit of a previously pro-
posed optimization scheme for constructing signal-dependent
distributions, by using the radial Gaussian kernel.
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