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Abstract—Diffusion LMS is an efficient strategy for solving
distributed optimization problems with cooperating agents. Nodes
are interested in estimating the same parameter vector and
exchange information with their neighbors to improve their
local estimates. Successful implementation of such applications
relies on a substantial amount of communication resources. In
this paper, we introduce diffusion LMS strategies that offer
significantly reduced communication load without compromising
performance. We perform analyses in the mean and mean-square
sense of these algorithms. Simulations results are provided to
confirm the theoretical findings.

I. INTRODUCTION

Distributed adaptation over network has become an active
research area with the increasing popularity of wireless sensor
networks and, more recently, with the advent of the internet
of things. An accessible overview of results in the field can
be found in [1]–[5]. The interconnected agents continuously
collect data, learn and adapt by carrying out data mining tasks
on their own measurements as well as their neighbors. Albeit
outperformed by centralized strategies, diffusion strategies
are more robust and resilient to agents and links failures.
Furthermore, their scalability and flexibility make them at-
tractive for addressing inference problems in a collaborative
manner. Among other possible strategies [6]–[8], diffusion
LMS plays a central role with its enhanced efficiency and low
complexity, and has been extensively studied in the literature
in single task [1]–[3] and multitask frameworks [9]–[13]. It
was also considered in other contexts such as nonlinear system
identification [14] and dictionary learning [15].

Consider an interconnected network of N nodes. The aim
of each node is to estimate an L×1 unknown vector wo from
collected measurements. Node k has access to local streaming
measurements {dk(i),uk,i} where dk(i) is a scalar zero-mean
reference signal, and uk,i is an L × 1 zero-mean regression
vector with covariance matrix Ruk

= E{uk,iu
>
k,i} > 0. The

data at agent k and time i are assumed to be related via the
linear regression model:

dk(i) = u
>
k,iw

o + vk(i) (1)

where wo is the unknown parameter vector to be estimated,
and vk(i) is a zero-mean i.i.d. noise with variance σ2

v,k.
The noise vk(i) is assumed to be independent of any other
signal. Let Jk(w) be a differentiable convex cost function at
agent k. In this paper, we shall consider the mean-square-error
criterion:

Jk(w) = E{|dk(i)− u>k,iw|2} (2)

Diffusion LMS strategies seek the minimizer of the follow-
ing aggregate cost function:

Jglob(w) =

N∑
k=1

Jk(w) (3)

in a cooperative manner. Let wk,i denote the estimate of the
minimizer of (3) at node k and time instant i. The general
structure of diffusion LMS in its Adapt-then-Combine (ATC)
form is given by:

ψk,i = wk,i−1 − µk

∑
`∈Nk

c`k∇̂wJ`(wk,i−1) (4)

wk,i =
∑
`∈Nk

a`kψ`,i (5)

where ∇̂wJ`(wk,i−1) = −u`,i[d`(i) − u>`,iwk,i−1], Nk de-
notes the neighborhood of node k including k, and µk is a
positive step-size. Nonnegative coefficients {a`k} and {c`k}
define a left-stochastic matrix A and a right-stochastic ma-
trix C, respectively. Diffusion LMS provides a scalable esti-
mation framework with high flexibility for ad-hoc deployment.
Nevertheless, the requirement for all nodes to exchange their
current estimates wk,i−1, ∇̂wJ`(wk,i−1) and ψk,i with their
neighbors at each iteration imposes a substantial burden on
communication and energy ressources. Therefore, reducing
the communication cost while maintaining the benefits of
cooperation is of major importance for systems with limited
energy budget such as wireless sensor networks.

In recent years, several strategies have been proposed to
address this issue. They can be divided into two categories.
On the one hand, some authors propose to restrict the number
of active links between neighbors at each time instant [5]. On
the other hand, there are authors that recommend to reduce
the communication load by projecting parameter vectors onto
lower dimensional spaces [16], or transmitting only partial
parameter vectors [17]–[19]. In [17]–[19], the combination
step (5) is redefined as:

wk,i = akkψk,i +
∑

`∈Nk\{k}

a`k

(
H`,iψ`,i + [I −H`,i]ψk,i

)
(6)

where H`,i is a diagonal entry-selection matrix with M ones
and L−M zeros on its diagonal. This means that the nodes can
use the entries of their own intermediate estimates in lieu of
the ones from the neighbors that have not been communicated.
Matrix H`,i can be deterministic, or can randomly select M
entries from all entries.



The literature has mainly focused on the reformulation (6)
of the combination step (4) of the diffusion LMS. This
means that, with the so-called partial-diffusion LMS, only the
intermediate estimates ψk,i are partially shared by neighboring
nodes. However, it is also of interest to consider the adaptation
step as it accounts for a major part of information exchanges.

Our main contribution in this paper is to consider and com-
press every transmitted information over the network, namely,
local estimates wi,k and estimated gradients ∇̂wJk(w`,i−1).
In a preliminary step, we study the case where only the local
estimates in (4) are partially transmitted. Next, we study the
case where both the estimates and the estimated gradients are
partially transmitted. This method allows a control of network
communication flows by setting the numbers M and M∇
of selected entries in wi,k and ∇̂wJk(w`,i−1), respectively.
Finally, we carry out a theoretical analysis of the algorithms
in the mean and mean-square sense, and we perform numerical
experiments to confirm the theoretical findings.

Notation: Boldface small letters denote vectors. All vectors
are column vectors. Boldface capital letters denote matrices.
The (k, `)-th entry of a matrix is denoted by (·)k`, and the
(k, `)-th block of a block matrix is denoted by [ · ]k`. Matrix
trace is denoted by trace{·}. The expectation operator is
denoted by E{·}. The identity matrix of size N is denoted
by IN , and the all-one vector of length N is denoted by 1N .
We denote by Nk the set of node indices in the neighborhood
of node k, including k itself, and |Nk| its cardinality. The
operator col{·} stacks its vector arguments on the top of each
other to generate a connected vector. The notation diag{a, b}
denotes a diagonal matrix with entries a and b. Likewise, the
notation diag{A,B} denotes a block diagonal matrix with
block entries A and B. The other symbols will be defined in
the context where they are used.

II. COMPRESSED DIFFUSION LMS

We shall now introduce and analyze the stochastic behavior
of the compressed diffusion LMS (CD) as an intermediate
step towards the doubly-compressed diffusion LMS (DCD).
For the sake of simplicity, we shall consider that C is doubly
stochastic. We shall set A to the identity matrix IN , with
the purpose of limiting the network load. The compressed
diffusion LMS algorithm is defined as:

wk,i = wk,i−1 + µk

∑
`∈Nk

c`,ku`,i

[
d`(i)− u>`,i(Hk,iwk,i−1

+ (IL −Hk,i)w`,i−1)
]

(7)

where H`,i = diag{h`,i}. We shall assume that h`,i is a L×1
binary vector, generated by randomly setting M of its L entries
to 1, and the other L−M entries to 0. We shall also assume
that all possible outcomes for h`,i are equally likely, and i.i.d.
over time and space. This leads to:

E{H`,i} = M
L IL (8)

and, given any L× L matrix Σ,

E{H`,iΣHk,i} = (9)
M
L

((
1− M−1

L−1

)
IL �Σ + M−1

L−1 Σ
)

if ` = k(
M
L

)2
Σ otherwise

where � denotes the Hadamard entrywise product. Due to
the constraint 1>Lh`,i =M , node ` receives exactly M entries
from its neighbors at each time instant i. The missing (L−M)
entries are filled in with estimates that are available at node `.

Assumption 1 The regression vectors uk,i arise from
a zero-mean random process that is temporally white and
spatially independent. A direct consequence of this assumption
is that uk,i is independent of w`,j for all ` and j < i.

Assumption 2 The matrices Hi,k arise from a random
process that is temporally white, spatially independent, and
independent of any other process.

We introduce the L× 1 error vectors:

w̃k,i = w
o −wk,i (10)

and we collect them from across all nodes into the vectors:

w̃i = col{w̃1,i, w̃2,i, . . . , w̃N,i} (11)

Let Ru`,i = u`,iu
>
`,i. We also introduce:

M = diag{µ1IL, µ2IL, . . . , µNIL} (12)

Ri = diag

{∑
`∈N1

c`,1Ru`,i, . . . ,
∑

`∈NN

c`,NRu`,i

}
(13)

Ru,i = diag{Ru1,i,Ru2,i, . . . ,RuN ,i} (14)
Hi = diag{H1,i,H2,i, . . . ,HN,i} (15)
C = C ⊗ IL (16)

where ⊗ denotes the Kronecker product. Finally, we introduce
the N ×N block matrix Rm,i with each block defined as:

[RI−H,i]k` = c`kRu`,i(IL −Hk,i) (17)

Using recursion (7) and definitions (10), (11), we write:

w̃i = Biw̃i−1 − Gsi (18)

where

Bi = INL −MRiHi −MRI−H,i (19)

G = MC> (20)
si = col{u1,iv1(i),u2,iv2(i), . . . ,uN,ivN (i)} (21)

A. Mean convergence

Taking expectations of both sides of recursion (18), using
Assumptions 1 and 2, and E{si} = 0, we find:

E{w̃i}
= [INL − E{MRiHi} − E{MRI−H,i}]E{w̃i−1}
− E{MC>si}

=
[
INL − M

L MR−
(
1− M

L

)
MC>Ru

]
E{w̃i−1} (22)



where

R = E{Ri} = diag{R1, . . . ,RN} (23)
Ru = E{Ru,i} = diag{Ru1

,Ru2
, . . . ,RuN

} (24)

with

Rk =
∑
`∈Nk

c`,kRu`
(25)

From (22), we observe that the algorithm (7) asymptotically
converges in the mean toward wo if, and only if,

ρ
(
INL − M

L MR−
(
1− M

L

)
MC>Ru

)
< 1 (26)

where ρ(·) denotes the spectral radius of its matrix argument.
We know that ρ(X) < ‖X‖ for any induced norm. Then:

ρ
(
INL − M

L MR−
(
1− M

L

)
MC>Ru

)
≤ ‖INL − M

L MR−
(
1− M

L

)
MC>Ru‖b,∞

≤ max
`,k
‖IL − M

L µkRk −
(
1− M

L

)
µkc`kRu`

‖ (27)

where ‖·‖b,∞ denotes the block maximum norm. This leads
us to the following condition:

µk <
2

max
`∈Nk

λmax

(
M
L Rk +

(
1− M

L

)
c`kRu`

) (28)

where λmax(·) stands for the maximum eigenvalue of its
matrix argument. Furthermore, by Weyl’s theorem we have:

µk <
2

M
L λmax(Rk) +

(
1− M

L

)
max
`∈Nk

[c`kλmax(Ru`
)]

(29)

since Rk and Ru`
are Hermitian matrices.

B. Mean-square stability
We shall now analyze the mean-square deviation E{‖w̃i‖2Σ}

where Σ denotes a nonnegative N×N block diagonal matrix.
The choice of matrix Σ determines the type of information
extracted from the network and nodes. Using the independence
assumption and (18), we find:

E‖w̃i‖2Σ = E{w̃>i−1B
>
i ΣBiw̃i−1}+ E{s>i G

>ΣGsi} (30)

On the one hand, note that the second term on the RHS of (30)
can be written as:

E{s>i G
>ΣGsi} = trace{GSG>Σ} (31)

where
S = diag(σ2

v,1Ru,1, . . . , σ
2
v,NRu,N ) (32)

On the other hand, the first term on the RHS of (30) can be
expressed as:

E{w̃>i−1B
>
i ΣBiw̃i−1} = E‖w̃i−1‖2Σ′ (33)

where the weighting matrix Σ′ is defined as

Σ′ = E{B>i ΣBi}
= Σ− M

L ΣMR−
(
1− M

L

)
ΣMC>Ru

− M
L R>MΣ−

(
1− M

L

)
RuCMΣ

+ P 1 + P 2 + P
>
2 + P 3

(34)

with

P 1 = E{HiR>i MΣMRiHi} (35)

P 2 = E{HiR>i MΣMRI−H,i} (36)

P 3 = E{R>I−H,iMΣMRI−H,i} (37)

To evaluate P 1, we write:

P 1 = EH
{
Hi ER{R>i MΣMRi}Hi

}
(38)

Consider first EH{HiΠHi} where Π denotes any NL×NL
deterministic matrix. It can be shown that:

E{HiΠHi}
= α1 (IN ⊗ 1LL)�Π + α2 INL �Π + α3 Π

(39)

where 1LL denotes an all-one L× L matrix, and

α1 = M
L

(
M−1
L−1 −

M
L

)
α2 = M

L

(
1− M−1

L−1

)
α3 =

(
M
L

)2
Next, consider the inner expectation in the RHS of (38).
The evaluation of this expectation depends on higher-order
moments of the regression data. While we can continue with
the analysis by calculating these terms, it is sufficient for the
exposition to focus on the case of sufficiently small step-sizes
where a reasonable approximation is [1]:

E{R>i MΣMRi} = R>MΣMR (40)

Substituting (39) and (40) into (38) leads to P 1. Consider P 2.
Using the same higher-order approximation as above, we have:

[P 2]k` =
M
L Rk[MΣM]kkc`kRu`

− E {Hk,iRk,i[MΣM]kkc`kRu`,iHk,i}
(41)

The second term in RHS of (41) is of the form:

[ϕ(Π)]k` = E{Hk,i[Π]k`Hk,i} (42)

with [Π]k` = Rk,i[MΣM]kkc`kRu`,i. It can be shown that:

ϕ(Π) = α2 (1NN ⊗ IL)�Π + (α1 + α3)Π (43)

This leads to:

P 2 = M
L RMΣMC>Ru − ϕ(RMΣMC>Ru) (44)

Finally, using the same higher-order approximation as above
with P 3 leads to:

[P 3]k` =

N∑
m=1

E{[RI−H,i]
>
km[MΣM]mm[RI−H,i]m`}

(45)
and

P 3 =
(
1− 2M

L

)
RuCMΣMC>Ru

+ ϕ(RuCMΣMC>Ru)
(46)

Following the same reasoning as in [1] allows to express
matrix Σ′ in a vector form as

σ′ = Fσ (47)



where σ = vec(Σ), σ′ = vec(Σ′) and:

F = I(NM)2 − M
L (RM⊗ INL)

− (1− M
L )(RuCM⊗ INL)− M

L (INL ⊗RM) (48)

− (1− M
L )(INL ⊗RuCM) +Z1 +Z2 +Z2> +Z4

where matrices Zj are obtained by applying the vec(·) oper-
ator on P j and using the following property:

vec(ABC) = (C>⊗A)vec(B) (49)

The analytical expressions of Zi are not provided in this paper
due to the lake of space. They will be made available in
an extended version of this paper. Substituting (31) and (33)
in (30), and applying the vec operation to both sides, we get:

E‖w̃i‖2σ = E‖w̃i−1‖2Fσ + [vec
(
Y>
)
]>σ (50)

where

Y = G S G> (51)

III. DOUBLY-COMPRESSED DIFFUSION LMS

The compressed diffusion LMS studied before only partially
transmit local estimates while the estimated gradient vectors
are fully transmitted through the network. We shall now
introduce the doubly-compressed diffusion LMS algorithm,
which offers an additional compression layer by transmitting
partial estimated gradient vectors. Node k receives M∇ entries
of ∇̂wJk(w`,i−1) from its neighbors at each time instant i.
The missing (L−M∇) entries are filled in with the gradient
estimates that are available at node k. The algorithm can be
formulated as:

wk,i = wk,i−1 + µk

∑
`∈Nk

c`,kQ`,iu`,i

[
d`(i)

− u>`,i(Hk,iwk,i−1 + (IL −Hk,i)w`,i−1)
]

+ µk

∑
`∈Nk

c`,k(IL −Q`,i)uk,i

[
dk(i)

− u>k,i(Hk,iwk,i−1 + (IL −Hk,i)w`,i−1)
]

(52)

where Q`,i is a stochastic selection matrix that has the same
properties as Hk,i defined in the previous section.

Assumption 3 The matrices Qi,` arise from a random
process that is temporally white, spatially independent, and
independent of any other process.

Proceeding as in the previous section, we find that:

w̃i = Biw̃i−1 − Gisi (53)

where

Bi = INL −MRQ,iHi −MQ′iRu,iHi

−MRQ(I−H),i −MR(I−Q)(I−H),i (54)

Gi = MQiC> +MQ′i (55)
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Fig. 1: (left) Network topology. (right) Variance σ2
uk

of regres-
sors in Experiment 1 (top) and in Experiment 2 (bottom).

with

RQ,i = diag

{∑
`∈N1

c`1Q`,iRu`,i, . . . ,
∑
`∈NN

c`NQ`,iRu`,i

}
Qi = diag{Q1,i,Q2,i, . . . ,QN,i}

Q′i = diag

{∑
`∈N1

c`1(IL −Q`,i), . . . ,
∑
`∈NN

c`N (IL −Q`,i)

}
[RQ(I−H),i]k` = c`kQ`,iRu`,i(IL −Hk,i)

[R(I−Q)(I−H),i]k` = c`k(IL −Q`,i)Ruk,i(IL −Hk,i)

The performance analysis of this algorithm is similar to the
analysis of compressed diffusion LMS, although more tedious.
The following result can be obtained following the same steps.

A. Convergence in mean

Taking expectations of both sides of (53), we obtain:

E{w̃i} =
(
INL − MM∇

L2 MR− M
L

(
1− M∇

L

)
MRu

− M∇
L

(
1− M

L

)
MC>Ru (56)

−
(
1−M∇

L

) (
1− M

L

)
MRuC>

)
E{w̃i−1}

From (56), the algorithm is stable as long as the following
condition is met:

µk <
2

λmax,k
(57)

where

λk = MM∇
L2 λmax(Rk) + M

L

(
1− M∇

L

)
λmax(Ruk

)

+ M∇
L

(
1− M

L

)
max
`∈Nk

[c`k λmax(Ru`
)]

+
(
1− M∇

L

) (
1− M

L

)
max
`∈Nk

[c`kλmax(Ruk
)]

(58)

Due to lake of space and of the complexity of the analysis
in the mean-square sense, this analysis is not reported here. It
will be made available in an extended version of this article.

IV. SIMULATION RESULTS

We shall now evaluate the accuracy of the theoretical models
with simulations. We performed two experiments to determine
the performance and efficiency of both algorithms. First, we
considered a small network in order to validate the theoretical
models. Then, we considered a larger network and high
dimensional measurements in order to test the algorithms. For
both experiments, parameter vectors wo were generated from
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Fig. 2: Theoretical model and simulated curves (left), evolution of the MSD as a function of the compression ratio for
compressed diffusion LMS (center), and doubly-compressed diffusion LMS (right).

a zero-mean Gaussian distribution. The input data uk,i were
drawn from zero-mean Gaussian distributions with covariance
Ru,k = σ2

u,kIL reported in Fig. 1. The weighting matrices
C were generated using the Metropolis rule [1]. Noises vk(i)
were zero-mean, i.i.d. and Gaussian distributed with variance
σ2
v,k = 10−3. The step-sizes were set to µk = 10−3. The

simulation results were averaged over 100 Monte Carlo runs.
1) Experiment 1: Due to the high dimensionality of the

theoretical models, we considered the network of N = 10
nodes shown in Fig. 1 (left). We set L = 5, M = 3 and
M∇ = 1. This resulted in compression ratios of 10

8 and 5
2 for

the compressed and the doubly-compressed diffusion LMS, re-
spectively. It can be observed in Fig. 2 (left) that the theoretical
models fit accurately the simulated results for both algorithms.
Unsurprisingly, diffusion LMS outperformed its compressed
counterparts at the expense of a higher communication load.

2) Experiment 2: Since compression is relevant for rela-
tively large data flows, we considered a network with N =
50 agents. Data dimension was set to L = 50. Figure 2
illustrates the performance of the algorithms for different
compression ratios. Note that maximum compression ratio
that can be reached with the compressed diffusion LMS is
100
55 since estimated gradient vectors are fully transmitted.

Doubly-compressed diffusion LMS is more flexible since the
compression ratio can be controlled via M and M∇.

V. CONCLUSION

In order to preserve energy resources, we investigated
compression techniques for diffusion LMS that consist of
exchanging partial local estimates. We carried out an analysis
of the stochastic behavior of the proposed algorithms in the
mean and mean-square sense. Finally we provided simulation
results to illustrate the accuracy of the theoretical models and
the performance of the compression layer.
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