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Abstract Wireless Body Area Networks (WBAN) can

offer motion capture capabilities through peer-to-peer

ranging and on-body nodes positioning, by relying on

transmitted signals and data packets. In this paper, we

describe a solution to localize wireless nodes relatively

to a body-strapped Local Coordinate System (LCS).

In particular, we consider coupling a Constrained Dis-

tributed Weighted Multi-Dimensional Scaling algorithm

(CDWMDS), which asynchronously estimates the nodes’

locations under geometric constraints related to fixed-

length links, with new messages censoring, location up-

dates scheduling and forced measurements symmetry.

The idea is to mitigate error propagation (e.g. with re-

spect to the fastest nodes), as well as harmful effects

caused by the loss of critical packets. We also intro-

duce a real beacon-aided Time Division Multiple Access
(TDMA) scheme to suitably support both peer-to-peer

ranging and decentralized positioning transactions un-

der real-time constraints. Simulation results are pro-

vided to assess the performance of the proposed solu-

tion for various levels of connectivity and ranging qual-
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ity, showing interesting gains on the average location er-

ror per node under moderate pedestrian mobility. Com-

parisons are finally provided with a more conventional

centralized and synchronous Multidimensional Scaling

(MDS) algorithm that would require completing the

matrix of measured distances under partial network

connectivity.

Keywords Cooperative Localization, Distributed

Weighted Multi Dimensional Scaling, Geometric

Constraints, Multidimensional Scaling, On-Body

Ranging, Time Division Multiple Access, Time Of

Arrival, IEEE 802.15.6 Standard.

1 Introduction

Wireless Body Area Networks (WBANs), which have

been subject to growing research interests for the last

past years [1], [2], [3], are on the verge of covering un-

precedented needs in various application fields such as

healthcare, security, sports or entertainment. More re-

cently, such networks have been considered for raw mo-

tion capture applications based on opportunistic and

stand-alone radiolocation functions. Under mesh or quasi-

mesh topologies, mobile on-body nodes can indeed be

located in a cooperative fashion out of transmitted ra-

dio links, by using peer-to-peer range measurements. In

turn, this new WBAN capability could even represent

an appealing alternative to costly and geographically

restricted video acquisition systems for large-scale in-

door motion capture purposes. In this context, the Im-

pulse Radio - Ultra Wideband (IR-UWB) technology

[4], [5], which benefits from fine multipath resolution

capabilities, enables to perform such range measure-

ments through precise Time Of Arrival (TOA) esti-

mation. Radiolocation considerations apart, the recent
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IEEE 802.15.6 radio standard issued for WBAN appli-

cations also promotes IR-UWB as a relevant low power

physical layer [6].

But applying cooperative localization into WBAN

still imposes to overcome numerous challenges. Wear-

able sensors are subject to drastic constraints in terms

of complexity and consumption, but also to highly spe-

cific mobility patterns. Most of the related algorithms

described in the literature adversely consider central-

ized resources and synchronous calculi, which may not

be totally compliant with real-time constraints under

human mobility [1], [2], [3], [7], [8]. [1] has used the Non

Linear Least Squares (NLLS) algorithm, which consists

in minimizing a global quadratic cost function using

the Gradient descent method incorporating the peer-

to-peer range measurements. [2] and [8] adapt a cen-

tralized classical Multidimensional Scaling (MDS) for

on-body motion capture applications and pose estima-

tion. In [8], the authors introduce additional constraints

relying on the prior knowledge of minimal and maxi-

mal feasible distances related to the body dimensions

(and thus some kinds of geographical limitations). In [3]

the centralized Maximum Likelihood estimator has been

considered, introducing other constraints relying on the

actual positions of on-body mobile nodes. Centralized

and synchronous approaches indeed require that all the

unknown nodes’ locations are simultaneously estimated

after relaying inter-nodes measurements to a central co-

ordinator. Moreover, they often under-exploit the avail-

able potential of mesh topologies by sticking with non-

cooperative links (i.e. uniquely with respect to fixed

anchors) [2], [3]. Besides, some of the existing solutions

also consider a priori parametric models [3] incompat-

ible with the location-dependent and unpredictable mo-

bility. Recently, a new Constrained Distributed Weighted

MultiDimensional Scaling (CDWMDS) algorithm has

been proposed in [9] for WBAN motion capture, pro-

viding better immunity against latency effects observed

within classical centralized schemes, as well as better

adaptability to local nodes velocities. In this solution,

originally inspired by the technique described in [10],

the locations of mobile on-body nodes are asynchronously

estimated in a body-strapped Local Coordinate Sys-

tem (LCS), using information from their 1-hop neigh-

bors. Fixed-length links (e.g. between the hand’s wrist

and the elbow) are also incorporated as geometric con-

straints, hence limiting the number of required on-line

measurements, while still benefitting from the mesh po-

tential. On this occasion it has been illustrated that

the fastest nodes (e.g. those placed at legs’ extremities)

could significantly degrade the average location accu-

racy. In this context, [11] proposed to improve the nom-

inal CDWMDS formulation, by applying an unilateral

censoring and/or a scheduling of the most demanding

nodes when updating estimated positions.

In this paper, we propose some new improvements

to the nominal CDWMDS [11], by applying an unilat-

eral censoring and/or a scheduling of the most demand-

ing nodes when updating estimated positions, and by

forcing the measurements symmetry between each pair

of on-body nodes. The idea is to mitigate the effect of

outliers or packet losses, but also to avoid error propa-

gation and divergence issues in the retained decentral-

ized positioning approach. Then we introduce a beacon-

aided Time Division Multiple Access (TDMA) scheme

that offers fine synergy between communication and ra-

diolocation means, while supporting both peer-to-peer

ranging and decentralized positioning transactions un-

der real-time constraints. We thus make possible a more

realistic performance assessment, while accounting for

underlying latency issues and investigating the impact

of network connectivity or measurements quality. Fi-

nally, we compare our solution with a more conventional

Multidimensional Scaling (MDS) algorithm, which has

been considered recently for motion capture applica-

tions in a WBAN context [8]. The latter would anyway

require completing the matrix of measured distances

under partial network connectivity, contrarily to our

proposed asynchronous and decentralized approach.

The paper is structured as follows. In Section 2,

we introduce the on-body relative localization problem.

Section 3 then presents the core cooperative localization

algorithms, including the classical Multi-Dimensional

Scaling (MDS), the initial Constrained DWMDS and

the proposed enhancements. Section 4 presents a suit-

able Medium Acces Control (MAC) superframe struc-

ture, along with the supported ranging protocols. In

Section 5, we describe our evaluation framework, in-

cluding the simulation set-up and parameters, as well

as the localization performances obtained under realis-

tic body mobility. We also provide further comparisons

with the standard MDS algorithm. Finally, Section 6

concludes the paper.

2 Problem Formulation

The wireless devices placed on the body can be first

classified into two categories. Simple mobile nodes with

unknown positions (under arbitrary deployment) must

be located relatively to reference anchors nodes, which

are attached onto the body at known and reproducible

positions, independently of the body attitude and/or

mobility (e.g. on the chest or on the back). A set of

such anchors define a stable Cartesian Local Coordinate

System (LCS), which remains unchanged under body

mobility. Mobile nodes are then located in the LCS,
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Fig. 1 Typical deployment scenario for the relative localiza-
tion of on-body wireless nodes (grey circles) with respect to
a body-strapped Local Coordinate System (LCS) defined by
fixed anchors (red circles).

using peer-to-peer range measurements between pairs

of devices (i.e. between mobile nodes or between nodes

and fixed anchors).

Figure 1 shows a typical deployment scenario, where

the LCS is obviously in movement and misaligned rel-

atively to any Global Coordinate System (GCS). In the

following, Xi(t)
m
i=1 represent the 3D known positions of

the m anchors at time t defined into the LCS, where m

should be larger than 3. Xi(t)
n
i=1 represent the true 3D

unknown positions of the n mobile nodes deployed on

the body, at time t. Let d̃ij(t) be a range measurement

available at time t between nodes i and j and let lij be

a constant distance (i.e. constant over body mobility),

which will be considered hereafter as a constraint.

Given all the available range measurements, e.g. based

on IR-UWB TOA estimation [4], [12], on existing con-

straints related to the body geometry and on the known

anchors’ locations, the problem that we want to solve

is to estimate the positions of the mobile nodes into the

LCS.

3 Localization Algorithms

3.1 Conventional Multi-Dimensional Scaling (MDS)

Applied into our localization problem, the goal of MDS

is to find the positions of on-body nodes so that the dis-

tances between the estimated positions fit as much as

possible to a set of cooperative range measurements be-

tween the nodes. Classical MDS formulations are char-

acterized by three basic steps, as follows. The first step

consists in constructing a squared distances matrix. The

second step consists in locating the nodes into a refer-

ence system, which is defined by a geometrical transfor-

mation of the LCS (i.e. rotation and translation). The

third step is the restoration of the coordinates system

by changing the basis of the positions estimated at the

second stage [13], [14].

As seen in the previous section, a WBAN is first

characterized by n on-body mobile nodes and m an-

chors, with respective positions Xi(t)
m+n
i=1 forming the

overall network-level vector of positionsX(t) = [X1(t), .

.., Xm(t), ..., Xm+n(t)] at time t. Assuming full network

connectivity (i.e. all pair-wise distance measurements

are available) and that the observed distance δij(t) be-

tween each pair of nodes i and j at time t is equal to

the true corresponding distance, then it comes:

δ2ij(t) = d2ij(t) = (Xi(t)−Xj(t))T (Xi(t)−Xj(t)) (1)

Writing the squared distance as d2ij(t) = Xi(t)
TXi(t)−

2Xi(t)
TXj(t) + Xj(t)

TXj(t), and placing the centroid

of the configuration at the origin, the matrix of inner

products between the nodes can be expressed as follows:

B = X(t)X(t)T = −1

2
HDH (2)

H = I − 1

n+m
eTe (3)

where D = [d2ij(t)]
n+m
i,j=1 and e is a 1× (n+m) vector of

ones. Since B is symmetric, positive semi-definite and

of rank dimensionality, it can now be written in terms

of singular value decomposition as B = UV UT , where

V is a diagonal matrix containing the n+m eigen values

of B and U is the corresponding matrix of eigen vectors.

Thus as X(t)X(t)T , X(t) is now given as:

X(t) = UV
1
2 (4)

One major problem with this classical MDS algorithm

is the need for complete and noise-free distances ma-

trices, with a full knowledge of all the pairwise dis-

tances, what is highly unlikely in realistic wireless cases

(e.g. due to connectivity losses or deliberate topology

restrictions). Nevertheless, such classical MDS formu-

lation has already considered for WBAN localization in

[8], where coarse geometric constraints, relying on the

prior knowledge of minimal and maximal feasible dis-

tances under radio connectivity, has been introduced

to complete empty entries of the input range measure-

ments matrix. Another problem more generally inher-

ent within centralized approaches is the latency effect

(i.e. the time elapsed between the collection of the dis-

tance measurements and the delivery of location esti-

mates), whereas the body gesture can change rapidly

during the measurements collection step, hence degrad-

ing significantly localization performances.

Motivated by the possibility to operate under par-

tial connectivity and possibly large measurement errors,

by latency reduction gains and by the natural asynchro-

nism potential enabled for node’s localization, we thus
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seek to estimate the nodes’ positions using a distributed

version of the MDS. A comparison between the classical

MDS algorithm used in [8] and our distributed version

will be presented in terms of localization accuracy in

Section 5.

3.2 Constrained Distributed Weighted

Multidimensional Scaling Algorithm (CDWMDS)

As described in [10], a new Distributed Weighted Multi-

Dimensional Scaling (DWMDS) allows each node i with

unknown coordinates to localize itself by minimizing a

local cost function as follows:

X̂i(t) = argmin
Xi(t)

[

n∑
j=1

wij(t)(δij(t)− ˆdij(X(t)))2

+

n+m∑
j=n+1

2wij(t)(δij(t)− ˆdij(X(t)))2

+ ri(t)||Xi(t)−Xi(t)||2] (5)

where X̂i(t) is a vector containing the estimated 3D

coordinates of node i, n and m are respectively the

number of mobile nodes with unknown locations (i.e.

nodes must be localized) and the number of anchors

placed on the body, X̂(t) is the matrix whose columns

contain the estimated positions for all the nodes at time

t, δij(t) is a so-called observed distance between node i

and j at t, dij(X̂(t)) denotes the Euclidean distance be-

tween i and j built out of estimated coordinates, which

is equal to
√

(X̂i(t)− X̂j(t))T (X̂i(t)− X̂j(t)), wij(t) is

a weight value, which reflects the connectivity and the

accuracy of the range measurements between nodes i

and j at time t, such that inaccurate measurements are

down-weighted in the cost function, Xi(t) is a vector

with prior information about the position occupied by

node i at time t, while ri(t) quantifies the reliability of

this prior information.

As described in [10], at each time t, the dynamic

equation 5 is iteratively resolved to estimate the nodes’

positions. If X̂(k)(t) is the matrix of the estimated po-

sitions at iteration k, node i derives its current coordi-

nates update X̂i
(k)

(t) as follows:

X̂i
(k)

(t) = ai(t)(ri(t)Xi(t) + X̂(k−1)(t)b
(k−1)
i (t)) (6)

where

ai(t) =

n∑
j=1

wij(t) +

n+m∑
j=n+1

wij(t) + ri(t) (7)

DWMDS CDWMDS

Fixed links δij(t) = d̃ij(t) δij(t) = lij
Mobile links δij(t) = d̃ij(t) δij(t) = d̃ij(t)

Table 1 Comparison of the range observations used by
DWMDS and CDWMDS algorithms.

and b
(k)
i (t) = [b1(t), ..., bn+m(t)] is a vector whose en-

tries are given hereafter by

bj(t) = wij(t)[1−
δij(t)

dij(X(k)(t))
] j ≤ n, j 6= i

bi(t) =

n∑
j=1

wij(t)

dij(X(k)(t))
+

n+m∑
j=n+1

wij(t)

dij(X(k)(t))

bj(t) = 2wij(t)[1−
δij(t)

dij(X(k)(t))
] j ≥ n

(8)

In [9], two first improvements have been proposed to get

this nominal DWMDS more adapted into the WBAN

relative localization context. One first trivial point con-

sists in taking the latest estimated position available for

node i at time t− 1, as a priori information in its local

current cost function, i.e. with Xi(t) = X̂i(t− 1). The

choice accounts for the bounded motion amplitudes of

on-body nodes under human mobility. Still relatively

to the LCS, this amplitude strongly depends on the

node’s location itself. The second approach consists in

using coarse a priori information about the nodes de-

ployment to benefit from geometrical characteristics of
the human body. The idea is to introduce fixed links on

the body (e.g. links between hand’s wrist and elbow) as

constraints into the positioning problem. In particular,

we use an approximated version of the true constant dis-

tances (e.g. learnt out of repeated measurements after

averaging, during a preliminary calibration phase under

mobility) as inputs, leading to a Constrained version of

the DWMDS algorithm (CDWMDS).

Table 1 shows the main differences between DWMDS

and CDWMDS, where d̃ij(t) is the instantaneous dis-

tance measured between nodes i and j at time t and

lij is an approximated version of the fixed distance be-

tween nodes i and j, which is considered as constant

over time independently of the body gesture. Accord-

ingly, no more ranging measurements are required for

these links in the steady-state localization regime. Ac-

curacy considerations apart, CDWMDS then theoreti-

cally tends to reduce the number of exchanged packets,

and hence accordingly, latency and energy consump-

tion.



Decentralized Positioning Algorithm for Relative Nodes Localization in Wireless Body Area Networks 5

3.3 Enhanced CDWMDS

We now propose a set of enhancements to the previous

CDWMDS algorithm. One first idea is to avoid error

propagation in the retained asynchronous and decen-

tralized approach, whereas another point consists in re-

ducing the effects of outlier range measurements and

packet losses. We point out that the first two new en-

hancements have been described in [11].

3.3.1 Unidirectional Censoring of Rapid Nodes’

Transmissions

One first goal is to mitigate error propagation while

updating nodes locations. It has been illustrated in [9]

that the locations estimated for the peripheral nodes

are affected by significantly higher errors. It indeed ap-

pears that those nodes, typically located at the net-

work edges (e.g. on the ankle) are the most rapid ones

-or at least, those subject to the highest accelerations-,

less connected -even if the transmission range ensures

that they have more than three connected neighbours,

so that their estimated locations are not ambiguous-

and experiencing poor Geometric Dilution Of Precision

(GDOP) -for being peripheral and located outside the

convex hull defined by on-body anchors-.

Hence, one proposal is to allow only the update of

such fast nodes with respect to their 1-hop neighbors

but no updates of these neighbors with respect to the

fast nodes in return, i.e. performing some kind of uni-

directional censoring. The expected gains are two-fold:

keep on benefiting at rapid nodes from the reliability

of their slow neighbors’ estimates, but also improve

the average location accuracy in the entire network

by avoiding error propagation from less reliable rapid

nodes. In equation (5), the unidirectional censoring of

any rapid node j would be practically applied by forc-

ing the weight function wij(t) to be null with respect

to any neighboring on-body node i (i.e. wij(t) = 0, ∀
j ≤ n whereas wji(t) 6= 0).

3.3.2 Scheduling of Location Updates

The objective here is still to avoid error propagation,

by forcing the algorithm to converge properly first af-

ter updating in priority the slowest and most reliable

nodes. Hence, rapid nodes benefit from the consolidated

reliability of their slow neighbors’ estimates and error

propagation is minimized accordingly. Practically, con-

sidering a coordinated medium access of the multiple

on-body nodes, as it will be seen hereafter, where all the

protocol transactions shall be scheduled anyway (i.e. for

both range measurements and position updates), one

can keep track of the approximated nodes’ speeds on

the coordinator side, based on the latest available po-

sition estimates. Hence, at each new time stamp (and

hence, at each superframe), one can draw an ordered

list, setting the nodes to be updated in priority. Fi-

nally, one more degree of freedom concerns the number

of updates per node per localization cycle (i.e. per su-

perframe) or equivalently, the refreshment rate, which

can be also dynamically increased for the most demand-

ing nodes.

3.3.3 Forced Measurements Symmetry

The objective here is to jointly mitigate measurement

outliers and packet losses. Hence, we propose to force

the distance measurements for each pair of nodes into

being symmetric, as follows:

δij(t) = δji(t) =
wij(t)δij(t) + wji(t)δji(t)

wij(t) + wji(t)
(9)

Practically, once the peer-to-peer range measurements

between two nodes i and j are recovered independently

in both directions (i.e. δij(t) or δji(t)), our proposal

consists in sharing the related information between each

pair of nodes in order to mitigate possible packet losses

(and thus missed measurements) that may occur during

the ranging transactions. Moreover, if we suppose that

the distance observed by node i from node j is strongly

affected by measurement noise and/or bias (i.e. δij(t))

but that the distance observed by node j is less noisy,

outliers are mitigated or more generally speaking, the

resulting measurement variance is divided by a factor

2 after averaging, even in case of identically biased dis-

tance.

4 Medium Access Control For

Localization-enabled WBAN

In our WBAN localization context, one key feature of

the Medium Access Control (MAC) is to enable rang-

ing between the nodes, as well as further exchanges of

any kind of location-dependent information. In [15] a

beacon-aided TDMA superframe has been presented,

which was adapted for WBAN applications running on

the IEEE 802.15.4 radio standard. Figure 2 represents

the MAC superframe used in [1] (and inspired from [15])

adapted for localization purposes. In our work, we also

consider using this MAC superframe.

As shown in Figure 2, the superframe structure is

delimited by a beacon, which is transmitted periodi-

cally by the coordinator (e.g. possibly one on-body an-

chor here) to all the nodes in order to resynchronize
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all the WBAN (i.e. indicating the beginning of the su-

perframe). The beacon fully describes the MAC super-

frame, specifying in particular the Time Slots (TSs)

allocated for each transmitting node. The Contention

Access Periode (CAP) is devoted to contention based

transmissions, while the Contention Free Period (CFP)

is composed of guaranteed TSs allocated by the co-

ordinator. During the inactive period, the nodes may

enter in a sleep mode to reduce energy consumption.

The peer-to-peer range information is usually based on

Round Trip - Time of Flight (RT-TOF) estimation,

which relies on 2-Way Ranging (2-WR) or 3-Way Rang-

ing (3-WR) handshake protocol transactions and uni-

tary TOA estimates for each involved packets [16]. Two

guaranteed TSs are involved in the case of 2-WR proto-

col to investigate the peer-to-peer range measurements

between two nodes i and j, where node i sends its re-

quest packet inside the assigned TS at time T̃i0 . Once

this packet is received by node j at time T̃j0, node j

sends its response back to the requester node i inside

its own dedicated TS at time T̃j1, after a known time

of reply. In turn, node i will receive this packet at time

T̃i1. Hence, the estimated RT-TOF through 2-WR is

given as follows:

T̃OF =
1

2
[(T̃i1 − T̃i0)− (T̃j1 − T̃j0)] (10)

One enhancement to the 2-WR protocol consists in ask-

ing the responder node j to transmit an additional

packet inside a third TS at time T̃j2, in order to es-

timate and compensate the relative clock drift between

the two nodes. This packet will be received by node i

at time T̃i2, and hence a new 3-WR protocol is con-

sidered. Figure 3 shows a simplified representation of

the ranging transactions within 3-WR, where the final

estimated RT-TOF is given as follows:

T̃OF =
1

2
[(T̃i1 − T̃i0)− (T̃j1 − T̃j0)]

− 1

2
[(T̃i2 − T̃i1)− (T̃j2 − T̃j1)] (11)

Besides the local timers associated with unitary TOA

estimates, which are required to compute range mea-

surements, the payload of the ranging packets are ac-

tually exploited to carry additional information (e.g.

to collect local estimated positions to the coordinator

for synchronous display, to exchange pair-wise ranges

in case of forced measurements symmetry, etc.).

Finally, note that Aggregate-and-Broadcast (A-B)

procedures can be optionally applied to ranging packets

[16], [17] so as to limit the localization-specific over-the-

air traffic and especially, the number of required slots

to perform all the possible pair-wise measurements in

a mesh configuration. Accordingly, under full connec-

tivity, 3n + 2m transmission slots would be required

Fig. 2 Beacon-aided TDMA MAC superframe format sup-
porting localization functionalities [1].

Fig. 3 Peer-to-peer measurement procedure between nodes
i and j through 2- and 3-Way ranging protocols.

to guarantee ranging transactions between any pair of

nodes, instead of 2n(n + m − 1) otherwise. Such A-B

procedures enable to share time resource in such a way

that each node initiates specific ranging transactions

with all the other nodes, and each transmitted packet

can play different roles (i.e. either a request, or a re-

sponse, or even a drift correction packet, depending on

the receiving neighbor status and current step in the

3-Way procedure).

5 Results

5.1 Scenario Description

In our evaluation framework, human mobility is based

on a mixed model, like in [15]. A first macroscopic mo-

bility Reference Point Group Mobility Model (RPGM)

accounts for the body center mobility, where the ref-

erence point as a function of time is a Random Gauss

Markov process [1]. The intra-WBAN mobility pattern

is based on a biomechanical cylindrical model [18]. The

body extremities are modeled as articulated objects,

which consist of rigid cylinders connected to each other

by joints. A snapshot of the resulting articulated body

under pedestrian mobility is represented in Fig. 4 at

an arbitrary time stamp. The biomechanical model en-

ables the generation of true inter-node distances and

obstruction conditions, whatever the time stamp.

In our scenario, for each random realization, the ref-

erence body moves in a 20 m ×20 m ×4 m 3D environ-

ment with a constant speed of 1 m/sec for a duration

of 80 sec. The network deployment is similar to that
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Fig. 4 Biomechanical mobility model based on a piece-wise
cylindrical representation, used in the generation of realistic
inter-node distance measurements under body mobility.

presented in Fig. 1, where 5 anchors are positioned at

fixed locations relatively to the LCS and 10 blind mo-

bile nodes with unknown positions must be positioned.

5.2 Simulation Parameters

Regarding the physical radio parameters, we assume

in first approximation that the received power is larger

than the receiver sensitivity, enabling peer-to-peer com-

munication links with a worst-case Packet Error Rate

(PER) of 1 %, as specified by the IEEE 802.15.6 WPAN

Task Group 6 [19]. This PER figure is applied onto

3-way ranging protocol transactions to emulate uncom-

plete ranging (i.e. whenever 1 packet is lost out of 3). In-

spired by the TOA-based IR-UWB ranging error model

in [12], which has been specified in the IEEE 802.15.6

mandatory band centered around 4 GHz with a band-

width of 500 MHz, ranging errors are added depending

on the current Line Of Sight (LOS) or Non Line Of

Sight (NLOS) channel configuration at time stamp t,

as follows:

d̃ij(t) = dij(t) + nij(t) if LOS

d̃ij(t) = dij(t) + nij(t) + bij(t) if NLOS
(12)

where d̃ij(t) and dij(t) are respectively the measured

and the real distance between nodes i and j at time t,

nij(t) is a centered Gaussian random variable with a

standard deviation σ, and bij(t) is a bias term due to

the absence of direct path when estimating TOA.

Simplifying the model from [12], our first simula-

tions are carried out using a synthetic and constant σ

equal to 10 cm, independently of the Signal to Noise

Ratio SNR(t), but still in the range of the values ob-

served out of real measurements in [12]. bij(t) is a pos-

itive bias added only into NLOS conditions, which fol-

lows a uniform distribution in [0 10]cm. Moreover, bij(t)

is assumed constant over one walk cycle in first approxi-

mation (i.e. bij(t) = bij ,∀t), which is also in compliance

with first empirical observations from [12] with dynamic

links over NLOS portions (i.e. with reproducible bias

from one walk cycle to the next).

Concerning the setting of the CDWMDS algorithm,

three fixed-link constraints are imposed, as material-

ized with black lines in Fig. 1. We also assume that

the weight function wij(t) is equal to 1 in connectivity

conditions and 0 when the nodes i and j are discon-

nected, regardless to neighbor’s information reliability

(i.e. with no soft weighting under connectivity). The

variable ri(t) associated with the prior estimated posi-

tion of the current mobile node is also taken equal to

1 [10] for simplification. As for the MDS algorithm, a

complete matrix is required with all the distances be-

tween all the pairs of nodes. Thus, inspired from the

coarse geometric constraints used in [8], which rely for

each link on the prior knowledge of minimal and maxi-

mal feasible distances under radio connectivity. We then

substitute the missed distances δij(t) by random vari-

ables, which follow a uniform distribution in [min
t

(dij(t))

,max
t

(dij(t))].

After running simulations of the walk cycle with 100

independent realizations of the ranging errors based on

the TOA estimation and PER, localization performance

is assessed in terms of the Root Mean Squared Error

(RMSE) per node or average RMSE (i.e. over all the

mobile nodes), while considering different approaches.

In a first evaluation, we consider updating the posi-

tions with a systematic and regular refreshment rate

of 30 ms, whereas the latency introduced by the ex-

changed packets is not taken into account. However,

in a second and more realistic approach, we consider a

TDMA MAC superframe similar to that presented in

Figure 2, where an Aggregate-and-Broadcast (A-B) pro-

cedure is applied to ranging packets to speed up con-

vergence. Finally, parametric simulation-based studies

have also been carried out in order to assess the per-

formance (over all the on-body nodes) as a function of

the PER and the standard deviation σ of intra-BAN

ranging errors in equation (12).

5.3 Localization Performance

. Figure 5 shows the average RMSE (m) for each blind

node placed on the body when applying no scheduling

(i.e. random) of the locations’ updates. Blue bars then

represent the localization performance of CDWMDS,

when each measurement constraint is calculated as the

mean of the measured distances in an observation win-

dow of 9 sec. Red bars show the average RMSE per

node in CDWMDS using the unidirectional censoring

relatively to the fastest nodes (i.e. 4 and 6). As shown

in this figure, the unidirectional censoring may be effi-
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Fig. 5 Average RMSE (m) per node with and without cen-
soring of rapid nodes for σ = 10 cm and a refreshment rate
of 30 ms.

Fig. 6 Average RMSE (m) per node with and without up-
dates scheduling for σ = 10 cm and a refreshment rate of 30
ms.

cient to improve the localization performance, decreas-

ing the average RMSE per node from 23.3 cm down to

19.7 cm, what represents an improvement of 15.4 %.

The effects of introducing scheduling in the sequence
of location updates are also illustrated on Figure 6.

Blue bars represent the localization performance of CD-

WMDS using our first enhancement but random schedul-

ing for the update of nodes’ locations, whereas red bars

account for situations when the slowest nodes are up-

dated in priority and the fast nodes are updated later

on (i.e. 4 and 6). The average RMSE (m) per node then

decreases from 19.7 cm down to 17.5 cm, representing

an improvement by 11.1 %. Moreover the gain is mainly

observed for the most poorly positioned nodes. Note

that with location updates scheduling, the refreshment

rate could be anyway adjusted depending on the lo-

cal mobile speed in order to favor the most demanding

nodes, what was not the case in our simulations.

On Figure 7 the blue bars represent the RMSE per

node of the CDWMDS algorithm when applying the

two first enhancements (i.e. censoring and scheduling),

whereas red bars show the performance while forcing

the symmetry of range measurements. The average RMSE

(m) per node then decreases from 17.5 cm down to 15.5

cm under symmetric measurements, representing one

improvement of 11.4 %.

A comparison between MDS and CDWMDS, with

and without MAC superframes, is also provided on Fig-

ures 8 and 9. First Figure 8 shows the variation of

the average RMSE (over all the nodes) as a function

of the PER. Blue, red and green curves represent re-

spectively the localization performance of CDWMDS,

CDWMDS under forced measurement symmetry and

MDS algorithms, while the dashed curves represent the

corresponding RMSE when considering a realistic MAC

superframe. It can be seen that CDWMDS outperforms

MDS, with and without MAC superframe, for each tested

PER value. Moreover, the harmful effects of the latency

induced by real MAC transactions (in particular be-

tween the collection of measurements and the position-

ing step) are also illustrated. The effect is however all

the more noticeable with centralized approaches, like

within MDS. As expected, it appears that forcing mea-

surements symmetry is also an efficient way to mitigate

packet losses, outliers or more simply large measure-

ment noise occurrences (even if not outliers). Finally,

the localization performance is slowly degraded as PER

increases in our solution, most likely due to the jointly

cooperative and decentralized nature of the proposed

algorithm.

Figure 9 shows the variation of the average RMSE

over all the nodes as a function of the standard devi-

ation of the on-body ranging errors defined in equa-

tion (12). As expected, the performance is rapidly and

rather strongly degraded as measurement errors increase.

Indeed, the relative single-link errors become hardly

compliant with relatively short true distances in a WBAN

context. At very large noise standard deviations (e.g.

larger than 20 cm), we even observe that the latency

effects introduced by the use of a realistic MAC super-

frame are minimized, experiencing approximately sim-

ilar performances (i.e. between dotted and their corre-

sponding continuous curves in Figure 9). The previous

observation indicates that measurement errors are far

dominating in this case in comparison with latency ef-

fects (so far revealed by the presence of realistic MAC

constraints), which could hence be neglected.

6 Conclusion

In this paper, we have addressed the problem of motion

capture through on-body radiolocation in WBAN. The

initial decentralized and cooperative CDWMDS algo-

rithm, which asynchronously estimates unknown nodes’

locations under geometric constraints in the form of

fixed-length links, has been first enhanced through schedul-

ing and censoring to mitigate error propagation and
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Fig. 7 Average RMSE (m) per node with and without
Forced Measurements Symmetry, with σ = 10 cm and a re-
freshment rate of 30 ms.

Fig. 8 Average RMSE (m) over all the nodes in the WBAN
as a function of PER, with σ = 10 cm.

Fig. 9 Average RMSE (m) for all the nodes in the WBAN
as a function of the standard deviation of the ranging errors,
with PER = 0.01.

harmful effects due to location-dependent node speed

disparities. It has been also shown that forced mea-

surements symmetry could help to mitigate outliers and

packet losses. Moreover, CDWMDS has been compared

with a classical MDS algorithm in terms of localization

accuracy for various PER values and ranging standard

deviations with and without realistic MAC superframe,

hence illustrating latency effects. Given the remaining

observed limitations in terms of achieved precision, re-

newed research efforts have to be committed in the field,

for instance by coupling on-body relative localization

with absolute indoor positioning capabilities (i.e. with

respect to fixed external anchors distributed in the en-

vironment) and/or with tracking filters.
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