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ABSTRACT

Wireless Body Area Networks (WBAN) are endowed with
relatively raw but intrinsic motion capture capabilities thr-
ough radiolocation, which may be of interest for home activ-
ity monitoring, large-scale postural rehabilitation or gaming
applications. In this context, we propose a solution to lo-
calize wearable wireless nodes relatively to a body-strapped
Local Coordinate System (LCS). More particularly, we con-
sider adapting a Constrained Distributed Weighted Multi-
Dimensional Scaling (CDWMDS) algorithm that asynchro-
nously estimates nodes’ locations under fixed-length geomet-
ric constraints. This algorithm is fed by inter-node range
measurements based on e.g., Impulse Radio - Ultra Wide-
band (IR-UWB) Time Of Arrival (TOA) estimation. Sev-
eral enhancements to the nominal algorithm, including no-
des censoring and location updates scheduling, are herein
put forward to mitigate error propagation and harmful ef-
fects caused by the fast moving nodes. Simulation results
are provided to illustrate the gains observed on the average
location error per node under moderate pedestrian mobility,
relying on a realistic biomechanical model.
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1. INTRODUCTION

Wireless Body Area Networks (WBANs), which have en-
joyed growing research interest for the last past years, can
fulfill unprecedented needs in various application fields such
as healthcare, security, sports, entertainment and navigation
[8], [15]. In the very WBAN context, cooperative localiza-
tion consists in locating on-body mobile nodes by relying
on peer-to-peer range measurements (i.e. out of standard
on-body radio links). In turn, this new WBAN functional-
ity shall represent a key enabling feature for opportunistic,
stand-alone and large-scale human motion capture appli-
cations, as an alternative to costly and geographically re-
stricted video acquisition systems or to specific solutions
based on inertial or magnetic sensors. With this respect,
the Impulse Radio - Ultra Wideband (IR-UWB) technology
[5], [14], which benefits from fine multipath resolution ca-
pabilities, makes possible such range measurements through
precise Time Of Arrival (TOA) estimation. Apart from ra-
diolocation considerations, the IEEE 802.15.6 radio stan-
dard recently published for WBAN applications promotes
IR-UWB as a relevant low power physical layer in the very
context [8].

Nevertheless, cooperative localization in WBAN imposes to
overcome numerous challenges. Wearable sensors are in-
deed subject to drastic constraints in terms of complex-
ity and consumption, but also to highly specific mobility
patterns. Most of the related algorithms described in the
literature adversely consider centralized resources and syn-
chronous calculations of all the mobile locations, which are
hardly compliant with real-time constraints under realistic
human mobility [2], [12] (i.e. estimating all the unknown no-
des’ locations simultaneously, after relaying inter-node mea-
surements to a central coordinator). Moreover, they often
under-exploit the available potential of WBAN mesh topolo-
gies by sticking with non-cooperative links (i.e. uniquely
with respect to fixed anchors) [15], [11]. A few solutions also
consider a priori parametric models [11], incompatible with
the unknown location-dependent mobility patterns experi-
enced by on-body nodes under arbitrary deployment. Fi-
nally, coarse geometric constraints relying e.g., on the prior
knowledge of minimal and maximal feasible distances un-
der radio connectivity, have also been introduced [12]. More
recently, the new Constrained Distributed Weighted Multi
Dimenstonal Scaling (CDWMDS) algorithm proposed in [7]
for coarse WBAN motion capture claims better immunity
against the latency effects observed within classical central-



ized schemes and better adaptability to local nodes veloci-
ties. In this solution, originally inspired by [3], nodes’ loca-
tions are asynchronously estimated in a body-strapped Local
Coordinate System (LCS), using information from their 1-
hop neighbors. Fixed-length links (e.g. between the hand’s
wrist and the elbow) are also incorporated as geometric con-
straints, limiting the number of required on-line measure-
ments, while still benefitting from a mesh topology. On this
occasion, the harmful effects of the fastest nodes have been
illustrated (e.g. those placed at legs’ extremities), showing
significant degradation of the average location accuracy.

In this paper, we propose several enhancements to the initial
CDWMDS formulation, including the unilateral censoring
and/or scheduling of the most demanding nodes when up-
dating the estimated mobile positions. One idea is to avoid
error propagation and related divergence issues for the asyn-
chronous and decentralized positioning algorithm.

The paper is structured as follows. In Section 2, we intro-
duce the relative localization problem at the body scale. Sec-
tion 3 then presents the core intended cooperative localiza-
tion algorithms, including the initial constrained DWMDS
and the proposed enhancements. In Section 4, we describe
our evaluation framework, including the simulation set-up
and parameters, as well as the localization performances
obtained under realistic body mobility. Finally, Section 5
concludes the paper.

2. PROBLEM FORMULATION

The wireless devices placed on the body can be classified
into two categories. Simple mobile nodes (also called blind
nodes in the following) with unknown positions under ar-
bitrary deployment must be located relatively to reference
anchor nodes, which are attached onto the body at known
and reproducible positions, independently of the body at-
titude and/or mobility (e.g. on the torso or on the back).
At the relative body scale, a set of such anchors defines a
stable and time-invariant Cartesian Local Coordinate Sys-
tem (LCS), which remains unchanged under body mobility
(i.e. a system whose reference inter-anchor distances are
constant, whatever the time stamp). Mobile nodes are then
located into this LCS, using peer-to-peer range measure-
ments between pairs of devices (i.e. between mobile nodes
or between nodes and fixed anchors).

Figure 1 shows a typical deployment scenario, where the
LCS is obviously in movement and misaligned relatively to
any Global Coordinate System (GCS) that would be associ-
ated with the environment. In the following, {X;(t)}i=1,...,n
represents the true 3D unknown positions of the n mobile
on-body nodes at time ¢, which are to be estimated in the
LCS. {Xi(t) = Xi}i=n+1,....n+m represents the constant 3D
known positions of the m anchors defined into the LCS at

time ¢, where m should be at least equal to 3. Let d(t),; be a
range measurement available at time ¢ between nodes 7 and
j and let [;; be a constant distance (i.e. constant over body
mobility), which will be considered hereafter as a constraint.

The problem that we want to solve is to estimate the dy-
namic positions of the mobile nodes into the LCS, given

all the available range measurements {d(t),;}, e.g. based on
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Figure 1: Typical deployment scenario for the rela-
tive localization of on-body wireless nodes (grey cir-
cles) with respect to a body-strapped Local Coordi-
nate System (LCS) defined by fixed anchors (red cir-
cles), with fixed-length geometric constraints (black
lines).

the IR-UWB TOA estimation [5], [6], on existing constraints
related to the body geometry and on the known anchors’ lo-
cations.

3. LOCALIZATION ALGORITHMS

3.1 Constrained Distributed Weighted Multi-
dimensional Scaling (CDWMDS)

Multi-Dimensional Scaling (MDS) is a powerful centralized
localization technique, which can estimate nodes’ positions
from a matrix containing inter-node distances. One major
problem of this generic algorithm is the need for complete
matrices of distances, with a full knowledge of all the pair-
wise measurements, what is highly unlikely in realistic wire-
less cases (e.g. due to connectivity losses or deliberate net-
work topology restrictions). Another problem that can ap-
pear within such centralized approaches is the latency effect
(i.e. the time elapsed between the collection of the required
distance measurements and the delivery of the location esti-
mates), whereas the body gesture can change rapidly during
the collection step, hence degrading significantly final local-
ization accuracy. Improvements to the nominal MDS have
been provided recently in location-enabled Wireless Sensor
Networks (WSN), e.g. overcoming the need for cumber-
some matrix computations through multiple internal divi-
sion localizations in static positioning (e.g. [9]) or extending
the nominal MDS formalism into dynamic tracking contexts
(e.g. [4]). However, motivated by the possibility to oper-
ate under partial and varying WBAN connectivity, to be
more robust against induced latency and to benefit from
asynchronism while localizing the nodes, we thus seek to es-
timate the nodes’ positions using a fully distributed version
of the MDS. As described in [3], a new Distributed Weighted
Multi-Dimensional Scaling (DWMDS) allows each node 1
with unknown coordinates to localize itself by minimizing a



local cost function, as follows:
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where )A(l(t) is a vector containing the estimated 3D coor-
dinates of node i, d;;(t) is a so-called observed distance be-
tween node i and j at time t, di; (X/(t), X;(t)) denotes the
synthetic Euclidean distance between i and j built out of
the current estimated coordinates )?Z(t) and )?j (), wi;(t) is
a weight, which reflects the connectivity and the accuracy
of the range measurement between nodes ¢ and j at time ¢,
so that unavailable links are naturally discarded and inaccu-
rate measurements are down-weighted (or reliable neighbors
such as anchors could be over-weighted) in the cost function,
X;(t) is a vector with prior information about the position
occupied by node 4 at time t, while r;(¢) quantifies the reli-
ability of such prior information.

As described in [3], at each time ¢, the dynamic equation
(1) is iteratively resolved within a few steps to estimate all
the mobile nodes’ positions. If X*) () is the matrix whose
columns contain all the estimated positions at iteration k,

—~(k
node 7 derives its current coordinates update Xi( )(t) as fol-
lows:
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and bgk)(t) = [b1(t), ..., bntm (t)] is a vector whose entries
are given hereafter by
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In the nominal embodiment, one assumes that a localization
cycle (to be repeatedly updated) is completed once all the
mobile nodes are sequentially updated at least once with
respect to their available neighbors.

In [7], two first improvements have been proposed to get this
nominal DWMDS more adapted into the WBAN relative
localization context. One first trivial point consists in taking
the latest estimated position available for node 7 at time t—1,
as a priori information in tllg local component of the cost
function, i.e. with X;(¢) = X;(t — 1). The choice accounts
for the bounded motion amplitudes of on-body nodes under
realistic human mobility. Relatively to the LCS (still), this
amplitude strongly depends on the actual node’s location
itself.

DWMDS
Fixed links | 6,;(t) = di; (t)
Mobile links | 8;;(t) = dy;(¢)

CDWMDS
655 (t) = Uiy
6ij(t) = di; (1)

Table 1: Comparison of the range observations used
by DWMDS and CDWMDS algorithms.

The second improvement consists in using coarse a priori in-
formation about the nodes deployment to benefit from the
geometric characteristics of the human body. The idea is
to introduce fixed on-body links (e.g. links between the
hand’s wrist and the elbow) as constraints into the posi-
tioning problem (See e.g., Figure 4.1). In particular, we use
an approximated version of the true constant distances (e.g.
learnt out of repeated measurements after averaging, during
a preliminary calibration phase under mobility) as inputs,
leading to a Constrained version of the DWMDS algorithm
(CDWMDS).

Table 1 shows the difference between DWMDS and CD-
WMDS, where d;;(t) is the instantaneous distance measured
between nodes ¢ and j at time ¢ and [;; is an approximated
version of the fixed distance between nodes ¢ and j, which is
afterwards considered as constant over time, independently
of the body gesture. Accordingly, no more ranging measure-
ments are required for these links identified as constrained
in the steady-state localization regime (e.g. after initial cal-
ibration). Besides accuracy considerations, CDWMDS thus
leads to reducing the number of exchanged packets and ac-
cordingly, to reducing latency and energy consumption.

3.2 New Proposals

We now propose a set of new enhancements for the previous
CDWMDS algorithm. One main idea consists in avoiding
error propagation in the retained asynchronous and decen-
tralized updating strategy.

3.2.1 Unidirectional Censoring of Rapid Nodes Trans-

missions

The first goal is to mitigate error propagation while updating
nodes locations. As previously mentioned, it has been illus-
trated in [7] that the locations estimated for the most rapid
nodes are affected by significantly higher errors in compari-
son with slower nodes. Those rapid nodes also coincide with
devices that usually suffer from relatively poor connectivity
and bad Geometric Dilution Of Precision (GDOP) condi-
tions, from being located at the body periphery (i.e. thus
out of the convex hull defined by the anchors on the torso).
Hence, we propose to allow only the update of such fast no-
des with respect to their 1-hop neighbors but, in return, no
updates of these neighbors with respect to the fast nodes,
that is, performing unidirectional censoring. The expected
gains are two-fold: keeping on benefiting at rapid nodes from
the reliability of their slow neighbors’ estimates, but also im-
proving the average location accuracy in the entire network
by avoiding error propagation from less reliable rapid nodes.
Moreover, getting back to equation (1), using the same up-
date framework, the unidirectional censoring of a rapid node
j is simply realized by forcing the weight function w;;(t) to
be null for every on-body mobile node i (i.e. w;;(t) = 0,
Vi < m), whereas w;;(t) # 0 a priori.



3.2.2  Scheduling of Location Updates

On top of the unidirectional censoring enhancement, the ob-
jective here is also to avoid error propagation by forcing
the algorithm to convergence properly first and updating in
priority the slowest and most reliable nodes. Hence, rapid
nodes benefit from the consolidated reliability of their slow

neighbors estimates and error propagation is minimized. Prac-

tically, within a coordinated medium access scheme of the
multiple on-body nodes, where all the protocol transactions
shall be scheduled (i.e. for both range measurements and
position updates), one can keep track of the approximated
dynamic speeds on the coordinator side, based on the lat-
est available position estimates. Hence, at each new time
stamp (and hence, at each superframe), one can draw such
an ordered list setting the nodes to be updated in priority.
Finally, one more degree of freedom concerns the number
of updates per node per localization cycle (i.e. per super-
frame) or equivalently, the refreshment rate, which can be
also dynamically increased for the most demanding nodes.

4. RESULTS

4.1 Scenario Description

In our evaluation framework, the overall mobility of the hu-
man body is based on a mixed model, like in [10]. A macro-
mobility Reference Point Group Mobility Model (RPGM)
model accounts for the body center mobility, where the ref-
erence point as a function of time is a Random Gauss Markov
process [2]. The intra-BAN mobility is based on a biome-
chanical cylindrical model [13]. The body extremities are
modeled as articulated objects, which consist of rigid cylin-
ders connected to each other by joints. A snapshot of the
resulting articulated body under pedestrian mobility is rep-
resented in Figure 2 at an arbitrary time stamp. The biome-
chanical model enables the generation of true inter-node dis-
tances, whatever the time stamp. In our scenario, for each
random realization, the reference body moves in a 20m X
20m x 4m 3D environment with a constant speed of 1 m/sec
for 80 sec. The network deployment is similar to that pre-
sented in Figure 1, where we have taken 3 anchors positioned
at fixed locations, defining the LCS. 10 blind mobile nodes
with unknown coordinates must be positioned.

4.2 Simulation Parameters

Concerning the physical radio parameters, we assume that
the received power is larger than the receiver sensitivity, thus
authorizing peer-to-peer communication on-body links with
a worst-case Packet Error Rate (PER) of 1 %, as specified
by the IEEE 802.15.6 [1], [8]. This PER figure is applied
onto each transmitted packets of a 3-way ranging protocol,
so as to emulate uncomplete ranging transactions (i.e. when-
ever one single packet is lost out of the 3 required packets).
Practically, the peer-to-peer ranging procedure between two
nodes may fail if only one single packet is lost (with a default
loss rate equal to PER). Besides, inspired by the TOA-based
IR-UWB ranging error model of [6], which has been speci-
fied in the IEEE 802.15.6 mandatory band centered around 4
GHz with a bandwidth of 500 MHz, ranging errors are added
depending on the current Line Of Sight (LOS) or Non Line
Of Sight (NLOS) channel configuration at time stamp ¢, as
follows:

i (t) +mi (1)
i () + iz (t) + biz (1)

if LOS
if NLOS
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Figure 2: Biomechanical mobility model based on
a piece-wise cylindrical representation, used in the
generation of realistic inter-node distance measure-
ments under body mobility.

where c,i\,;(t) and d;;(t) are respectively the measured and
real distances between nodes ¢ and j at time ¢, n;;(¢) is a
centered Gaussian random variable with a standard devia-
tion oy, and bs;(¢) is a bias term due to the absence of direct
path in TOA estimation.

Simplifying further the model from [6], our simulations are
carried out using a synthetic and constant o,, equal to 10 cm,
independently of the Signal to Noise Ratio SNR(t), but still
in the range of the experimental values observed in [6], based
on real measurements. b;;(t) is a positive bias added only
into NLOS conditions, which follows a uniform distribution
in [0, 10Jcm. Moreover, b;;(t) is assumed constant over one
walk cycle in first approximation (i.e. b;;(¢t) = bsj, Vt), which
is also in compliance with first empirical observations from
[6] with dynamic links over NLOS portions (i.e. reproducible
bias from one walk cycle to the next).

Concerning the localization algorithm parameters, three fixed-
link constraints are imposed to the CDWMDS algorithm, as
materialized with black lines on Figure 1. We also assume
that the weight function w;;(¢) is equal to 1 under feasible
connectivity and 0 when the nodes ¢ and j are disconnected
(i.e. considering the simplest weighting case), regardless to
neighbor’s information reliability (i.e. with no soft weighting
under connectivity). The variable r;(t) related to the prior
estimated position of the node is taken equal to 1 [3], for
simplification. Finally, the localization updates (i.e. within
one complete localization cycle) are realized in average with
a refreshment rate of 30 ms.

4.3 Localization Performances

Simulations have been carried out to illustrate the positive
effects of the proposed enhancements on localization perfor-
mances. After running simulations of the walk cycle with
100 independent realizations of the ranging errors (based on
the TOA estimation and applying PER to 3-way ranging
transactions), localization performances are measured as a
function of the average Root Mean Square Error (RMSE)
per node.
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Figure 3 shows such an error (in m) per blind on-body node
under a random scheduling of locations updates. Blue bars
represent the localization performances of the constrained
DWMDS (CDWMDS) algorithm. The constraints are cal-
culated by averaging the measured distances over the cor-
responding links within an observation window of 9 sec.
Red bars show the average RMSE per node in CDWMDS
while applying the unidirectional censoring scheme to the
two fastest nodes (i.e. IDs 4 and 6). As illustrated on the
figure, applying censoring may represent an efficient way to
improve the localization performances, decreasing the aver-
age error per node by a factor of 18 %, i.e. from 26.2 cm
down to 21.5 cm.

The effects of the scheduling of location updates are repre-
sented on Figure 4, where blue bars represent the CDWMDS
performances while considering the first enhancement, but
still under random scheduling. Red bars show similar lo-
calization performances when the slowest nodes are firstly
updated and the fastest nodes (i.e. IDs 4 and 6) are up-
dated later on (i.e. at the end of the localization cycle or
superframe). The average RMSE (m) per node then goes
from 21.5 cm down to 20.2 cm, which represents an addi-
tional relative improvement of 6 %.

5. CONCLUSION

In this paper, we have addressed the problem of coarse but
opportunistic motion capture through radiolocation in stan-
dard WBAN. The decentralized and cooperative CDWMDS
algorithm, which asynchronously estimates unknown nodes’
locations under fixed-link geometrical constraints, has been
enhanced to mitigate errors propagation and harmful effects
due nodes’ location-dependent speed disparity. Simulations
have been carried out to assess the performances of the mod-
ified algorithm, showing that both the unidirectional censor-
ing and the scheduling of location updates could be relevant
to better the localization performances by more than 20 %
overall.

However, achieving very high precision motion capture capa-
bilities through on-body radio means still looks challenging.
Hence, based on the remaining observed limitations, more
research efforts have to be undertaken in order e.g., to en-
hance the initialization step, to provide posterior tracking
or smoothing of the estimated positions and to assess more
carefully the link between the medium access control layer
(under realistic packet loss rates) and localization latency.
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