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tIn this paper, we propose to 
ombine di�usion methods [1℄, [2℄, [3℄ and reassignment te
hniques [4℄, [5℄ for the pro
essing oftime-frequen
y distributions. We brie�y re
all both te
hniques and propose a reassigned adaptive di�used distribution. We providea 
riteria for the 
hoi
e of τ , the amount of di�usion applied prior to reassignment, and illustrate with a 
omparison between areassigned spe
trogram and a reassigned di�used distribution. Both distributions �gure high lo
alization properties but the laterpossess more regularity. I. Introdu
tionBe
ause time-frequen
y representations (TFR) illustrate evolutions of signals with respe
t to both time and frequen
y,they have been largely used to deal with non-stationary environment. Among the host of solutions that have beenproposed, Cohen 
lass en
loses bilinear TFR that are 
ovariant with respe
t to time shifts and frequen
y shifts. Su
htools lead to sharper representation of a signal than linear-based approa
hes, e.g., spe
trograms, but at the 
ost ofundesirable 
ross-terms [6℄. One main goal of time-frequen
y smoothing is to improve readability by removing these
umbersome 
ross-terms while preserving the sharpness of signal terms.In the 
ontext of homogeneous smoothing, a low-passed kernel is 
hosen su
h that the trade-o� between readabilityand sharpness of signal terms is maximized. The radial gaussian kernel proposed in [7℄ is su
h a kernel. Noting thatthe pro
essed signal is non-stationary, many authors proposed to use lo
ally adaptive te
hniques. In this paper we dealwith two of them, namely adaptive di�usion [1℄, [2℄, [3℄ and distribution reassignment [4℄, [5℄. We propose to 
ombinethese two te
hniques to obtain reassigned di�used distributions. These distributions meld the sharpness of reassignedones with the regularity of di�used representations.II. Time-frequen
y distribution diffusionIn this �rst part we brie�y re
all the prin
iples of adapted di�usion. For a more thorough treatment, the reader shallrefer to [1℄, [2℄, [3℄. We start by a presentation of homogeneous di�usion. We then sket
h the link between di�useddi�usions and spe
trograms. In a last part we review adaptive di�usion.A. Homogeneous di�usionDi�usion is the pro
ess by whi
h matter is transported from areas of high 
on
entration to areas of lower 
on
entrationas a result of the movement of an ensemble of mole
ules inside a region. This is mathemati
ally formulated by a basi
equation referred to as Fi
k's law [8℄:
J = −C ∇U, (1)where J is the �ux of mole
ules, U their 
on
entration, C the di�usion tensor, and ∇ the gradient operator. Thenegative sign indi
ates that the di�using mass �ows in the dire
tion of de
reasing 
on
entration. If C is a s
alar-valued
ondu
tan
e fun
tion, whi
h implies that J and ∇U are 
ollinear, the di�usion pro
ess is 
alled isotropi
. Otherwise itis 
alled anisotropi
. It is said that the di�usion pro
ess is homogeneous if the di�usion tensor C is 
onstant over theregion of interest. Lo
ation-dependent di�usion is 
alled non-homogeneous or inhomogeneous. The law of 
onservationof mass is expressed as:

∂U

∂τ
= −div(J) , (2)where τ is the di�usion time, and div the divergen
e operator. Combining this relationship with Fi
k's law produ
esthe law of di�usion, whi
h states:

∂U

∂τ
= −div(−C ∇U) . (3)



2In the 
ase where C is a positive 
onstant, the resulting isotropi
 and homogeneous pro
ess (3) is often referred to asheat di�usion equation sin
e it des
ribes the evolution of temperature within a �nite homogeneous 
ontinuum with nointernal sour
es of heat. In this paper, this di�usion is said to be linear be
ause the tensor C does not vary with τ .Otherwise, it would be 
alled nonlinear1. Let us now restri
t our dis
ussion to the partial di�erential equations (PDE's)in two-plus-one dimension
{

U(v1, v2; τ = 0) = U0(v1, v2)
∂U
∂τ

= div(∇U) ,
(4)where U0 ∈ L1(IR2) denotes the initial spatial 
ondition. It is well-known that the solution to (4) is

U(v1, v2; τ) =

{

(G ∗ U0)(v1, v2) (τ > 0)
U0(v1, v2) (τ = 0),

(5)with ∗ the usual 2-D 
onvolution, and G(v1, v2; τ) = (4πτ)−1 exp(−[v2
1 + v2

2 ]/4τ) an isotropi
 Gaussian kernel whi
h isreferred to as Green's fun
tion of the PDE given above. This means that the solution U(v1, v2; τ) of the heat di�usionequation (4) at ea
h time instant τ 
an be simply obtained by 
onvolution of the initial spatial 
ondition U0(v1, v2)with Green's fun
tion G(v1, v2; τ).Among Cohen 
lass, the spe
trogram is a widely used tool. As the square modulus of the short-time Fourier trans-form, it 
an also be written as a 
onvolution between the Wigner distribution of the signal and that of the analyzingwindow. Note that the Wigner distribution of a gaussian window is a 2D-gaussian kernel. Interpreting time-frequen
yrepresentation as a heat distribution one 
an 
onsider its di�usion as follows:






Dx(t, f ; τ = 0) = Wx(t, f)

∂Dx(t,f ;τ)
∂τ

= divt,f(∇t,fDx(t, f ; τ)),
(6)where Wx is the representation to be pro
essed, whi
h plays the role of the initial state of the di�usion pro
ess.The di�used representation Dx(t, f ; τ) denotes the energy distribution at the time instant τ . As we just stated, thefundamental solution of su
h 
lassi
al heat di�usion is an isotropi
 gaussian. Therefore the partial derivative equation(6) has the following solution:

Dx(t, f ; τ)=
1

4πτ

∫∫

Wx(η, ν)e−
(t−η)2+(f−ν)2

4τ dηdν (7)Indeed the use of the heat di�usion on a Wigner distribution is equivalent to 
onvolving it with a gaussian kernel whosevarian
e in
reases with the di�usion time τ . Note that the 
onvolution form of the solution ensures the preservation of
ovarian
e with respe
t to time and frequen
y shifts.B. Adaptive di�usionIn a time-frequen
y distribution smoothing 
ontext, adaptive di�usion was introdu
ed in [1℄. In this paper, authorspropose to lo
ally tune the di�usion pro
ess, allowing a lo
ally adapted smoothing. Su
h a s
heme reads:






Dx(t, f ; τ = 0) = Wx(t, f)

∂Dx(t,f ;τ)
∂τ

= divt,f (cx(t, f)∇t,fDx(t, f ; τ)),
(8)where Wx is the to-be-smoothed distribution, Dx is the smoothed distribution up to time τ and cx is the fun
tion
ontrolling lo
ally the amount of smoothing. This later is referred to as the 
ondu
tan
e fun
tion.In an analysis 
ontext, the aim is to remove 
ross terms while preserving the sharpness of signal terms. In [1℄,authors proposed to s
alar valued fun
tion for su
h a goal, this di�usion is 
alled isotropi
. This te
hnique relies on thespe
trogram, whi
h is approximately equal to zero over non-energeti
 areas where the interferen
e terms of the WD arelikely to be situated. Thus making the 
ondu
tan
e fun
tion a de
reasing fun
tion of Sx su
h as

cSx
(t, f)=

[

1+

(

SPx(t, f)

β

)α]−1

(α, β) ∈ IR∗

+× IR∗

+ (9)allows for the tuning of the di�usion rate over the time-frequen
y domain, see [2℄, [3℄ for extensions. In a nutshell,di�usion methods start from a 
on
entrated distribution with 
ross terms and sele
tively smooth them out with amaximum preservation of sharpness for signal terms.
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entropy(a) Reassigned spe
trogram (b) Reassigned di�used distribution (
) Evolution of entropyFig. 1. Comparison between (a) the reassignment of a spe
trogram and (b) the reassignment of a distribution pro
essed by adaptive di�usion(isotropi
 in that 
ase). Fig-(
) illustrates the evolution of the entropy, with α = 3, of the reassigned di�usion as a fun
tion of τ . Chosenstopping time is here τ∗
= 105. III. Time-frequen
y distribution reassignmentAnother very popular method ta
kles the problem from another perspe
tive. Reassignment method starts from aninterferen
e free distribution, like a spe
trogram for example, and in
reases its sharpness. This enables to obtain bothsharpness and readability as the starting distribution just la
ks resolution. The interferen
e-free distribution resultsfrom the low-pass �ltering of a Wigner distribution. This has two 
onsequen
es: elimination of interferen
es anddelo
alization of signal-terms. Knowing the window used, reassignment relo
alizes the later. Indeed for a spe
trogram

Sx using a window h(t):
Sx(t, f ; h) =

∫∫

Wx(η, ν)Wh(η − t, ν − f)dηdν, (10)reassignment reads [4℄, [5℄:
Ŝx(t, f ; h) =

∫∫

S(η, ν; h)δ(t − t̂hx(η, ν), f − f̂h
x (η, ν))dηdν, (11)where t̂x and f̂h

x indi
ates the lo
us where the energy has to be moved to. They are given by
t̂hx(t, f) =

∫∫

ηWx(η, ν)
Wh(η − t, ν − f)

Sx(t, f ; h)
dηdν and f̂h

x (t, f) =

∫∫

νWx(η, ν)
Wh(η − t, ν − f)

Sx(t, f ; h)
dηdν.As all the members of the Cohen 
lass 
an be written in a 
onvolutive way, they all posses reassigned versions.One 
ould use the equivalen
e of homogeneous di�usion with gaussian spe
trograms and smoothed pseudo Wignerdistributions to proposed reassigned homogenous di�used distributions. However this relies on the Green fun
tion ofthe di�usion whi
h is not available in the 
ase of adaptive di�usion. We therefore propose another te
hnique.IV. Diffused distribution reassignmentRe
all that there is an equivalen
e between the distribution Dx, result from a di�usion up to time τ a

ording to:







Dx(t, f ; τ = 0) = Wx(t, f)

∂Dx(t,f ;τ)
∂τ

= divt,f (cx∇t,fDx(t, f ; τ)),
(12)with cx(t, f) a 
onstant fun
tion and the 
onvolution

Dx(t, f ; τ) =

∫∫

cxG(η, ν; τ)Wx(η − t, ν − f)dηdν. (13)The kernel G is the Green fun
tion of the aforementioned di�usion. In this 
ase, that kernel G is a 2D gaussian kernelof varian
e σ =
√

2τ .In the adaptive 
ase, we assume the Green fun
tion exists and we note it G(x,τ,t,f). Be
ause this is equivalent to useeither the 
onvolution with the Green fun
tion or the di�usion, we propose to determine the lo
us of the reassignment
1In the theory of partial di�erential equations, a di�usion pro
ess is 
alled nonlinear if C is a fun
tion of U or its derivatives.



4points using:






tx(t, f ; τ = 0) = tWx(t, f)

∂tx(t,f ;τ)
∂τ

= divt,f (cx(t, f)∇t,f tx(t, f ; τ)),
and 





fx(t, f ; τ = 0) = fWx(t, f)

∂fx(t,f ;τ)
∂τ

= divt,f(cx(t, f)∇t,ffx(t, f ; τ)).
(14)Reassignment reads then:

D̂x(t, f ; τ) =

∫∫

Dx(η, ν; τ)δ

(

t − tx(η, ν; τ)

Dx(t, f ; τ)
, f − fx(η, ν; τ)

Dx(t, f ; τ)

)

dηdν. (15)Without 
onstraints on the di�usion time, Dx would 
onverge to a uniform distribution over the time-frequen
ydomain regardless of the analyzed signal. Hen
e, this reassigned di�usion pro
ess is to be stopped when some 
riterionis a
hieved. The Rényi entropy, de�ned as [9℄
H

D̂
(τ) = − 1

1 − α
log

∫∫

D̂α
x (t, f ; τ)dt df,is a natural 
andidate for measuring the 
on
entration of TFRs2. While in previous studies, e.g. [3℄, [2℄, we usedthe entropy of the di�used distribution as a stopping 
riteria, we here propose to use the entropy of the reassigneddistribution, as it is the distribution we are interested in. While the �rst iterations of the di�usion are smoothing outinterferen
e terms, the later ones slowly regularize the signal terms until some point where even reassignment 
annotprodu
e a sharp distribution. This yield a minimum in the entropy 
urve that we use as a stopping point for the di�usionpro
ess, see �g.-1 (
) for an illustration.As we 
an see on the �g.-1(a-b), both representations are interferen
e free and very 
on
entrated. We note that usinga di�used distribution yield a more regular result 
ombining the good properties of both te
hniques. This denotes asmaller entropy. Indeed note that the entropy of the �gured reassigned spe
trogram is 9.4 whereas the entropy of thereassigned di�used distribution is 9.2. V. Con
lusionWe have proposed an extension of the reassignment te
hnique to ta
kle the di�used distributions. While demonstratedon an isotropi
 adaptive time-frequen
y distribution, it is easily extensible to in
lude the re
ent developments of di�usionpro
essing (anisotropy and pro
essing of time-s
ale distributions). We then illustrated the gain over a reassignedspe
trogram by exploiting the time of di�usion τ to obtain a regular, interferen
e-free and well lo
alized distribution.Referen
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2We suggest the reader to refer to [9℄ for detailed study of the Rényi's entropies as time-frequen
y information measures. We also invitehim to 
onsult [10℄, [11℄ for full details on the Rényi's entropies as a means of extra
ting information from images during di�usion.


