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Abstract

In this paper, we propose to combine diffusion methods [1], [2], [3] and reassignment techniques [4], [5] for the processing of
time-frequency distributions. We briefly recall both techniques and propose a reassigned adaptive diffused distribution. We provide
a criteria for the choice of 7, the amount of diffusion applied prior to reassignment, and illustrate with a comparison between a
reassigned spectrogram and a reassigned diffused distribution. Both distributions figure high localization properties but the later
possess more regularity.

I. INTRODUCTION

Because time-frequency representations (TFR) illustrate evolutions of signals with respect to both time and frequency,
they have been largely used to deal with non-stationary environment. Among the host of solutions that have been
proposed, Cohen class encloses bilinear TFR that are covariant with respect to time shifts and frequency shifts. Such
tools lead to sharper representation of a signal than linear-based approaches, e.g., spectrograms, but at the cost of
undesirable cross-terms [6]. One main goal of time-frequency smoothing is to improve readability by removing these
cumbersome cross-terms while preserving the sharpness of signal terms.

In the context of homogeneous smoothing, a low-passed kernel is chosen such that the trade-off between readability
and sharpness of signal terms is maximized. The radial gaussian kernel proposed in [7] is such a kernel. Noting that
the processed signal is non-stationary, many authors proposed to use locally adaptive techniques. In this paper we deal
with two of them, namely adaptive diffusion [1], [2], [3] and distribution reassignment [4], [5]. We propose to combine
these two techniques to obtain reassigned diffused distributions. These distributions meld the sharpness of reassigned
ones with the regularity of diffused representations.

II. TIME-FREQUENCY DISTRIBUTION DIFFUSION

In this first part we briefly recall the principles of adapted diffusion. For a more thorough treatment, the reader shall
refer to [1], [2], [3]. We start by a presentation of homogeneous diffusion. We then sketch the link between diffused
diffusions and spectrograms. In a last part we review adaptive diffusion.

A. Homogeneous diffusion

Diffusion is the process by which matter is transported from areas of high concentration to areas of lower concentration
as a result of the movement of an ensemble of molecules inside a region. This is mathematically formulated by a basic
equation referred to as Fick’s law [8]:

J=-CVU, (1)

where J is the flux of molecules, U their concentration, C' the diffusion tensor, and V the gradient operator. The
negative sign indicates that the diffusing mass flows in the direction of decreasing concentration. If C' is a scalar-valued
conductance function, which implies that .J and VU are collinear, the diffusion process is called isotropic. Otherwise it
is called anisotropic. It is said that the diffusion process is homogeneous if the diffusion tensor C is constant over the
region of interest. Location-dependent diffusion is called non-homogeneous or inhomogeneous. The law of conservation

of mass is expressed as:

ou

— = —div(J), 2

= —div(J) 2)
where 7 is the diffusion time, and div the divergence operator. Combining this relationship with Fick’s law produces
the law of diffusion, which states:

ouU

o = —div(-C'VU). (3)



In the case where C' is a positive constant, the resulting isotropic and homogeneous process (3) is often referred to as
heat diffusion equation since it describes the evolution of temperature within a finite homogeneous continuum with no
internal sources of heat. In this paper, this diffusion is said to be linear because the tensor C' does not vary with .
Otherwise, it would be called nonlinear!. Let us now restrict our discussion to the partial differential equations (PDE’s)
in two-plus-one dimension
{ (’Ul,’Ug,T = 0) Uo(’Ul,UQ) (4)
9U = div(VU),

where Uy € £L'(IR?) denotes the initial spatial condition. Tt is well-known that the solution to (4) is

v [ (G xUy)(v1,v2) (Tr>0)
v ={ Gy (20, ®)

with * the usual 2-D convolution, and G (v, ve;7) = (477) ! exp(—[v? + v3]/47) an isotropic Gaussian kernel which is
referred to as Green’s function of the PDE given above. This means that the solution U(vy, ve; 7) of the heat diffusion
equation (4) at each time instant 7 can be simply obtained by convolution of the initial spatial condition Upy(vy,v2)
with Green’s function G(v1, va; 7).

Among Cohen class, the spectrogram is a widely used tool. As the square modulus of the short-time Fourier trans-
form, it can also be written as a convolution between the Wigner distribution of the signal and that of the analyzing
window. Note that the Wigner distribution of a gaussian window is a 2D-gaussian kernel. Interpreting time-frequency
representation as a heat distribution one can consider its diffusion as follows:

Dy(t, f;7=0) = Wa(t, f)

9D (t,f; :

OReeli T = div g (Vo s Dot f37)),
where W, is the representation to be processed, which plays the role of the initial state of the diffusion process.
The diffused representation D, (¢, f;7) denotes the energy distribution at the time instant 7. As we just stated, the
fundamental solution of such classical heat diffusion is an isotropic gaussian. Therefore the partial derivative equation
(6) has the following solution:

(6)

t—n V)2
Da(t. f:7) / W, (, v)e " dndy (7)

Indeed the use of the heat diffusion on a ngner distribution is equivalent to convolving it with a gaussian kernel whose
variance increases with the diffusion time 7. Note that the convolution form of the solution ensures the preservation of
covariance with respect to time and frequency shifts.

B. Adaptive diffusion

In a time-frequency distribution smoothing context, adaptive diffusion was introduced in [1]. In this paper, authors
propose to locally tune the diffusion process, allowing a locally adapted smoothing. Such a scheme reads:

Dy(t, f;7=0) = Wa(t, f)

(8)
9D (t,f; :
% = dlvt,f(cz(ta f)vt,fDaz(ta f;T))a
where W, is the to-be-smoothed distribution, D, is the smoothed distribution up to time 7 and ¢, is the function
controlling locally the amount of smoothing. This later is referred to as the conductance function.

In an analysis context, the aim is to remove cross terms while preserving the sharpness of signal terms. In [1],
authors proposed to scalar valued function for such a goal, this diffusion is called isotropic. This technique relies on the
spectrogram, which is approximately equal to zero over non-energetic areas where the interference terms of the WD are
likely to be situated. Thus making the conductance function a decreasing function of S, such as

o 0= 15 (FLDY ] oy emiems 0

allows for the tuning of the diffusion rate over the time-frequency domain, see [2], [3] for extensions. In a nutshell,
diffusion methods start from a concentrated distribution with cross terms and selectively smooth them out with a
maximum preservation of sharpness for signal terms.
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Fig. 1. Comparison between (a) the reassignment of a spectrogram and (b) the reassignment of a distribution processed by adaptive diffusion
(isotropic in that case). Fig-(c) illustrates the evolution of the entropy, with o = 3, of the reassigned diffusion as a function of 7. Chosen
stopping time is here 7* = 105.

III. TIME-FREQUENCY DISTRIBUTION REASSIGNMENT

Another very popular method tackles the problem from another perspective. Reassignment method starts from an
interference free distribution, like a spectrogram for example, and increases its sharpness. This enables to obtain both
sharpness and readability as the starting distribution just lacks resolution. The interference-free distribution results
from the low-pass filtering of a Wigner distribution. This has two consequences: elimination of interferences and
delocalization of signal-terms. Knowing the window used, reassignment relocalizes the later. Indeed for a spectrogram

S, using a window h(t):

SL(f7f7h) = / Wt(n7V)Wh(77_f'aV_f)d77dV7 (10)
reassignment reads [4], [5]:
Suttsfi0) = [[ Strvimiste ~ ibio.v), £ = £,y (11)

where £, and ff indicates the locus where the energy has to be moved to. They are given by
—tv—f) Wh(Tl -f)
th t,f)= //T/W n,v ( —————%dndv and "t f) = //I/W N, V) ——s——dndv.
Sa(t, fh) Sa(t, f h)

As all the members of the Cohen class can be written in a convolutive way, they all posses reassigned versions.
One could use the equivalence of homogeneous diffusion with gaussian spectrograms and smoothed pseudo Wigner
distributions to proposed reassigned homogenous diffused distributions. However this relies on the Green function of
the diffusion which is not available in the case of adaptive diffusion. We therefore propose another technique.

IV. DIFFUSED DISTRIBUTION REASSIGNMENT

Recall that there is an equivalence between the distribution D,, result from a diffusion up to time 7 according to:
Dy(t, f;7=0) = Walt, f)

W) — divy (e, Vi Dalt, f37)),

(12)

with ¢, (¢, f) a constant function and the convolution

+(t, f37) //CL (n,v; T)Wa(n —t,v — f)dndy. (13)

The kernel G is the Green function of the aforementioned diffusion. In this case, that kernel G is a 2D gaussian kernel
of variance o = /27.

In the adaptive case, we assume the Green function exists and we note it G, - r). Because this is equivalent to use
either the convolution with the Green function or the diffusion, we propose to determine the locus of the reassignment

IIn the theory of partial differential equations, a diffusion process is called nonlinear if C is a function of U or its derivatives.



points using:
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Reassignment reads then:

N | Lpwir) . Talnwsr)
D (t,£i7) = [ Datnvir)s (t S Ry =i f;T)) dndv. (15)

Without constraints on the diffusion time, D, would converge to a uniform distribution over the time-frequency
domain regardless of the analyzed signal. Hence, this reassigned diffusion process is to be stopped when some criterion
is achieved. The Rényi entropy, defined as [9]

1

Hp(r) = 1= los [ [ D2t fimyat .

is a natural candidate for measuring the concentration of TFRs?. While in previous studies, e.g. [3], [2], we used
the entropy of the diffused distribution as a stopping criteria, we here propose to use the entropy of the reassigned
distribution, as it is the distribution we are interested in. While the first iterations of the diffusion are smoothing out
interference terms, the later ones slowly regularize the signal terms until some point where even reassignment cannot
produce a sharp distribution. This yield a minimum in the entropy curve that we use as a stopping point for the diffusion
process, see fig.-1 (c) for an illustration.

As we can see on the fig.-1(a-b), both representations are interference free and very concentrated. We note that using
a diffused distribution yield a more regular result combining the good properties of both techniques. This denotes a
smaller entropy. Indeed note that the entropy of the figured reassigned spectrogram is 9.4 whereas the entropy of the
reassigned diffused distribution is 9.2.

V. CONCLUSION

We have proposed an extension of the reassignment technique to tackle the diffused distributions. While demonstrated
on an isotropic adaptive time-frequency distribution, it is easily extensible to include the recent developments of diffusion
processing (anisotropy and processing of time-scale distributions). We then illustrated the gain over a reassigned
spectrogram by exploiting the time of diffusion 7 to obtain a regular, interference-free and well localized distribution.
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