
1Reassignment of di�used time-frequenydistributionsJulien GOSME, Cédri RICHARDISTIT UTT12, rue Marie Curie - B.P. 2060 - 10010 Troyes edex - Franetél : 03.25.71.80.39 fax : 03.25.71.56.99julien.gosme�utt.frAbstratIn this paper, we propose to ombine di�usion methods [1℄, [2℄, [3℄ and reassignment tehniques [4℄, [5℄ for the proessing oftime-frequeny distributions. We brie�y reall both tehniques and propose a reassigned adaptive di�used distribution. We providea riteria for the hoie of τ , the amount of di�usion applied prior to reassignment, and illustrate with a omparison between areassigned spetrogram and a reassigned di�used distribution. Both distributions �gure high loalization properties but the laterpossess more regularity. I. IntrodutionBeause time-frequeny representations (TFR) illustrate evolutions of signals with respet to both time and frequeny,they have been largely used to deal with non-stationary environment. Among the host of solutions that have beenproposed, Cohen lass enloses bilinear TFR that are ovariant with respet to time shifts and frequeny shifts. Suhtools lead to sharper representation of a signal than linear-based approahes, e.g., spetrograms, but at the ost ofundesirable ross-terms [6℄. One main goal of time-frequeny smoothing is to improve readability by removing theseumbersome ross-terms while preserving the sharpness of signal terms.In the ontext of homogeneous smoothing, a low-passed kernel is hosen suh that the trade-o� between readabilityand sharpness of signal terms is maximized. The radial gaussian kernel proposed in [7℄ is suh a kernel. Noting thatthe proessed signal is non-stationary, many authors proposed to use loally adaptive tehniques. In this paper we dealwith two of them, namely adaptive di�usion [1℄, [2℄, [3℄ and distribution reassignment [4℄, [5℄. We propose to ombinethese two tehniques to obtain reassigned di�used distributions. These distributions meld the sharpness of reassignedones with the regularity of di�used representations.II. Time-frequeny distribution diffusionIn this �rst part we brie�y reall the priniples of adapted di�usion. For a more thorough treatment, the reader shallrefer to [1℄, [2℄, [3℄. We start by a presentation of homogeneous di�usion. We then sketh the link between di�useddi�usions and spetrograms. In a last part we review adaptive di�usion.A. Homogeneous di�usionDi�usion is the proess by whih matter is transported from areas of high onentration to areas of lower onentrationas a result of the movement of an ensemble of moleules inside a region. This is mathematially formulated by a basiequation referred to as Fik's law [8℄:
J = −C ∇U, (1)where J is the �ux of moleules, U their onentration, C the di�usion tensor, and ∇ the gradient operator. Thenegative sign indiates that the di�using mass �ows in the diretion of dereasing onentration. If C is a salar-valuedondutane funtion, whih implies that J and ∇U are ollinear, the di�usion proess is alled isotropi. Otherwise itis alled anisotropi. It is said that the di�usion proess is homogeneous if the di�usion tensor C is onstant over theregion of interest. Loation-dependent di�usion is alled non-homogeneous or inhomogeneous. The law of onservationof mass is expressed as:

∂U

∂τ
= −div(J) , (2)where τ is the di�usion time, and div the divergene operator. Combining this relationship with Fik's law produesthe law of di�usion, whih states:

∂U

∂τ
= −div(−C ∇U) . (3)



2In the ase where C is a positive onstant, the resulting isotropi and homogeneous proess (3) is often referred to asheat di�usion equation sine it desribes the evolution of temperature within a �nite homogeneous ontinuum with nointernal soures of heat. In this paper, this di�usion is said to be linear beause the tensor C does not vary with τ .Otherwise, it would be alled nonlinear1. Let us now restrit our disussion to the partial di�erential equations (PDE's)in two-plus-one dimension
{

U(v1, v2; τ = 0) = U0(v1, v2)
∂U
∂τ

= div(∇U) ,
(4)where U0 ∈ L1(IR2) denotes the initial spatial ondition. It is well-known that the solution to (4) is

U(v1, v2; τ) =

{

(G ∗ U0)(v1, v2) (τ > 0)
U0(v1, v2) (τ = 0),

(5)with ∗ the usual 2-D onvolution, and G(v1, v2; τ) = (4πτ)−1 exp(−[v2
1 + v2

2 ]/4τ) an isotropi Gaussian kernel whih isreferred to as Green's funtion of the PDE given above. This means that the solution U(v1, v2; τ) of the heat di�usionequation (4) at eah time instant τ an be simply obtained by onvolution of the initial spatial ondition U0(v1, v2)with Green's funtion G(v1, v2; τ).Among Cohen lass, the spetrogram is a widely used tool. As the square modulus of the short-time Fourier trans-form, it an also be written as a onvolution between the Wigner distribution of the signal and that of the analyzingwindow. Note that the Wigner distribution of a gaussian window is a 2D-gaussian kernel. Interpreting time-frequenyrepresentation as a heat distribution one an onsider its di�usion as follows:






Dx(t, f ; τ = 0) = Wx(t, f)

∂Dx(t,f ;τ)
∂τ

= divt,f(∇t,fDx(t, f ; τ)),
(6)where Wx is the representation to be proessed, whih plays the role of the initial state of the di�usion proess.The di�used representation Dx(t, f ; τ) denotes the energy distribution at the time instant τ . As we just stated, thefundamental solution of suh lassial heat di�usion is an isotropi gaussian. Therefore the partial derivative equation(6) has the following solution:

Dx(t, f ; τ)=
1

4πτ

∫∫

Wx(η, ν)e−
(t−η)2+(f−ν)2

4τ dηdν (7)Indeed the use of the heat di�usion on a Wigner distribution is equivalent to onvolving it with a gaussian kernel whosevariane inreases with the di�usion time τ . Note that the onvolution form of the solution ensures the preservation ofovariane with respet to time and frequeny shifts.B. Adaptive di�usionIn a time-frequeny distribution smoothing ontext, adaptive di�usion was introdued in [1℄. In this paper, authorspropose to loally tune the di�usion proess, allowing a loally adapted smoothing. Suh a sheme reads:






Dx(t, f ; τ = 0) = Wx(t, f)

∂Dx(t,f ;τ)
∂τ

= divt,f (cx(t, f)∇t,fDx(t, f ; τ)),
(8)where Wx is the to-be-smoothed distribution, Dx is the smoothed distribution up to time τ and cx is the funtionontrolling loally the amount of smoothing. This later is referred to as the ondutane funtion.In an analysis ontext, the aim is to remove ross terms while preserving the sharpness of signal terms. In [1℄,authors proposed to salar valued funtion for suh a goal, this di�usion is alled isotropi. This tehnique relies on thespetrogram, whih is approximately equal to zero over non-energeti areas where the interferene terms of the WD arelikely to be situated. Thus making the ondutane funtion a dereasing funtion of Sx suh as

cSx
(t, f)=

[

1+

(

SPx(t, f)

β

)α]−1

(α, β) ∈ IR∗

+× IR∗

+ (9)allows for the tuning of the di�usion rate over the time-frequeny domain, see [2℄, [3℄ for extensions. In a nutshell,di�usion methods start from a onentrated distribution with ross terms and seletively smooth them out with amaximum preservation of sharpness for signal terms.
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entropy(a) Reassigned spetrogram (b) Reassigned di�used distribution () Evolution of entropyFig. 1. Comparison between (a) the reassignment of a spetrogram and (b) the reassignment of a distribution proessed by adaptive di�usion(isotropi in that ase). Fig-() illustrates the evolution of the entropy, with α = 3, of the reassigned di�usion as a funtion of τ . Chosenstopping time is here τ∗
= 105. III. Time-frequeny distribution reassignmentAnother very popular method takles the problem from another perspetive. Reassignment method starts from aninterferene free distribution, like a spetrogram for example, and inreases its sharpness. This enables to obtain bothsharpness and readability as the starting distribution just laks resolution. The interferene-free distribution resultsfrom the low-pass �ltering of a Wigner distribution. This has two onsequenes: elimination of interferenes anddeloalization of signal-terms. Knowing the window used, reassignment reloalizes the later. Indeed for a spetrogram

Sx using a window h(t):
Sx(t, f ; h) =

∫∫

Wx(η, ν)Wh(η − t, ν − f)dηdν, (10)reassignment reads [4℄, [5℄:
Ŝx(t, f ; h) =

∫∫

S(η, ν; h)δ(t − t̂hx(η, ν), f − f̂h
x (η, ν))dηdν, (11)where t̂x and f̂h

x indiates the lous where the energy has to be moved to. They are given by
t̂hx(t, f) =

∫∫

ηWx(η, ν)
Wh(η − t, ν − f)

Sx(t, f ; h)
dηdν and f̂h

x (t, f) =

∫∫

νWx(η, ν)
Wh(η − t, ν − f)

Sx(t, f ; h)
dηdν.As all the members of the Cohen lass an be written in a onvolutive way, they all posses reassigned versions.One ould use the equivalene of homogeneous di�usion with gaussian spetrograms and smoothed pseudo Wignerdistributions to proposed reassigned homogenous di�used distributions. However this relies on the Green funtion ofthe di�usion whih is not available in the ase of adaptive di�usion. We therefore propose another tehnique.IV. Diffused distribution reassignmentReall that there is an equivalene between the distribution Dx, result from a di�usion up to time τ aording to:







Dx(t, f ; τ = 0) = Wx(t, f)

∂Dx(t,f ;τ)
∂τ

= divt,f (cx∇t,fDx(t, f ; τ)),
(12)with cx(t, f) a onstant funtion and the onvolution

Dx(t, f ; τ) =

∫∫

cxG(η, ν; τ)Wx(η − t, ν − f)dηdν. (13)The kernel G is the Green funtion of the aforementioned di�usion. In this ase, that kernel G is a 2D gaussian kernelof variane σ =
√

2τ .In the adaptive ase, we assume the Green funtion exists and we note it G(x,τ,t,f). Beause this is equivalent to useeither the onvolution with the Green funtion or the di�usion, we propose to determine the lous of the reassignment
1In the theory of partial di�erential equations, a di�usion proess is alled nonlinear if C is a funtion of U or its derivatives.



4points using:






tx(t, f ; τ = 0) = tWx(t, f)

∂tx(t,f ;τ)
∂τ

= divt,f (cx(t, f)∇t,f tx(t, f ; τ)),
and 





fx(t, f ; τ = 0) = fWx(t, f)

∂fx(t,f ;τ)
∂τ

= divt,f(cx(t, f)∇t,ffx(t, f ; τ)).
(14)Reassignment reads then:

D̂x(t, f ; τ) =

∫∫

Dx(η, ν; τ)δ

(

t − tx(η, ν; τ)

Dx(t, f ; τ)
, f − fx(η, ν; τ)

Dx(t, f ; τ)

)

dηdν. (15)Without onstraints on the di�usion time, Dx would onverge to a uniform distribution over the time-frequenydomain regardless of the analyzed signal. Hene, this reassigned di�usion proess is to be stopped when some riterionis ahieved. The Rényi entropy, de�ned as [9℄
H

D̂
(τ) = − 1

1 − α
log

∫∫

D̂α
x (t, f ; τ)dt df,is a natural andidate for measuring the onentration of TFRs2. While in previous studies, e.g. [3℄, [2℄, we usedthe entropy of the di�used distribution as a stopping riteria, we here propose to use the entropy of the reassigneddistribution, as it is the distribution we are interested in. While the �rst iterations of the di�usion are smoothing outinterferene terms, the later ones slowly regularize the signal terms until some point where even reassignment annotprodue a sharp distribution. This yield a minimum in the entropy urve that we use as a stopping point for the di�usionproess, see �g.-1 () for an illustration.As we an see on the �g.-1(a-b), both representations are interferene free and very onentrated. We note that usinga di�used distribution yield a more regular result ombining the good properties of both tehniques. This denotes asmaller entropy. Indeed note that the entropy of the �gured reassigned spetrogram is 9.4 whereas the entropy of thereassigned di�used distribution is 9.2. V. ConlusionWe have proposed an extension of the reassignment tehnique to takle the di�used distributions. While demonstratedon an isotropi adaptive time-frequeny distribution, it is easily extensible to inlude the reent developments of di�usionproessing (anisotropy and proessing of time-sale distributions). We then illustrated the gain over a reassignedspetrogram by exploiting the time of di�usion τ to obtain a regular, interferene-free and well loalized distribution.Referenes[1℄ P. Gonçalvès and E. Payot, �Adaptive di�usion equation for time-frequeny representations,� in Pro. IEEE Digital Signal ProessingWorkshop, 1998.[2℄ J. Gosme, C. Rihard, and P. Gonçalvès, �Adaptive di�usion as a versatile tool for time-frequeny and time-sale representationsproessing: a review,� IEEE Transations on Signal Proessing (in press), 2005.[3℄ J. Gosme, Méthodes de di�usion dans les plans temps-fréquene et temps-éhelle pour l'analyse de signaux non-stationnaires. PhDthesis, Université de Tehnologie de Troyes, 2004.[4℄ E. Chassande-Mottin, Méthodes de réalloation dans le plan temps-fréquene pour l'analyse et le traitement de signaux non stationnaires.PhD thesis, Université de Cergy-Pontoise, 1998.[5℄ F. Auger and P. Flandrin, �Improving the readability of time-frequeny and time-sale representations by the reassignment method,�IEEE Transations on Signal Proessing, vol. 43, pp. 1068�1089, 1995.[6℄ P. Flandrin, Time-frequeny/time-sale analysis. San Diego: Aademi Press, 1999.[7℄ R. G. Baraniuk and D. L. Jones, �Signal dependent time-frequeny representations: optimal kernel design,� IEEE Transations on SignalProessing, vol. 41, pp. 1589�1602, 1993.[8℄ J. Crank, The mathematis of di�usion. London: Oxford University Press, 1957.[9℄ R. G. Baraniuk, P. Flandrin, M. Jansen, and O. Mihel, �Measuring Time Frequeny Information Content Using the Renyi Entropies,�IEEE Transations on Information Theory, vol. 47, pp. 1391�1409, 2001.[10℄ M. Ferraro, G. Boignone, and T. Caelli, �On the representation of image strutures via sale spae entropy onditions,� IEEE Trans-ations on Pattern Analysis and Mahine Intelligene, vol. 21, no. 11, pp. 1199�1203, 1999.[11℄ J. Sporring and J. Weikert, �Information measures in sale-spaes,� IEEE Transations on Information Theory, vol. 45, no. 3, pp. 1051�1058, 1999.

2We suggest the reader to refer to [9℄ for detailed study of the Rényi's entropies as time-frequeny information measures. We also invitehim to onsult [10℄, [11℄ for full details on the Rényi's entropies as a means of extrating information from images during di�usion.


