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Beyond Standard Classes of Generalized Joint
Signal Representations of Arbitrary Variables:

Mercer Kernel-Based Representations
Julien Gosme and Cédric Richard, Member, IEEE

Abstract—In this letter, we present a new approach for extending
the scope of standard covariant signal representations by means
of implicit nonlinear mappings applied to signals via Mercer ker-
nels. One of the advantages of using such kernels is that we do not
need to exhibit the underlying nonlinear maps to be able to com-
pute signal representations. This gives increased computational ef-
ficiency. Finally, conditions on kernels to preserve covariance prop-
erties are finally discussed.

Index Terms—Nonlinear equations, signal representations, time-
frequency analysis.

I. INTRODUCTION

RECENT research in nonstationary signal processing has
introduced the concept of displacement operators and

characterized the classes of all linear and bilinear represen-
tations covariant to a given displacement operator [1], [2].
Cohen [3], [4], Baraniuk [5], [6], and Sayeed and Jones [7]
have proposed alternative approaches to the fore-mentioned
covariance theory proposed by Hlawatsch et al., see also [5],
[8]–[10]. All these advances facilitate nonstationary signal
processing which, compared to standard linear and bilinear
packages of time-frequency and time-scale representations, can
be well adapted to larger classes of phenomena. In this letter,
we present a new approach to extend the scope of covariant
signal representations of arbitrary variables by means of im-
plicit nonlinear mappings applied to signals. One of the benefits
of this generalization is its formalism based on Mercer kernels
[11]. In the spirit of the kernel trick that has fully contributed
to the success of kernel-based leaning methods such as SVM,
see e.g., [12], this strategy gives a straightforward calculation
of representations.

In the first part, we present some key points of the approach
proposed by Hlawatsch et al. to design linear and bilinear co-
variant representations. In the second part, we propose to trans-
form signals by means of nonlinear mappings in order to get
new generalized joint signal representations of arbitrary vari-
ables. After a brief reminder of the interest of using some of the
properties of reproducing kernel Hilbert spaces, we show how
to implicitly apply nonlinear mappings to signals in an elegant
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and computationally efficient way. Next, we express generalized
joint signal representations in a form where reproducing kernels
appear, yielding a wide choice of nonlinearities. A noteworthy
property of this formulation is that the computational cost is in-
dependent of the underlying nonlinear mapping. Finally, condi-
tions on kernels to preserve the covariance properties of gener-
alized joint signal representations are discussed.

II. LINEAR AND BILINEAR COVARIANT REPRESENTATIONS

In recent years, general approaches have been proposed
for designing joint representations in signal analysis that are
covariant with respect to the action of specific operators,
e.g., time shift , frequency shift and scaling de-
fined as , and

, respectively. Joint signal represen-
tations are based on pairs of operators, e.g., time and frequency
shifts and time shift and dilation . A unified co-
variance theory of time-frequency analysis has been proposed in
[1], [2]. It is based on operator pairs of the form
(possibly up to a phase factor), called displacement operators.
The authors call affine displacement operator (respectively, dual
displacement operator) the displacement operator generalizing
the time shift/scaling pair of operators (respectively, the
time-frequency shift pair ) by the commutation relation
they satisfy. With , , and , this approach is equivalent to
the method proposed in [5], [8] and discussed in [10], which uses
an unitary warping applied to time-frequency and time-scale op-
erator pairs. These operators differ from the hermitian operators
used in [3], [4]. It should be noted that there are connections with
[1], [2], as explained in [9].

In [1] and [2], covariance with respect to a displacement op-
erator in joint signal representations is defined as follows.

Definition 1: Let be a family of displacement
operators for a group on a Hilbert space . A linear

-representation is called covariant to if it satisfies
the following relation for all :

(1)

where is a continuous function called cocycle.
A bilinear -representation is called covariant to if
the following relation is verified for all , :

(2)

The above definition means that a covariant representation
reflects the action of the displacement operator on the analyzed
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signal. The cocycle in (1) results from the composition law
. It corresponds to a phase factor

for dual operators. It is equal to 1 for the affine operators. See,
e.g., [1], [2] and references therein for more details. Let us now
characterize joint covariant linear and bilinear representations
in signal analysis with the following theorems [1], [2].

Theorem 1: All linear representations covariant to a dis-
placement operator on a Hilbert space are given by

(3)

for all , where is an arbitrary function in .
Theorem 2: All bilinear representations covariant to a dis-

placement operator on a Hilbert space are given by the
following expression:

(4)

for all , where is the adjoint operator of and
denotes the kernel of , with

an arbitrary linear operator on .

III. REPRODUCING KERNEL HILBERT SPACES AND

MERCER’S THEOREM

Aconvenientwaytomodelsimilaritybetweentheelementsofa
space is through an inner product function which has the
useful property that its value is maximal whenever its arguments
are equal. Definitions (3) and (4) can then be viewed as similarity
measures between and and between and ,
respectively. A possible way to extend the scope of linear and
bilinear covariant distributions is to apply a nonlinear mapping
function to the arguments of the inner product
function . We shall now explore this basic idea, taking the
theory of reproducing kernels as a starting point [11], [13] to pro-
poseanewformalismforlinearandbilineardistributionsandtheir
nonlinear extensions. One of the very interesting properties about
using kernels is that we do not need to exhibit the underlying non-
linear mapping in order to be able to design and compute distri-
butions. The rest of this section reviews the main definitions and
the properties of reproducing kernel Hilbert spaces.

Let be a reproducing kernel Hilbert space consisting of
mappings from a signal space to and the
inner product defined on . As the Riesz representation theorem
states, there is a unique function of for which

(5)

for every fixed . A proof of this may be found in [13].
Here is the representer of evaluation at and is the
reproducing kernel associated with . In particular,

spans and the inner product has just to be
defined on it. Denoting the function by , (5) implies

(6)

for all . The kernel then evaluates the inner product
of all the pairs of elements of mapped to , without any ex-
plicit knowledge of either or . The key idea of the kernel
technique used in this letter is to choose a kernel rather than
a mapping for designing joint representations in signal anal-
ysis. Of course, not every function can serve as a kernel. Ac-
cording to the Hilbert-Schmidt Theory [14], any continuous her-
mitian-symmetric function can be expanded as follows:

(7)

where and are eigenvalues and eigenfunctions given by

(8)

A sufficient condition to ensure that is an inner product in a
Hilbert space is that all the ’s in (7) are positive. According
to Mercer’s theorem [11], this condition is achieved if and only
if

(9)

for all fulfilling . From (7), it is straight-
forward to construct a map into a potentially infinite-di-
mensional space which satisfies (6). For instance, we may use

. Examples of kernel
satisfying Mercer’s theorem are the complete polynomial
kernel and the th degree polyno-
mial kernel , with . Radial basis
functions are also Mercer kernels that have received significant
attention in the statistical and learning machine communities
[12]. The two main ones are the radially gaussian kernel given
by and the Laplace kernel
defined as , with the kernel
bandwidth. The above-mentioned examples are instances of the
two most widely used families of kernels: projective kernels
involving the inner product , and radial kernels de-
pending on the norm . Other examples may be found
in Table I, where is a normalization constant and ,

, are parameters to be set. See also, e.g., [15],
[16]. Moreover, there exist simple rules for designing valid
kernels on the basis of given Mercer kernels and , e.g.,

and are also Mercer
kernels [16].

IV. KERNELIZED REPRESENTATIONS

We have suggested two equivalent ways of extending the
scope of linear and bilinear signal representations.

1) Explicitly choose a mapping and apply it to the argu-
ments of the inner product function in (3) and (4).

1) Select a Mercer kernel which implicitly corresponds to
a fixed mapping .

Though mathematically equivalent, kernels are often much
easier to define and avoid computational problems through the
implicitmapping.Therefore,weproposethefollowingdefinition.
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TABLE I
SOME EXAMPLES OF TYPICAL MERCER KERNELS

Definition 2: Let be a family of displacement
operators on a Hilbert space , where is a group. Let
be any Mercer kernel. Distributions given by

(10)

with an arbitrary function of , are called kernelized linear
distributions.

In the following, we shall consider only projective kernels and
radial kernels. In both cases, it is worth noting that the adjoint

operator with respect to the kernel , i.e., the operator such

that , corresponds to the adjoint

related to the inner product . In fact, it can be written

(11)

in the case of projective kernels. For radial kernels, it suffices
to note that and
apply (11). At this point, one can ask whether kernelized linear
distributions are covariant to displacement operators.

We know that . Accordingly,
every kernelized linear distribution derived from a family of dis-
placement operators is covariant if it satisfies the following suf-
ficient condition:

(12)

This condition ensures that ,
which means that the representation of the displaced signal

equals the displaced representation of the original signal
. If we take a closer look at (12), substituting and

, where denotes the identity element of the group

, we obtain: . This result implies that the
cocycle of the displacement operator equals 1. Therefore
displacement operators are constrained by the above condition
to be affine. We can formulate the following proposition.

Proposition 1: Every kernelized linear distribution derived
from a family of affine operators is covariant.

As an example, consider the following displacement operator
with and the kernelized linear distri-

butions

(13)

(14)

These distributions involve a radial kernel and a projective

kernel, respectively, which implies that in both
cases. In addition, is an affine displacement operator [1],

[2]. Therefore, we can conclude from Proposition 1 that the
above distributions are covariant, meaning that

(15)

Let us now discuss the case of dual displacement operators,
which differ from affine displacement operators by the cocycle

. A natural approach to obtain a similar result as in Propo-
sition 1 might be to modify (12) as follows:

(16)

The above relation is compatible with the composition law of
displacement operators. However the condition (16) leads to

, showing that

it cannot ensure covariance of without an additional
property that would make it possible to remove the cocycle pa-
rameter out of . For example, the covariance
property is valid up to the phase factor for the
following kernelized linear distributions:

(17)

where denotes the time-frequency shift operator.
Its cocycle is . For

, it is worth noting that corresponds to linear distri-
butions defined in (3). Remember that they satisfy the covari-
ance property (1).

Next, we consider kernelized bilinear distributions in a sim-
ilar way as we did for linear ones.

Definition 3: Let be a family of displacement
operators on a Hilbert space , where is a group. Let
be any Mercer kernel. Distributions given by

(18)

where is an arbitrary linear operator on are called kernel-
ized bilinear distributions.

We then study the covariance of kernelized bilinear distri-
butions derived from projective and radial kernels. Using the
unitarity of , as well as the composition law

and , one can verify that

Consequently, we can put forward the following proposition.
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Fig. 1. Kernelized smoothed pseudo-Wigner distributions derived from (a)–(b) a sigmoid Mercer kernel (� = 15, � = 0:15, � = 1) and (c)–(d) a complete
polynomial Mercer kernel (q = 5). These figures illustrate covariance of kernelized bilinear distributions with respect to the action of the pairs of operators (a)–(b)
F T and (c)–(d) T C on analyzed signals.

Proposition 2: Let be a family of displacement
operators on a Hilbert space . Kernelized bilinear distributions
based on radial or projective kernels are covariant to for all

(19)

Compared to the covariance property of kernelized linear dis-
tributions, we note that the above proposition involves both dual
and affine displacement operators. As an example, for

and , it means that

(20)

(21)

Fig. 1 illustrates the covariance property of kernelized bilinear
distributions.

V. CONCLUSION AND FUTURE DIRECTIONS

We have proposed a new approach to broaden the range of
tools of joint signal representations of arbitrary variables. This
generalization is significant because it not only extends the
scope of traditional time-frequency and time-scale represen-
tations, but also presents a new formalism based on Mercer
kernels which allows a straightforward calculation of represen-
tations to be made. We have also focused on the property of
covariance with respect to the practically important transfor-
mations of time shifts, frequency shifts and scale changes. In
particular, we have shown that kernelized bilinear representa-
tions derived from two essential classes of kernels satisfy the
covariance property with respect to the action of displacement
operators.

The present letter is a first study of kernelized joint signal
representations, and further extensions of this concept are pos-
sible. Future work should be focused on developing efficient
numerical schemes, studying the properties of representations
inherited from kernels or bringing together our approach and
existing concepts such as polynomial and higher order repre-
sentations [17]–[19]. In addition, possible applications include
extensions of statistical methods developed for arbitrary joint
signal representations to handle a wider variety of problems in
nonstationary statistical signal processing [20].
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