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Adaptive Diffusion as a Versatile Tool for
Time-Frequency and Time-Scale Representations

Processing: A Review
Julien Gosme, Cédric Richard, Member, IEEE, and Paulo Gonçalvès

Abstract—Inspired by the work on image processing by Perona
and Malik, diffusion-based models were first investigated by
Gonçalvès and Payot to improve the readability of Cohen class
time-frequency representations. They rely on signal-dependent
partial differential equations that yield adaptive smoothed repre-
sentations with sharpened time-frequency components. Here, we
demonstrate the versatility and utility of this family of methods,
and we propose new adaptive diffusion processes to locally control
both the orientation and the strength of smoothing. Our approach
is an improvement on previous works as it provides a unified
framework not only for the Cohen class but for the affine class
as well. The latter is of particular interest because, except for
some special techniques such as the reassignment method, no
signal-dependent smoothing technique exists to process bilinear
time-scale distributions, nor even a transposition of the adaptive
optimal-kernel method proposed by Baraniuk and Jones.

Index Terms—Diffusion equations, interference terms,
signal-dependent representations, time-frequency, time-scale.

I. INTRODUCTION

B ILINEAR time-frequency and time-scale representations
(TFRs and TSRs) provide a powerful tool for analyzing

nonstationary signals. In particular, the Cohen class and the
affine class offer a wide choice of distributions: In the case of
the former, these are covariant with respect to time-frequency
shifts and with the latter to time shifts and scale changes. All
the elements of these two classes can be interpreted as gener-
alized filtered versions of the Wigner distribution (WD) with
two-dimensional (2-D) kernels. Although this central distri-
bution has many theoretical properties, its use with real-world
signals is unfortunately made difficult by the presence of in-
terference terms that considerably limit its interpretability [1],
[2]. In the area of signal analysis, one aims to preserve most
of the attractive properties of the WD and also improve its
readability. For example, the spectrogram and the scalogram
are classical quasi-interference-free representations [3] of the
Cohen and the affine classes, respectively, but both offer poor
resolution. All this has prompted the development of specific
task-oriented TFRs [4]–[7], as well as signal-dependent TFRs
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[8]–[10]. Among the most notorious is the adaptive distribution
by Baraniuk and Jones, whose radially Gaussian kernel is
obtained by solving an energy-maximization problem subject
to structural constraints. Despite its high efficiency on piece-
wise linear time-frequency components, however, the resulting
kernel is optimum with respect to the entire signal [8] or to
short-time segments of the signal [9]. Therefore, it does not
locally adapt over time and frequency to account for dynamic
changes in the signal to be analyzed. Moreover, this adaptive
method is not applicable to TSRs of the affine class because
of the scale-dependent convolution involved in their definition.
In the recent past, a promising smoothing technique relying
on a signal-dependent diffusion process was proposed [11]. It
dynamically tailors the kernel shape over time and frequency to
match the local representation characteristics. Minimization of
an entropy function determines the tradeoff between excessive
broadening and interference term suppression.

In this paper, we take an in-depth look at diffusion pro-
cesses acting on bilinear TFRs and TSRs to demonstrate their
versatility and utility for obtaining widely different signal
representations. After a brief presentation of time-frequency
processing and diffusion-based models, we show the link
between the WD processed with the heat equation and the
spectrogram computed with a Gaussian window; see [11]. We
investigate several forms of variable-conductance diffusion
processes to locally adjust diffusion strength and then perform
an adaptive smoothing technique that matches the local TFR
characteristics [11], [12]. Next, we propose a general diffusion
scheme for tackling the problem of adaptive smoothing of TSRs
of the affine class, and we show that resulting representations
are covariant with respect to time shifts and scale changes [13].
Finally, we suggest the local control of the orientation and
strength of smoothing via diffusion tensors. This refinement is
applied to the TFRs of the Cohen class and the TSRs of the
affine class.

II. TIME-FREQUENCY AND TIME-SCALE REPRESENTATIONS

Loosely speaking, the reason for time-frequency analysis is to
give a mathematical core to the intuitive concept of time-varying
Fourier spectrum for nonstationary signals. Over the years, sub-
stantial theoretical work has been carried out in this direction
and has yielded many different classes of solutions: parametric
or otherwise. Most of the parametric distributions of current in-
terest belong to either the Cohen class [5] or the affine class
[14]. In both cases, there exists a kernel formalism that allows
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us to interpret each element of these classes as the convolution
product1 of a central distribution (the WD) with a parameter-
izing 2-D kernel. In addition, these distributions suffer from a
limitation inherent in the convolution product: The time and fre-
quency resolutions are fixed, regardless of the local geometry of
the signal signature. In practice, nevertheless, TFRs have proven
to be useful in identifying nonstationarities in signals produced
by a host of real-world applications such as speech analysis, nar-
rowband radar, or machine monitoring.

A. Bilinear (Quadratic) Signal Distributions

The most general form of bilinear (quadratic) signal distribu-
tion is given by2

(1)

where is the finite energy signal to be analyzed and an arbi-
trary parameterizing four-dimensional (4-D) kernel. The Cohen
and the affine classes are two subsets of this large family. Both
arise from specifying a structure of in (1) so that the resulting
distribution satisfies required covariance properties.
The Cohen class contains all the distributions verifying the
following commutativity diagram [5]:

(2)
i.e., distributions that are covariant with respect to the ap-
plication of the time-frequency shifts operator to the signal.
These distributions can be written in the following parametric
form [2], [5]:

(3)

where denotes the Wigner distribution

(4)

and stands for a simplified 2-D structure of the more general
kernel in (1). Similarly, the affine class contains all the distri-
butions that are covariant with respect to the affine operator

of time shifts and scale changes [14], [15]

(5)

These distributions can be expressed as an affine convolution of
the Wigner distribution with a kernel as follows [16]:

(6)

In many cases, one can use the equivalence, where
is a constant to relate frequency and scale [14].

1For the affine class of TFRs, the kernel formalism involves a frequency-de-
pendent convolution product.

2All integrals run from �1 to +1, unless otherwise noted.

B. Reduction of Interferences

The WD plays a key role in both the Cohen and the affine
classes since it satisfies several fundamental properties. In
particular, it offers optimal joint time-frequency resolutions
that allow us to perfectly concentrate the signal components in
the time-frequency domain [2]. However, due to its quadratic
nature, the WD is affected by the presence of troublesome
oscillating cross-terms, which are referred to as interference
terms, coexisting with the signal auto terms and considerably
limiting their expertise. To overcome this drawback, a number
of reduced-interference distributions that exploit the convolu-
tive forms in (3) and (6) have been proposed within both classes.
Certainly, the most simple quasi-interference-free distribution
of the Cohen class is the spectrogram [3]. Formally defined as
the squared magnitude of a short-time Fourier transform with
sliding time window

(7)

the spectrogram can be expressed in the formalism (3) with the
smoothing kernel . While this smoothing
operation removes the interference terms in , it also spreads
out the signal components. Refining this approach, the reduction
of interference can be posed as a kernel design problem sub-
ject to the constraint of preserving some theoretical and/or prac-
tical properties of or . The optimal radi-
ally Gaussian kernel approach [8], [9] is such a tool. Although
it performs extremely well for piecewise linear chirp signals, it
is not always appropriate to process distributions with hetero-
geneous time-frequency patterns. Independently of the kernel
shape, every distribution of the Cohen and the affine classes cor-
responds to a peculiar choice of that remains unchanged in the
time-frequency domain. This means that the same processing is
simultaneously applied to interference terms and signal compo-
nents, removing the former ones and spreading out the latter.

Alternative solutions to the Cohen class and the affine class
exist. Some of them consist of a nonuniform post-processing of
representations guided by local signal characteristics. A typical
example is the reassignment method, which is a point-wise
transformation of regular TFRs [17]. It consists of moving
each coefficient from its current location ,
e.g., the geometric centroid of the kernel in the case of
the spectrogram, to another location that depends on the
local underlying geometry of the WD. This results in squeezed
representations with sharp concentration on locally linear
frequency modulations and no interference terms. However,
an important proviso in using this technique is a reasonably
high signal-to-noise ratio, as the coefficients may
be locally reassigned onto random noise patterns instead of the
signal components. Note that the reassignment method can also
be applied to scalogram, yielding affine covariant distributions.
Qian et al. have introduced another kind of approach that
involves an explicit and controllable tradeoff between linear
and bilinear distributions [18], [19]. This hybrid technique
consists of expanding the signal to be analyzed in terms of a
linear combination of elementary atoms, using a linear Gabor
transform, for instance. Interference terms are then tapered as
the distance between interacting atoms increases. It is possible
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to locally control the degree of nonlinearity of this hybrid
TFR and tune it for maximum concentration with minimum
interference terms. This technique has also been transposed to
the affine class in [20], which is a property shared by relatively
few other methods. Finally, another group of methods that
have been used with success involves the use of a local signal
dependency in the kernel . Although, strictly speaking, the
resulting distributions

(8)

(9)

are not members of the class of bilinear (quadratic) signal distri-
butions, it is easy to check that and remain covariant with
respect to time shifts, frequency shifts, or scale changes as long
as is. Within this extended acceptation of both the Cohen
class and the affine class, we now investigate a signal-depen-
dent smoothing of the WD that adapts over time and frequency.
It is based on diffusion processes such as those set out below.

III. DIFFUSION: BRIEF INTRODUCTION

AND THE MAIN DEFINITIONS

Diffusion is the process by which matter is transported from
areas of high concentration to areas of lower concentration as
a result of the movement of an ensemble of molecules inside a
region. This is mathematically formulated by a basic equation
referred to as Fick’s law [21]:

(10)

where is the flux of molecules, their concentration,
the diffusion tensor, and the gradient operator. The negative
sign indicates that the diffusing mass flows in the direction of
decreasing concentration. If is a scalar-valued conductance
function, which implies that and are collinear, the
diffusion process is called isotropic. Otherwise, it is called
anisotropic. It is said that the diffusion process is homogeneous
if the diffusion tensor is constant over the region of interest.
Location-dependent diffusion is called nonhomogeneous or
inhomogeneous. The law of conservation of mass is expressed
as

div (11)

where is the diffusion time, and div the divergence operator.
Combining this relationship with Fick’s law produces the law
of diffusion, which states

div (12)

In the case where is a positive constant, the resulting isotropic
and homogeneous process (12) is often referred to as heat dif-
fusion equation since it describes the evolution of temperature
within a finite homogeneous continuum with no internal sources
of heat. In this paper, this diffusion is said to be linear because

the tensor does not vary with . Otherwise, it would be called
nonlinear.3 Let us now restrict our discussion to the partial dif-
ferential equations (PDEs) in the two-plus-one dimension

div
(13)

where denotes the initial spatial condition. It is
well known that the solution to (13) is

(14)

where is the usual 2-D convolution, and
an isotropic Gaussian kernel,

which is referred to as Green’s function of the PDE given above.
This means that the solution of the heat diffusion
equation (13) at each time instant can be simply obtained
by convolution of the initial spatial condition with
Green’s function . This result led Koenderink to use
the basic PDE framework (13) for image processing, bringing
a new insight into image restauration techniques viewed as
homogeneous diffusion processes [22]. Note that earlier work
was done by Iijima and published in Japanese [23], as pointed
out in [24]. Thereafter, Perona and Malik proposed a nonlinear
inhomogeneous generalization of this approach4 based on a
real-valued conductance function of spatial coordinates

and time [25], [26]:

div (15)

They chose to make the conductance function a decreasing func-
tion of the gradient magnitude in order to inhibit the diffusion
process in areas of high contrast whereas areas of low contrast
undergo faster diffusion. Systems such as (15) are intended to
smooth out noise in images while sharp edges and contours
are preserved. Significant advancements have been made since
then, e.g., with diffusion processes acting differently along the
gradient direction and the normal direction to . This
last principle has been successfully applied by authors such as
Weickert [29] and Alvarez et al. [30]. It has also been used by
Rudin et al. [31] in the form of a backward diffusion along the
gradient direction to sharpen edges. More recently, Gilboa et al.
[32] and Smolka [33] have proposed forward-and-backward dif-
fusion processes, where different regions of the image are either
forward or backward diffused, according to the geometry within
a neighborhood.

In the light of these considerations, we will now investigate
new signal-dependent smoothing techniques of bilinear TFRs
and TSRs that adapt over time, frequency, and scale to remove
interference terms and noise while emphasizing signal compo-
nents. Special efforts will be made to preserve the covariance
properties of distributions with respect to time shifts, frequency
shifts, or scale changes.

3In the theory of partial differential equations, a diffusion process is called
nonlinear if D is a function of U or its derivatives.

4In [25]–[27], this diffusion process is referred to as anisotropic. However,
according to the convention given in [28], this scheme is isotropic since its flux
J defined in (10) is collinear to rU .
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IV. ISOTROPIC DIFFUSION OF TFRS AND TSRS

Distributions in the Cohen class involves convolution of the
WD with a 2-D kernel . This interpretation has led many au-
thors to investigate design aspects of for reducing noise and
interference terms in TFRs. Unfortunately, reduced interference
distributions with fixed kernel necessarily spread out and delo-
calize signal components as well. In order to overcome this in-
compatibility, Gonçalvès and Payot first revisited standard 2-D
smoothing related to the Cohen class in terms of diffusion pro-
cesses of the form (13) and (15) [11]. Here, we start by briefly
sketching the different steps of this approach, and we check
that resulting distributions are covariant with respect to time-fre-
quency shifts. Next, we extend this framework for tackling the
problem of adaptive smoothing of TSRs of the affine class.

A. Isotropic Diffusion in the Cohen Class

The Gaussian-windowed spectrogram (7) with variance
illustrates the connection between smoothed TFRs and PDEs.
Indeed, its kernel is the Gaussian func-
tion . It corresponds to
Green’s function of
the heat equation

div
(16)

when if, as the isotropy of implies,
. At this instant of diffusion, the spectrogram

mentioned above is then the solution of (16). In a more general
way, is a member of the Cohen class for all positive

since it can be expressed as the 2-D convolution of
with .

Following the lines of [25]–[27] in an image processing con-
text, a possible refinement of (16) consists of introducing in-
homogeneity into the heat equation to perform time- and fre-
quency-dependent smoothing [11]:

div
(17)

where is a conductance function depending both on the
analyzed signal and time-frequency location . In their
primary work, Perona and Malik chose to use a decreasing con-
ductance function of the gradient magnitude, as mentioned in
Section III. However, this solution is not adequate in a time-fre-
quency context since the largest variations of the WD coincide
with oscillating interference terms we want to remove. The con-
ductance function can be chosen in many different ways, de-
pending on the information we want to emphasize in TFRs. Sev-
eral solutions have been proposed in [11] and [12] to improve
the readability of the WD. They involve an auxiliary TFR of the
Cohen class, which is denoted by , in order to combine the
localization properties of the WD with some desired character-
istics of . For instance, Gonçalvès and Payot have suggested
using

(18)

where equals 1 if its argument is negative and 0 oth-
erwise. This diffusion function is intended to smooth out inter-
ference terms, which are mostly located in the neighborhood of

Fig. 1. Conductance function (19) with � = 4 and � = 0:3.

time-frequency areas where , due to their oscil-
lating nature. Note that (18) can be made to be dependent on the
diffusion time by using the evolving distribution
instead of . Such a feedback leads to nonlinear diffu-
sion filters. Another intuitive diffusion-based approach for ob-
taining interference-free distributions relies on the spectrogram.
Although this distribution spreads out signal components in the
time-frequency domain, it is approximately equal to zero over
nonenergetic areas, where the interference terms of the WD are
likely to be situated. Thus, as illustrated in Fig. 1, making the
conductance function a decreasing function of such as

(19)
allows for the tuning of the diffusion rate over the time-fre-
quency domain. As a last example, the conductance function

(20)
assumes that signal components are more structured than in-
terference terms. Hence, it inhibits the diffusion process in the
neighborhood of structured signal components, whereas thin
components undergo faster diffusion. Fig. 2 illustrates the diffu-
sion process (17) associated with the spectrogram-based diffu-
sion function (19). Compared to the WD, only the signal com-
ponents are left unchanged, whereas the interference terms are
progressively smoothed out. As shown in Fig. 3, this smoothing
process still performs fairly well in a noisy environment. Be-
cause the WD maps a white noise to a 2-D random field in
the time-frequency domain, positive and negative coefficients
are locally balanced and partly cancelled out by the diffusion
process. The robustness of the spectrogram with respect to noise
also explains this interesting result.

We will now prove that , under mild conditions
on the initial distribution and the conductance function, is
covariant with respect to time-frequency shifts for all positive

. Let us first rewrite the diffusion process (17) in the form
, where is the operator
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Fig. 2. Adaptive diffusion process with spectrogram-based conductance function applied to the 256-by-256 WD of a 256-sample four-component signal. (a) WD.
(b) Diffusion until time instant � . (c) Diffusion until the optimum stopping time instant � . (d) Evolution of the entropy with contributions of signal components
and interference terms. Note that these two contributions are not additive because of the superimposition of the TF supports of interference terms and signal
components and the nonlinearity of entropy.

describing the evolution of . Let us also define the
translation operator , which, applied to any distribution

, gives . The
simple change of variables and in
(17) allows us to show that

(21)

meaning that diffusing a shifted TFR is the same as shifting
the diffused TFR. This property is referred to as transla-
tion invariance in [28]. On the one hand, we verify that

; on
the other hand, we see that

if the initial distribution
is covariant with respect to time-frequency shifts, and

if the conductance
function also verifies this covariance property, i.e.,

. Under these two conditions,
we can conclude with (21) that

(22)

which means that is covariant with respect to time-
frequency shifts, for all positive . In addition, note that (17)
conserves energy, i.e., , since
(17) is a particular case of (12), which follows directly from the
law of conservation of mass (11).

Let us now present a discrete framework for the diffusion
process (17). We suppose that TFRs are sampled on a finite grid

, , where and are the
sampling period in time and frequency [11], [25], [26]. Using a
simple first-order Euler approximation gives the following ap-
proximate discrete evolution equation:

(23)

where refers to the four neighboring points of
, and . In (23),

denotes the average value of the conductance function along
the direction , e.g., for the upper neighbor

(24)

and is the first-order derivative of
along the direction , e.g., for the upper neighbor

(25)

In the remainder of this paper, we use either straightforward
adaptations of this numerical scheme or those proposed in [34]
and [35].

Without a constraint on the diffusion time, would con-
verge to a uniform distribution over the time-frequency domain,
regardless of the analyzed signal. Hence, the diffusion process
is to be stopped when some criterion is achieved. The Shannon
entropy, which is defined as [36]

(26)

is a natural candidate for measuring the complexity of TFRs.5

Indeed, the TFRs of signals consisting of small numbers of com-
ponents would lead to small entropy values, whereas the TFRs
of information-rich signals would lead to large ones. A simple
way to justify the above stopping criterion is to consider an ex-
ample, where the overall integrals can be decomposed into two
distinct region integrals: the first one over the domain of inter-
ference terms and the second one over the domain of signal com-
ponents. The first integral tends to zero as the interference terms
are smoothed out, whereas the second one increases at a slower
rate due to the action of the conductance function. When these
antagonistic effects balance one another, the Shannon entropy
reaches a minimum that causes the diffusion process to stop.
This behavior is illustrated in Figs. 2(d) and 3(f), where
rapidly decreases toward a minimum and then slowly increases
beyond this optimum stopping time . In an image processing
context, note that it was shown that the Shannon entropy mono-
tonically increases with respect to the diffusion time for most
commonly used diffusion processes [28], [37], [38]. This prop-
erty is based on the convexity of the function , in
the definition of the Shannon entropy. It does not hold for (26)
when dealing with nonpositive distributions, as in the case of
TFRs affected by the presence of interference terms. As a final
remark, it should be noted that we could also consider Rényi’s
entropies instead of the Shannon entropy, as suggested in [36].

5We suggest referring to [36] for detailed study of the Rényi’s entropies as
time-frequency information measures. We also invite him to consult [37] and
[38] for full details on the Rényi’s entropies as a means of extracting information
from images during diffusion.
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Fig. 3. Comparison of the adaptive diffusion process with well-known TFRs. (a) WD. (b) Spectrogram. (c) Spectrogram modified by the reassignment method.
(d) TFR with adapted radially Gaussian kernel. (e) Diffusion until the optimum stopping time � using the spectrogram-based conductance function. (f) Evolution
of the entropy. These 256-by-256 TFRs are those of a 256-sample signal embedded in noise, which consists of two frequency-modulated waves with linear and
sinusoidal modulations.

This would lead to different TFRs optimizing other criteria re-
lated to the compromise “resolution versus interference terms
removal”. Throughout the remainder of this paper, we will re-
strict ourselves to the stopping criterion (26).

In this section, we have investigated several forms of vari-
able-conductance diffusion processes in order to locally adjust
diffusion strength and then perform adaptive smoothing that
matches local characteristics of TFRs. We will now extend this
approach to tackle the problem of adaptive smoothing of TSR’s
of the affine class.

B. Isotropic Diffusion in the Affine Class

Every bilinear TSR in the affine class is characterized by an
affine convolution of the WD, as can be seen in (6) (see also
Fig. 4). Just like the spectrogram within the Cohen class, the
scalogram plays a key role within the affine class. It is defined
as the square magnitude of the continuous wavelet transform

(27)

where is the analyzing scale, and is an admissible
wavelet, i.e., [39]. By analogy with the connec-
tion (16) established between the heat equation and smoothed

TFRs of the Cohen class, we propose to adapt the diffusion
strength to the scale as follows [13]:

div
(28)

where is the TSR to be processed, e.g., the WD
in the present case. Note that (28) differs from (16) by the pres-
ence of the factor in the divergence term. As can be shown by
direct calculations based on a change of variables in (28), this
modification is crucial in obtaining the following property:6

(29)

which plays the same role as (21) in the case of distributions of
the Cohen class modified by the diffusion process (17). Here,

is the operator defined by
, and is the diffusion operator associated with

(28). We can also check that
. In addition, if is co-

variant with respect to the application of the affine operator ,
which is defined in (5), we have

6Replace variables t and a in (28) by (t�t )=a and a=a , respectively, and
calculate the divergence term to get (29).
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Fig. 4. (a) Affine isotropic diffusion applied to (b) the WD of a 256-sample four-component signal. (c) Gaussian-windowed scalogram. These 256-by-256
distributions are represented in a time-frequency form to clearly illustrate the effect of affine smoothing.

Fig. 5. Affine diffusion applied to two 256-sample Altes chirps. (a) WD. (b) Isotropic diffusion. (c) Adaptive isotropic diffusion with scalogram-based conductance
function.

. Combining these two results via (29), we then con-
clude that

(30)

which means that is covariant with respect to time
shifts and scale changes if is. In addition,

is a bilinear distribution because of the linearity of
the differential operators in (28).7 We therefore conclude that

is a member of the affine class. Then, according to
the canonical definition (6) of this class, some kernel
associated with may well be found. However, its
identification is a nontrivial issue because it deals with an in-
homogeneous diffusion scheme. To the best of our knowledge,
this problem remains an open question. Finally, let us remark
that (28) is not the only diffusion process that produces TSRs
of the affine class. For instance, it shares this property with

div (31)

div (32)

Throughout the remainder of this section, we will restrict our-
selves to the diffusion process (28), which conserves energy
since it has the same form as (12). To tackle the problem of
adaptive smoothing of TSRs, we now propose to extend (28)
using the following isotropic inhomogeneous scheme:

div
(33)

7Affine diffusion processes have been proposed in an image processing con-
text [30]. Nevertheless, they do not preserve the bilinearity.

A similar proof to those given before shows that the covariance
of with respect to time shifts and scale changes allows
this diffusion process to generate affine-covariant distributions

for all positive . As already pointed out in the pre-
vious subsection, many strategies may be developed to design
specific conductance functions. For instance, following the in-
tuition that has led to (19), an approach for obtaining interfer-
ence-free TSRs relies on the conductance function

(34)
calculated from a scalogram. Like the spectrogram, this distri-
bution is strictly positive and does not suffer much from inter-
ference terms [3]. Since it is covariant with respect to time shifts
and scale changes, it also ensures that the resulting distributions

are members of the affine class. Fig. 5 clearly shows
the benefit of using the inhomogeneous model (33) with this
conductance function. It also illustrates the homogeneous model
(28) tendency to simultaneously remove interference terms and
smooth out signal components in the WD.

V. DIFFUSION OF TFRS AND TSRS: EXTENSION TO

ANISOTROPIC PROCESSES

Thus far, we have investigated diffusion-based models with
scalar-valued conductance functions to locally adjust diffusion
strength. Here, we propose to control both diffusion strength
and orientation with the tensor involved in the general
diffusion model (12). In the spirit of the work by Baraniuk
and Jones on signal-dependent time-frequency analysis [9],
the anisotropic diffusion schemes presented below allow the
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Fig. 6. (a) Isotropic and (b) anisotropic diffusion processes, with local kernels schematized by ellipses. Anisotropy allows the kernel orientation to be usefully
adapted to the distribution.

direction and amount of smoothing to be adjusted. The cases
of TFRs of the Cohen class and TSRs of the affine class are
considered.

A. Anisotropic Diffusion in the Cohen Class

In contrast to the isotropic process (16), where the diffusion
is solely governed by the geometry of the distribution to be pro-
cessed, we propose a more flexible scheme where the diffusion
model is also controlled by a tensor built into the diffusion
equation:

div
(35)

where is a (2 2) symmetric positive definite matrix in
order to ensure the stability of the system [28]. Note that (16) can
be recovered by using the unit matrix for . For a fixed matrix

, which is denoted below by , it is a well-known result that
the solution to (35) at each diffusion instant can be
simply obtained by convolving the initial distribution
with the following 2-D Gaussian kernel [28]:

(36)

The eigenvectors and the eigenvalues of the diffusion tensor then
define the two orthogonal directions of smoothing, as well as the
smoothing strength in these directions.

Some signals, such as linearly modulated ones, may consist
of time-frequency components having a dominant orientation.
Incorporating such information as prior knowledge in the diffu-
sion process should enhance its performance, in particular if dif-
fusion along signal components is preferred to diffusion perpen-
dicular to them. This can be achieved by adapting the Gaussian
kernel orientation to the distribution to be processed. Here, we
suggest choosing in (35) as a function of the gradient
within the vicinity of any investigated location , as shown
in Fig. 6. To this end, the orthonormal system of eigenvectors

of is fixed such that and are collinear to
and , respectively:

(37)

where the eigenvalue has to be chosen greater than 1 in order
to produce more aggressive smoothing along signal components
than across them. A convenient way to estimate local orientation
is to introduce the gradient-square tensor, which is defined as
[40]

(38)

The eigenvectors of are collinear to and .
The interest in using the gradient-square tensor is that it gives
the same result for gradients with opposite signs. As a conse-
quence, this matrix describes the local orientation of the struc-
ture (not its direction). In the presence of noise, it is well-known
that the gradient does not give reliable information about local
orientation. In practical applications, a smoothing filter is used
to produce a gradient-square tensor with average orientation in-
formation from an arbitrary weighted neighborhood [28], [40].
This operation can be performed componentwise by any low-
pass filter, which is usually a Gaussian window or a rectangular
window filter of width :

(39)

where is the usual 1-D convolution. This makes the gradient-
square tensor insensitive to noise and irrelevant artifacts of scale
smaller than . Note that smoothing is also a requirement
from a theoretical point of view to get an anisotropic diffu-
sion process: Without it, is an eigenvector of the gra-
dient-square tensor, and the flux is then collinear to the gradient.
It can be shown that the matrix is symmetric and
positive semidefinite. Hence, there exists an orthonormal basis
of eigenvectors and that can be used in (37) to determine

. Now, we are in a position to propose an inhomogeneous
anisotropic diffusion scheme to adapt the orientation and the
strength of the smoothing operator to the TFR under analysis:

div
(40)
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Fig. 7. Comparison of different TFRs. (a) WD. (b) Homogeneous diffusion. (c) Spectrogram modified by the reassignment method. (d) TFR with signal-dependent
radially Gaussian kernel. (e) Adaptive diffusion. (f) Anisotropic adaptive diffusion. These 256-by-256 TFRs are those of a 256-sample signal that consists of a
sinusoidally modulated signal and two waves.

Fig. 8. Comparison of different TFRs applied to a 500-sample bat echolocation signal. (a) WD. (b) Spectrogram. (c) Spectrogram modified by the reassignment
method. (d) TFR with signal-dependent radially Gaussian kernel. (e) Anisotropic adaptive diffusion. Signal kindly provided by C. Condon, K. White, and A. Feng
from Beckman Institute, University of Illinois.

where is a conductance function that can be chosen
among those listed in Section IV-A. Just like the isotropic dif-
fusion process (17), and because only involves derivatives,
this model provides shift-covariant distributions if the conduc-
tance function is itself covariant with respect to time-frequency
shifts. In addition, it conserves energy since it is of the form
(12). Fig. 7 compares anisotropic adaptive diffusion with other
approaches for improving the readability of TFRs of a syn-
thetic signal. In Fig. 8, the same methods are used to represent

a natural signal of echolocation of a bat. The favorable effects
of smoothing along signal components clearly appears on both
examples.

B. Anisotropic Diffusion in the Affine Class

It is interesting to see that the anisotropic process (35) can
also be used to process distributions of the affine class, provided
that the scaling variable is replaced by the frequency variable
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Fig. 9. Comparison of (a) a backward-and-forward diffusion with (b) the reassignment method on a sinusoidally-modulated signal.

according to the correspondence rule . It can easily
be shown that

div

with (41)

produces distributions that satisfy
. Note that a straightforward signal-dependent

extension of (41) is obtained by adjusting the smoothing
strength with a conductance function built into the
diffusion equation. Nevertheless, this approach is far from
satisfactory as the smoothing orientation, which is given by

, does not depend on the signal to be analyzed. An intuitive
solution to this problem would consist of substituting with
a gradient-square tensor based on an affine covariant gradient.
However, such a measure of local orientation does not exist
since angles in the time-frequency domain are not covariant
with respect to the application of the affine operator.8 The
time-frequency parameterization in (41) is responsible for this
failure, although it is of current use in time-scale analysis.
However, a close look at the definition of the gradient-square
tensor applied to reveals that

A similar result also holds good for the smoothed gradient-
square tensor. As a result, information on local orientation pro-
vided by eigenvectors of or is covariant with
respect to time shifts and scale changes. It can be used in (37) to

8We suggest referring to [41] and references therein for a discussion on first-
and second-order affine invariant/covariant descriptors.

determine the diffusion tensor of the following anisotropic
inhomogeneous diffusion process:

div
(42)

Just like (33), this process is covariant with respect to the appli-
cation of the affine operator , provided that the conductance
function is also covariant under its action. In addition,
as a particular case of (12), it conserves energy.

VI. CONCLUSION

In this paper, we have focused our attention on adaptive
diffusion for processing joint signal representations. We have
emphasized the versatility of diffusion schemes as smoothing
operators to improve the readability of bilinear time-frequency
and time-scale representations. As a starting point, we revisited
some standard representations, such as the spectrogram and the
scalogram, in terms of diffusion processes. Next, we capitalized
on recent results in image processing to design fully adaptive
smoothed representations with enhanced localization capabili-
ties and preserved covariance properties. Our approach improves
on previous works by providing a unified framework not only
for the Cohen class of TFRs but for the affine class of TSRs as
well. The latter is of particular interest because, to the best of our
knowledge, no signal-dependent smoothing solution exists to
process distributions of the affine class, nor even a transposition
of optimal radially Gaussian kernels of Baraniuk and Jones.

In an ongoing study, we are investigating selective forward-
and-backward diffusion processes [32], [33] in order to simul-
taneously reach a high concentration in signal components and
a cross-term removal in the same spirit of using distributions
modified by the reassignment method [17]. Fig. 9 is a promising
illustration of the potential interest of such a method when ap-
plying a negative-valued conductance function.
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