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ABSTRACT

Distributed learning over networks has become an active topic
of research in the last decade. Adaptive networks are suitable for
decentralized inference tasks, e.g., to monitor complex natural phe-
nomena or infrastructure. Most of works focus on distributed estima-
tion methods of linear regression models. However, there are many
important applications that deal with nonlinear parametric models to
be fitted, in a collaborative manner. In this paper, we derive func-
tional diffusion strategies in reproducing kernel Hilbert spaces.

1. INTRODUCTION

Distributed learning over networks allows a set of interconnected
agents to perform preassigned tasks such as detection and estimation
from streaming data. Potential applications include, for instance,
natural phenomena and infrastructure monitoring. Due to energy
constraints, limited communication capabilities and large scale net-
works, signal processing strategies have moved from centralized so-
lutions with a fusion center [1] to decentralized cooperative solutions
with in-network sensor data processing. For online parameter esti-
mation, a variety of distributed strategies have been proposed. These
include incremental strategies [2], consensus strategies [3] and diffu-
sion strategies [4]. With diffusion modes of cooperation, the agents
cooperate with each other through local interactions that consist of
exchanging raw data and local estimates. Diffusion strategies are
attractive because they are scalable, robust, and enable continuous
adaptation and learning.

Decentralized detection and estimation have often been consid-
ered with parametric models, in which the statistics of observations
are assumed known. Such assumptions are usually motivated by
prior application-specific domain knowledge. Robust nonparametric
methods are however desirable when few prior information is avail-
able. To address such situations, nonparametric methods based on
kernel functions were primarily considered for decentralized detec-
tion and estimation over networks [1, 5]. The successive orthogonal
projection (SOP) algorithm was derived to address distributed learn-
ing problems over networks with kernel-based models [6, 7]. An
incremental kernel-based strategy was introduced in [8, 9]. A lin-
ear combination of Gaussian functions was considered in [10] for
estimating scalar fields with diffusion networks.

In this paper, we introduce functional diffusion strategies in re-
producing kernel Hilbert spaces with distributed KLMS algorithm.
This paper is organized as follows. In Section 2, we introduce some
basic principles on online learning with KLMS. In Section 3, we de-
rive a functional framework for diffusion adaption over networks. In
Section 4, we present some illustrative simulation results.
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2. THE KERNEL LEAST-MEAN-SQUARE ALGORITHM

Let H be a Hilbert space of functions ψ from a subspace U of IRL

to IR. Assume thatH is a reproducing kernel Hilbert space (RKHS),
that is, there exists a map κ : U × U → IR such that:

∀u ∈ U , κ(u, ·) ∈ H (1a)
∀ψ ∈ H, ψ(u) = 〈ψ, κ(u, ·)〉H (1b)

Property (1b) is called the reproducing property of the RKHS. Re-
placing ψ by κ(uj , ·) in this property yields

κ(ui,uj) = 〈κ(ui, ·), κ(uj , ·)〉H (2)

for all ui,uj ∈ U . Every RKHS is characterized by a unique re-
producing kernel κ. This kernel is positive definite, that is, κ is a
symmetric function and satisfies

n∑
i,j=1

qiqjκ(ui,uj) ≥ 0 (3)

for all n ≥ 0, u1, . . . ,un ∈ U , and q1, . . . , qn ∈ IR. In the sequel,
we make the weak assumption that κ is bounded.

Consider the kernel least-squares problem. Given pairs of input
vectors and desired outputs {(ui, d(i))}i, which satisfy the model

d(i) = ψo(ui) + v(i) (4)

where v(i) is a zero-mean white noise with power σ2
v , the problem

is to estimate ψo such that:

ψo = arg min
ψ∈H

J(ψ) with J(ψ) = E{|d(i)− ψ(ui)|2} (5)

Calculating the Fréchet derivative of J(ψ) with respect to ψ we find:

∇J(ψ) = −2E{[d(i)− ψ(ui)]κ(·,ui)} (6)

The desired function ψo satisfies the normal equation:

E{ψo(ui)κ(·,ui)} = E{d(i)κ(·,ui)} (7)

It is seen from (5) that:

J(ψ) = σ2
d − 2〈E{d(i)κ(·,ui)}, ψ〉H + E{ψ2(ui)}

= σ2
d − 2〈E{ψo(ui)κ(·,ui)}, ψ〉H + E{ψ2(ui)}

= σ2
d − 2E{〈ψo(ui), ψ(ui)〉H}+ E{ψ2(ui)}

(8)

where σ2
d denotes E{d2(i)}. The first and the third equalities fol-

low from (1b). The second equality follows from (7). We see that
J(ψo) = σ2

d − E{[ψo(ui)]2}. A completion-of-squares argument
finally shows that J(ψ) can be expressed as

J(ψ) = J(ψo) + E{[ψ(ui)− ψo(ui)]2} (9)



We shall use this expression in the sequel, where J(ψo) and Jmin

will interchangeably denote the minimum cost value of J(ψ).
The optimal implementation (7) for determining ψo requires

knowledge of the data moments. This information is usually un-
available. Stochastic-gradient methods are popular adaptive learn-
ing algorithms obtained from gradient-descent implementations by
replacing the required derivatives by some suitable approximations.
One of the simplest approximations for∇J(ψ) consists of replacing
the random variables in (5) by the observations at iteration i, namely,

−∇J(ψ) ≈ [d(i)− ψ(ui)]κ(·,ui) (10)

The corresponding steepest-descent recursion is widely known as the
kernel least-mean-squares (KLMS) algorithm [11]:

ψi = ψi−1 + µ [d(i)− ψi−1(ui)]κ(·,ui), (11)

where µ is a small positive step-size. Despite its computational sim-
plicity, the main drawback of KLMS is that an increasing number
of kernel functions κ(·,ui) is involved in the estimation process as
new data ui are collected. To overcome this limitation, finite-size
models of the form

ψ =

M∑
j=1

αj κ( · ,uωj ) (12)

and sparsity-promoting strategies are usually considered in the liter-
ature [11], where D = {κ(·,uωj )}j is a dictionary learnt from the
input data {κ(·,ui)}i. Then, KLMS reduces to a two-alternative
choice procedure at each instant i: (Case 1) a dictionary learning
stage that inserts κ(·,ui) intoDi−1 if some given sparsification rule,
such as the coherence rule below, is satisfied; (Case 2) Otherwise, an
adaptation step to update the vector α of parameters αj .

• Case 1: maxj=1,...,card(Di−1) |κ(ui,uωj )| ≤ δ0

αi =

(
αi−1

0

)
+ µ ei κi (13)

Di = Di−1 ∪ {κ(·,ui)}

• Case 2: maxj=1,...,card(Di−1) |κ(ui,uωj )| > δ0

αi = αi−1 + µ ei κi (14)
Di = Di−1

where κi = [κ(ui,uω1), . . . , κ(ui,uωcard(Di−1)
)]>, and δ0 is a pa-

rameter in [0, 1) determining both the level of sparsity and the co-
herence of the dictionary. In [11], it is shown that the dictionary
learning step converges to a dictionary D of finite size, say M , and
the algorithm above reduces to (14) after a finite number of itera-
tions. An analysis of this algorithm is proposed in [12], and a sparse
dictionary learning strategy is introduced in [13].

3. DIFFUSION ADAPTATION WITH KLMS

Consider a collection of N agents interested in estimating the same
function ψo ofH from data realizations (uk,i, dk(i)), which satisfy
a model of the form

dk(i) = ψo(uk,i) + vk(i) (15)

where vk(i) is a zero-mean white noise with power σ2
v,k. To recover

this unknown function ψo, our strategy is to optimize the following
global cost function in a distributed manner:

J(ψ) =

N∑
k=1

E{|dk(i)− ψ(uk,i)|2} (16)

Assume that the set of neighbors connected with the `-th agent is
fixed and denoted byN`. We can express J(ψ) as follows:

J(ψ) =

N∑
`=1

J loc
` (ψ)

with J loc
` (ψ) =

∑
k∈N`

ck` E{|dk(i)− ψ(uk,i)|2}
(17)

where {ck`} is a set of nonnegative coefficients, freely chosen by the
designer, that satisfy:

ck` = 0 if k /∈ N` and
N∑
`=1

ck` = 1 (18)

We collect the coefficients {ck`} into an N ×N matrixC, which is
right stochastic since each row ofC adds up to one.

Consider the local cost function J loc
` (ψ) at each node `. It fol-

lows from (9) that:

J loc
` (ψ) = J loc

`,min +
∑
k∈N`

ck` E{|ψ(uk,i)− ψo(uk,i)|2} (19)

where J loc
`,min = J loc

` (ψo). Substituting (19) into (17), and dropping
the term that does not depend on ψ, we obtain the following alterna-
tive global cost function:

J(ψ) = J loc
n (ψ) +

∑
` 6=n

∑
k∈N`

ck` E{|ψ(uk,i)− ψo(uk,i)|2} (20)

In this expression, the minimizer ψo in the correction term that re-
lates the global cost function to the local cost function at every node
n is not known since the nodes wish to estimate it. This issue is
addressed in the sequel. Likewise, not all information needed to
compute the expected value are available to node n since it can only
have access to information from its neighbors. We thus introduce the
modified local cost function at node n:

Jn(ψ) = J loc
n (ψ)+∑

`∈Nn\{n}

∑
k∈N`

ck` E{|ψ(uk,i)− ψo(uk,i)|2} (21)

The probability density functions required to calculate the expected
values may not be available because often nodes can only observe
realizations uk,i. To address this issue, note that:

E{|ψ(uk,i)− ψo(uk,i)|2}

=

∫
|ψ(uk,i)− ψo(uk,i)|2 dP (uk,i)

≤ ‖ψ − ψo‖2H
∫
κ(uk,i,uk,i) dP (uk,i)

≤M‖ψ − ψo‖2H

(22)

where P is a probability measure. The first and the second inequality
follow from the Cauchy-Schwarz inequality and the boundedness of



the kernel κ, respectively. We suggest to replace the second term on
the right-hand side of (21) by the following upper-bound:∑

k∈N`

ck` E{|ψ(uk,i)− ψo(uk,i)|2} ≤ b`n‖ψ − ψo‖2H (23)

where b`n is some nonnegative coefficient. The modified cost func-
tion (21) is then relaxed as follows:

J ′n(ψ) = J loc
n (ψ) +

∑
`∈Nn\{n}

b`n‖ψ − ψo‖2H (24)

With the exception of ψo, the cost (24) at node n relies solely on
information available to this node from its neighborhood.

Node n can compute successive steepest-descent iterations to
minimize J ′n(ψ). Let ψn,i−1 be the estimate for ψo by node n at
time i− 1. The update from ψn,i−1 to ψn,i can be performed as:

ψn,i = ψn,i−1 − µn∇J ′n(ψn,i−1), ψn,−1 = initial guess (25)

where µn is a small positive step size at node n. Computing the
Fréchet derivative of (24), and dropping the expectation operator
from the definition of J loc

n (ψ) to use instantaneous approximations
instead, we get:

ψn,i = ψn,i−1

+ µn
∑
`∈Nn

c`n [d`(i)− ψn,i−1(u`,i)]κ(·,u`,i)

+ µn
∑

`∈Nn\{n}

b`n(ψ
o − ψ`,i−1)

(26)

Among other possible forms, we can implement (26) in two succes-
sive steps involving each one a correction term as follows:

ϕn,i = ψn,i−1

+ µn
∑
`∈Nn

c`n [d`(i)− ψn,i−1(u`,i)]κ(·,u`,i−1) (27a)

ψn,i = ϕn,i + µn
∑

`∈Nn\{n}

b`n(ψ
o − ψn,i−1) (27b)

First, in (27b), neither node n nor its neighbors know the optimum
function ψo. Each node ` can however use its local intermediate es-
timate ϕ`,i as an approximation. Second, ψn,i−1 in (27b) can be ad-
vantageously replaced by ϕn,i since it is obtained by incorporating
information from the neighbors in (27a). Step (27b) then becomes:

ψn,i =

1− µn
∑

`∈Nn\{n}

b`n

ϕn,i + µn
∑
`∈Nn

b`n ϕ`,i (28)

We introduce the following weighting coefficients:

ann = 1− µn
∑

`∈Nn\{n}

b`n

a`n = µn b`n, ` ∈ Nn \ {n}
a`n = 0, ` /∈ Nn

(29)

and collect these coefficients into an N × N matrix A. For suffi-
ciently small step-sizes µn, observe that the coefficients {a`n} are
nonnegative and each column of A adds up to one. Just like the co-
efficients {c`n}, the coefficients {a`n} can be freely chosen by the
designer provided thatA is left stochastic.

3.1. Functional Adapt-then-Combine (FATC) diffusion strategy

Substituting the so-called coefficients {a`n} into (28), we arrive at
the following diffusion strategy:

ϕn,i = ψn,i−1

+ µn
∑
`∈Nn

c`n [d`(i)− ψn,i−1(u`,i)]κ(·,u`,i)

ψn,i =
∑
`∈Nn

a`n ϕ`,i

(30)

3.2. Functional Combine-then-Adapt (FCTA) diffusion strategy

Similarly, returning to (26) and considering the second correction
first, we get the alternative diffusion strategy:

ϕn,i−1 =
∑
`∈Nn

a`n ψ`,i−1

ψn,i = ϕn,i−1

+ µn
∑
`∈Nn

c`n [d`(i)− ϕn,i−1(u`,i)]κ(·,u`,i)

(31)

3.3. Implementation

Online processing of time series data raises the question of how to
process an increasing amount of observations u`,i as new data is
collected at each node. Indeed, as the KLMS algorithm (11), an
undesirable characteristic of FATC and FCTA algorithms (30)-(31)
is that the number of terms in ϕn,i and ψn,i grows linearly with the
number of input data. This dramatically increases the computational
burden and memory requirement. To overcome this barrier, in this
paper, we shall consider as a prior that nodes share a dictionary D
of finite size M . We leave this sharing processing, which should be
based on the coherence rule, for future work.

Then, we can write ϕn,i and ψn,i in (30)-(31) as:

ϕn,i = β
>
n,i κn,i

ψn,i = α
>
n,i κn,i

(32)

The FATC strategy can be expressed as follows:

βn,i = αn,i−1 + µn
∑
`∈Nn

c`n [d`(i)−α>n,i−1κ`,i]κ`,i

αn,i =
∑
`∈Nn

a`n β`,i

(33)

Similarly, the FCTA strategy is given by:

βn,i−1 =
∑
`∈Nn

a`nα`,i−1

αn,i = βn,i−1 + µn
∑
`∈Nn

c`n [d`(i)− β>n,i−1κ`,i]κ`,i
(34)

4. EXPERIMENTS

Consider the network with N = 10 nodes given in Fig. 1. The
input signal at each node k and time instant i was a sequence of
statistically independently vector defined as:

uk,i =
[
uk,i(1) uk,i(2)

]> (35)



with correlated samples satisfying uk,i(1) = 0.5uk,i(2)+vk,i. The
second entry of uk,i and vk,i were both i.i.d. Gaussian samples
with variance equal to 0.035. We considered the linear system with
memory defined by

yk,i = a
>uk,i − 0.2 yk,i−1 + 0.35 yk,i−2

yk,0 = 0, yk,−1 = 0
(36)

where a = [1 0.5]> and the nonlinear Wiener function

ϕ(yk,i) =


yk,i

3[0.1 + 0.9 y2k,i]
1/2

for yk,i ≥ 0

−y2k,i[1− exp(0.7yk,i)]

3
for yk,i < 0,

dk(i) = ϕ(yk,i) + zk,i.

(37)

Noise zk,i was zero-mean Gaussian i.i.d. with variance σ2
zk = 0.09.

The Gaussian kernel

κ(ui,uj) = exp(−‖ui − uj‖22/2ξ2) (38)

was considered with ξ = 0.15, and the step-sizes µk were all set
to 0.05. The entries c`n of C were set to |Nn|−1 for all n ∈ N`.
The combination matrix A simply averaged the estimates from the
neighbors, namely, a`n = |Nn|−1 for ` ∈ Nn. The coherence rule
with threshold δ0 = 0.3 was used to set the same dictionaryD for all
nodes beforehand. This led to a 17-elements dictionary that remains
unchanged throughout the experiment.

The MSE learning curves in Fig. 2 were obtained by averag-
ing over 200 Monte Carlo runs. They show that the performance
of the cooperative FCTA and FATC strategies were almost identical.
For comparison, we implemented the non-cooperative KLMS strat-
egy (14) at each node with the same dictionary. It can be observed
that it performed poorly compared to FCTA and FATC strategies.
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Fig. 1. Network topology.

5. CONCLUSION

In this paper, we derived functional counterparts of the adapt-then-
combine and combine-then-adapt diffusion strategies. These algo-
rithms allow to perform online learning of nonlinear fitting models.
Their efficiency was illustrated with simulation results. In future
works, we will analyze their convergence in the mean and mean-
square-error sense. We will also address the problem of dictionary
learning at each node to circumvent the drawbacks of the KLMS.
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Fig. 2. MSE learning curves
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