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ABSTRACT

Complex kernel-based adaptive algorithms have been recently intro-
duced for complex-valued nonlinear system identification. These al-
gorithms are built upon the same framework as complex linear adap-
tive filtering techniques and Wirtinger’s calculus in complex repro-
ducing kernel Hilbert spaces. In this paper, we study the conver-
gence behavior of the augmented complex Gaussian KLMS algo-
rithm. Simulation results illustrate the accuracy of the analysis.

Index Terms— Kernel adaptive filtering, complex RKHS, com-
plex Gaussian kernel, non-circular data

1. INTRODUCTION

Single-kernel adaptive filters have been extensively studied over the
last decade, and their performance have been investigated experi-
mentally and theoretically on a variety of real-valued nonlinear sys-
tem identification problems. Typical filtering algorithms in repro-
ducing kernel Hilbert spaces (RKHS) are the KRLS algorithm [1],
the sliding-window KRLS algorithm [2], and the quantized KRLS
algorithm [3]. The KNLMS algorithm was independently introduced
in [4-7]. The KLMS algorithm, proposed in [8, 9], has attracted
much attention in recent years because of its simplicity and robust-
ness. An analysis of its convergence behavior with Gaussian kernel
is reported in [10], and a closed-form condition for convergence is
introduced in [11]. The stability of this algorithm with ¢;-norm reg-
ularization is studied in [12, 13].

Kernel-based adaptive filtering algorithms for complex data
have recently attracted attention since they ensure phase processing.
This is of importance for applications in communication, radar and
sonar. A complexified kernel LMS algorithm and pure complex
kernel LMS algorithm are introduced in [14]. A direct extension of
the derivations in [10] is proposed in [15] to analyze the convergence
behavior of complex KLMS algorithm (CKLMS). The augmented
CKLMS algorithm (ACKLMS) is presented in [16, 17], and its nor-
malized counterpart is described in [18, 19]. These works show
that augmented complex-valued algorithms provide significantly
improved performance compared with complex-valued algorithms.
Finally, the quaternion KLMS algorithm has been recently intro-
duced in [20] as an extension of complex-valued KLMS algorithms.

The aim of this paper is to analyze the convergence behavior of
the ACKLMS algorithm. First, we introduce some definitions and
a general framework for pure complex multikernel adaptive filter-
ing algorithms. This framework relies on multikernel adaptive fil-
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ters that has previously been derived for use with real-valued data
in [21-24]. Then, we derive models for the convergence behavior
in the mean and mean-square sense of the ACKLMS algorithm with
Gaussian kernels. Finally, the accuracy of these models is checked
with simulation results.

2. COMPLEX MULTI-KERNEL LMS

2.1. Preliminaries

Consider the complex input/output sequence {(u(n),d(n))}._,

with w(n) € U and d(n) € C, where U is a compact of C¥. The
complex input vector can be expressed in the form
u(n) = VT = 7 e (n) + ip () "
=wui(n) +iug(n)
where the subscripts I and () denote “in-phase” and “quadrature”
components, and i = y/—1. The sequence u(n) (resp., uim(n)) is
supposed to be zero-mean, independent, and identically distributed
according to a real-valued Gaussian distribution. The entries of each
input vector ur(n) (resp., uim(n)) can, however, be correlated. In
addition, the sequences u(n) and uim(n) are assumed to be inde-
pendent. This implies that F{u(n — i)u™ (n — j)} = 0 fori # j,
where the operator (-)* denotes Hermitian transpose. The circular-
ity of input data is controlled by parameter p. Setting p = /2 /2
results in a circular input, while p approaching to 0 or 1 leads to a
highly non-circular input.

Let kg : U x U — C be a complex reproducing kernel. We
denote by (H, (-, -)u) the induced complex RKHS with its inner
product. Complex reproducing kernels include the Szego kernel, the
Bergman kernel, and the so-called pure complex Gaussian kernel.
The latter is the extension of the Gaussian kernel for complex argu-
ments. The pure complex Gaussian kernel is defined as follows [25]

kc(u,v) = exp <Z (ue — vZ)2/2§2> )

=1

with u, and v, the £-th entries of ,v € C*. The parameter £ > 0
denotes the kernel bandwidth and (-)* denotes the conjugate opera-
tor. The conjugate of kernel k¢ (u, v) is defined by

ke (u,v) = exp <—Z (ve — u2)2/2§2> : ©)

=1

Note that (-)* is defined on kernels and should not be confounded
with the complex conjugate (-)*. We shall focus on the above com-
plex Gaussian kernel in the sequel.



2.2. A framework for complex multi-kernel algorithms

Let {kc,x 5, be the family of candidate complex kernels, and H,
the RKHS defined by each k¢, . Consider the space H of multidi-
mensional mappings

®: C—oCK

4
u— P(u) = col{p1(u),... @

s pr(u)}

with ¢, € Hy, and col{-} the operator that stacks its arguments on
top of each other. Let (-,-)u be the inner product in H defined as

<q)a(I)l>H = Zf:1<<pk790;c>Hk' ®

The space H equipped with the inner product (-,-)u is a Hilbert space
as (Hy, (-,-)m, ) is a complex Hilbert space for all k. We can then
define the vector-valued representer of evaluation ku(+, ) such that

D(u) =

with ku (-, u) = col{kc,1 (-, u), ..., ke,x (-, w)} and [-,] the entry-
wise inner product. This yields the following reproducing property

[(I)vﬂﬁ'ﬂ("u)} (6)

ku(u,v) = [ku(-, u), ku(-,v)]. @)

Let ¥ = col{¢1, ...,k } be a vector-valued function in space H,
and let ¢y = Zle 1 with ¥, € Hj be the scalar-valued function
that sums the entries of ¥, namely, 1) = 1 ¥ with 1 the all-one
column vector of length K.

Given a valued input-output sequence {(d(n),u(n))}A_;, we
aim at estimating a multidimensional function ¥ in H that minimizes
the regularized least-square error

2 T a2

d(n) — 1,9( AL ¥
15161%(] Z‘ kP (u®n)]” + A1k P[E  (8)
with A > 0 a regularization constant. By virtue of the generalized
multidimensional representer theorem, not presented in this paper
due to lack of space, the optimum function ¥ can be written as

N
() = col{ 3l el
n=1

For simplicity, without loss of generality, we shall omit the regular-
ization term in problem (8), which can be reformulated as

Zld

where a = col{a1, ..., ax} with oy = (a14,...,ank) " isthe
unknown weight vector, and k¢, (n) is the N x 1 kernelized input
vector with j-th entry ¢,k (w(j), u(n)). Calculating the directional
derivative of J(a) with respect to v by Wirtinger’s calculus yields

u(n))}K . )

k=1

mln J(a

K
Zafnc,k(n)F (10)
k=1

N

oy (@) = =2 " (n) ke k(- u(n)). (11)

n=1

where e(n) = d(n) — Sr_, i ke k(n). Approximating (11) by
its instantaneous estimate O, J () &~ —2¢€*(n) ke ik (-, u(n)), we
obtain the stochastic gradient descent algorithm:

Zne wu(i) (12)

a(n+1) =a(n)+ne’(n

with 7 a positive step-size, xu(n) = col{kcx(n)}i_; the com-
plex kernelized input vector, and e(n) = d(n) — o (n) ku(n) the
estimation error. Finally, the optimal function is of the form

) = ZZa;,k ke k(- u(n)). (13)

n=1k=1

2.3. Augmented complex kernel LMS (ACKLMS)

In order to overcome the problem of the increasing amount n of ob-
servations in an online context, a fixed-size model is usually adopted:

M K
W) =D D ke k (s w(wm)) (14)

m=1 k=1

where w 2 {kg(-, w(wm))}M_, is the so-called dictionary of the
filter ¢, and M its length. Limiting the number of single-kernel fil-
ters to K = 2, and setting the two kernels to (2)-(3), the ACKLMS
algorithm based on model (14) is given by (See [18] for an introduc-
tion to ACKLMS):

d(n) =) [ad,m(n) re(u(n), ulwn))

m=1 (15)
+ 03, (n) K2 (w(n), w(wm))]

=af (n) Km,w(n).

The ACKLMS algorithm can be viewed as a complex Gaussian bi-
kernel case of the complex multi-kernel algorithm [18,19]. It can be
expected that ACKLMS algorithm outperforms the existing CKLMS
algorithms due to the flexibility of complex multi-kernels.

3. ACKLMS PERFORMANCE ANALYSIS

We shall now study the transient and steady-state of the mean-
square error conditionally to dictionary w of the complex Gaussian
bi-kernel LMS algorithm, that is,

E {Je(n)? |} = / )2 dp(u(n),

with e(n) = d(n) — d(n) and p a Borel probability measure. We
shall use the subscript w for quantities conditioned on dictionary w.
Given w, the estimation error at time instant n is given by

ew(n) =d(n) —

with d,(n) = d(n)|w. Multiplying e, (n) by its conjugate and
taking the expected value yields the mean-square-error (MSE)

Juse = E{|d(n)|*}
— 2Re(p,€d WO (n )

d(n)|w),  (16)

de(n) a7)

18
g (1) R oot (n) o

)
with Ry, = E {Ku,w(n)kif,,(n)|w} the correlation matrix of in-
put data, and p, ; , = E {km,u(n)d"(n)|w} the cross-correlation
vector between K., (n) and d(n). As R, ., is positive definite, the
optimum weight vector is given by

Otopo = arg min Jyse o (0w) = R, . Pra. 19)

and the minimum MSE is

Jminw = E{|d(n)]*} = Pl o Rl Prea- (20)



3.1. Mean weight error analysis

The weight update of the ACKLMS algorithm is given by
au(n+1) = au(m) + nes(m) kaw(n). Q1)
Let v, (n) be the weight error vector defined as
Vo (n) = aw(n) — Aoprw- (22)
The weight error vector update equation is then given by
Vo (n+ 1) = vu (1) + 1€ (n) Kav (). 23)

The error (17) is consequently rewritten as

ew(n) =d(n) — nﬂw (n)vw(n) — m]{iw (n)topt,w- (24)
Substituting (24) into (23) yields
vo(n+1) =v,(n) + n(d* (n)km,w(n) (25)

- Rﬁ{w (n)vw(n)Krm,w(n) — nﬁ{,w (n) otopt,w K, (n))

Taking expected value of (25), using the CMIA hypothesis intro-
duced in [26], and (19), we get the mean weight error model:

E{vo(n+1)} =T —nRew)E{vu(n)}. (26)
The (3, j)-th entry of matrix R, is given by
[Rywliy = E{ru(u(n), u(w)) [su(u(n), u(w;))]"}  @27)
with the complex Gaussian bi-kernel ku(u(n), u(wm)) given by

1<m<M
M+1<m<2M

re(u(n), u(wn)),

re(u(n), u(wn)),

ri(u(n), u(wn)) = {

Let us define a new vector that separates the real and imaginary
parts of w(n) such that &(n) = col{u;(n),ug(n)} € R**. With
the Gaussian kernels (2)-(3), the expected value of (27) can be ob-
tained by making use of the moment generating function in [26]. We
get (28) where ¢, is the indicator function

1, 1<m<M
Om = (29)
-1, M+1<m<2M
and Ry = E{a(n) @' (n)}. The definition of H (4,7) in (28) de-
pends on ¢ and j as follows:

H(z‘,j):(é_OI>,1§i,j§MandM+1§i,j§2M

H(i,j)=<liII E;),ISiSMandM—i—lgjgzM

H(i,j):(ifiI _EIII),lngMandM—klgngM

Vector b in (28) is given by

— > ur(ws) + 1[5 ug(wi) — 65 uq(w)]

b= | =07 . (30)

= > ug(ws) + 1i[—=6 wr(w:) + & wr(w;)]
s={i,j}
Equation (26) leads to the following theorem (without proof due to
lack of space):

Theorem 3.1 (Stability in the mean) Assume CMIA introduced
in [26] holds. Then, for any initial condition, given a dictionary w,
the Gaussian ACKLMS algorithm (21) asymptotically converges in
mean if the step size is chosen to satisfy

0< n < Q/Amax(RH,w) (31)

where Amax(+) denotes the maximum eigenvalue of its matrix argu-
ment. The entries of R, ., are given by (28).

3.2. Mean-square error analysis

Using (24) and CMIA, MSE is related to the second-order moment
of the weight vector by [10]

JMSE,W (TL) = Jmin,w + trace {Rﬁ,wcv,w (TL)} (32)

where C\y.(n) = E {v,(n)vl (n)} is the autocorrelation matrix
of the weight error vector v, (n), and Jmin, is the minimum MSE
given by (20). The analysis of the MSE behavior (32) requires a
recursive model for C, , (n). Post-multiplying (25) by its Hermitian
conjugate, taking the expected value, and using CMIA, we get the
following recursion for sufficiently small step sizes

Ciun+1)=Cyun)
—N[Rk,wCovw(n) + Cuw(n)Re,u] (33)
+10° Tow(n) + n° Re,oJmin
with
T.(n)

34
= B {kao )l (0o, ()l (n)ma (), (n) } 9
Evaluating (34) is a significant step in the analysis since K., (1) is a
nonlinear transformation of a quadratic form of u(n). Using CMIA
to determine the (¢, j)-th element of T, (n) in (34) yields
M M
[To(m)ig =YY E{ru(un), u(w)) [k (u(n), w(w)))]*
=1 p=1
x ki (w(n), w(we)) [mi(w(n), w(wp))]"} - [Cow(n)]ep. (35)
This expression can be written as
[T (n)]i,; = trace { K, (i,7) Cu,u(n)} (36)
where the (¢, p)-th entry of the matrix K, (%, ) is given by

(Ko (i, )lep = E{rm(u(n), u(w)) [ku(u(n), u(w;))]”
x ra(u(n), w(we)) [ma(u(n), uwp))]"}. G7)

Similarly, we also rewrite (37) in terms of vector @(n) and use the
moment generating function [26]. This leads to (38)-(39). The defi-
nition of L(%, j) in (38) depends on 7 and j as follows:

1<i,j b, p< M
1<i,j<M;M+1<¢p<2M
1<lp< M;M+1<i,j<2M
1<i,e<M;M+1<jp<2M
1<4ip<M;M+1<it<2M
M+1<4,5,6,p<2M
1<j<M;M+1<i4lp<2M
1<e<M;M+1<4,5,p<2M
1< p< M;M+1<i<2M
1<, j,<M;M+1<p<2M

L@ = ( 201 7(2)1 )

- 21 1l
LG.J) :( LI —2I )



2 o _1 1
[Riwi :‘I + ?H(lv])Rﬂ’ 2 . exp <*@[Zs={i,j}“ul(ws)”2 - Zs:{i,j}““@(ws)HQO
28
11 . T . . . T . . 1 T ~ 2 y y ~ _1 ( )
X exp 5—2[5Z ur (wi)ug(wi) — d;ur (wj)ug(w;)] ) - exp @ b R.(I+ ?H(z,j)Ru) b
. 2 b (Lo - . -
(Ko (i )]en=|T + §7L(17J)Ra| exp ?2[&' ur (wi)ug(wi) =6 ur (w;)ug(w;)+oeur (we)ug(we) —dp ur (wp)ug(wp)]
(38)
1 1 2 L. _
b (53 Cmipem )| = S llua@ ) -oxp (g £ Rl + SEG )R 1)
(" Do iyt (ws) + 11 [6; ug(wi) — §; ug(ws) + de uq(we) — dp uq(wp)] 39
= 2o (iU (ws) + 1i[—=8i ur(wi) 4 85 ur(w;) — de wr(we) + 8p ur(wp)]
Gaussian distributions with standard deviation o, = 1. Both pa-

1<i<M;M+1<jtp<2M
1<p<M;M+1<4,5,£<2M
1<i,,p<M;M+1<j<2M
1<i,j,p<M;M+1<{¢<2M

- 2f  —1iI
L(i,j) = ( —1I —2rI )

L(i,j) = ( 22111 312‘} ) 1<jt<M;M+1<ip<2M

L(i,j) = ( ol ) 1<ijp<M;M+1<j,0<2M

3.3. Steady-State behavior

In order to determine the steady-state of recursion (33), we rewrite it
in a lexicographic form. Let vec {-} denote the operator that stacks
the columns of a matrix on top of each other. Vectorizing C. ., (n)
and R, by ¢y,w(n) = vec{Cy,w(n)} and 7o = vec { Ry w },
we can rewrite (33) as follows
Cy,w (TL) - Gw Cy,w (’I’L) + 772 Jmin,w Tr,w (41)

with G, = I — (Gu1 + Gu.2) + 717G 3. Matrix G, is found
by the use of the following definitions:

o I is the identity matrix of dimension 4M? x 4M?;

e G, 1 =1I® R, ., where ® denotes the Kronecker product;

o Gw,2 - Rn,w ® I;

o G, 3isgivenby [Gu 3lit2(j—1)M,e420-1)m = [Kw (i, 5)]e,p

with 1 <4,5,¢,p < 2M.

Assuming convergence, the closed-formed solution of the recur-
sion (41) in steady-state is given by

Cow(00) = 172 Jmin,ew (I — Gw)flr,@w. 42)
From equation (32), the steady-state MSE is finally given by
JMsE,w (00) = Jmin,w + trace { Ry, Cu,w(00)} (43)
where the second term on the right side is the steady-state EMSE.

4. EXPERIMENT

This section provides an example of nonlinear system identification
to check the accuracy of the convergence models. We considered the
complex valued input sequence

u(n) = pou(n —1) + ouy/1— pgw(n) (44)

with w(n) = /1 — p? wee(n) + i pwim(n). Parameter p was set
to 0.1 corresponding to highly non-circular, and the random vari-
ables wre(n) and wim(n) were distributed according zero-mean i.i.d.

rameters po and o, were set to 0.5. The system to be identified was

y(n) = (0.5 — 0.1i) u(n) — (0.3 — 0.2i) u(n — 1)
d(n) = y(n) + (1.25 — 1i) y*(n) + (0.35 — 0.2i) y*(n) + 2(n)

where z(n) is a complex additive zero-mean Gaussian noise with
standard deviation o, = 0.1. At each time n, ACKLMS algorithm
was updated with input vector u(n) = [u(n),u(n — 1)] and the
reference signal d(n). The correlation matrix Ry is thus given by

1

(L=p") (1=p")po 0O 0

L—p%)po  (1—p°) 0 0
R:=o0. ( 45
% 0 0 pz p2p0 (45)

0 0 p’po P

The pure complex Gaussian bandwidth £ and the step-size 1) were set
to 0.55 and 0.1, respectively. We used the coherence sparsification
criterion proposed in [5] with threshold 110 = 0.3 to construct a fixed
dictionary of length M = 12. All simulation curves were obtained
by averaging over 200 Monte Carlo runs. It is shown in Figure 1
that the theoretical curves consistently agree with the Monte Carlo
simulations in both transient and steady-state.

f

_— ISE

imum MSE
Steady-State MSE
Steady-State EMSE

0 05 1 15 2 0 05 1 15 2
Iteration n X 10° Iteration n x10°

(a) Theory vs. Monte Carlo. (b) Steady-state results.

Fig. 1. Simulation results of ACKLMS algorithm.

5. CONCLUSION

In this paper, we presented the ACKLMS algorithm based on the
framework of complex multi-kernel. Then we derived a theoretical
model of convergence for ACKLMS with pre-tuned dictionary. In
future works, we will study how using this model to design dictio-
naries, and set the step-size and the kernel bandwidth, that allow to
reach specified MSE or convergence speed.
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