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ABSTRACT

Multikernel adaptive filtering has recently attracted significant re-
search interest due to its enhanced flexibility and adaptation perfor-
mance over single-kernel methods. In this paper, we focus on convex
combinations of two single-kernel adaptive filters, characterized by
different convergence speeds and steady-state performances, in order
to get the best of both. We consider online estimation using single-
kernel adaptive filters that may use different algorithms and kernels.
Simulation results illustrate the efficiency of our approach.

Index Terms— Kernel adaptive filtering, convex combination,
multikernel method, tracking

1. INTRODUCTION

Single-kernel adaptive filtering is now perceived as an appealing so-
lution for nonlinear system identification and tracking [1–4]. Devel-
oping adaptive filters in reproducing kernel Hilbert spaces (RKHS)
allows the use of linear structures to solve nonlinear estimation prob-
lems. The kernel recursive least-squares (KRLS) algorithm was in-
troduced in [1]. The sliding-window KRLS and the extended KRLS
algorithms were derived in [5, 6]. The kernel affine projection algo-
rithm (KAPA) and, as a particular case, the kernel normalized LMS
algorithm (KNLMS), were independently introduced in [2, 3, 7, 8].
The kernel least-mean-square algorithm (KLMS), proposed in [9,
10], has attracted much attention in recent years because of its sim-
plicity and robustness. Along the same line, the quantized KLMS
algorithm (QKLMS) was recently proposed in [11]. Although many
kernel-based algorithms have been recently proposed, few theoreti-
cal studies have investigated their convergence behavior. This situa-
tion is partly due to technical difficulties stemming from filter non-
linearity with respect to input samples. An analysis of the stochastic
behavior of the KLMS algorithm with Gaussian kernel was proposed
in [12], and a closed-form condition for convergence was introduced
in [13]. The stability of this algorithm with `1-norm regularization
was studied in [14, 15]. Finally, in [16], a theoretical analysis of
the KLMS algorithm with Gaussian kernel was proposed in the case
where the dictionary used by the algorithm is considered as part of
the filter parameters.

Multikernel models have been proposed in order to enhance the
model flexibility and the adaptation performance. The multiker-
nel least-mean-square algorithm (MKLMS) was independently pro-
posed in [17–19] and [20, 21], with distinct functional frameworks
and implementations. The former uses block `1-norm regularization
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to promote sparsity of multikernel models and discards obsolete ker-
nel functions in real time. The latter introduces an original vector-
valued functional framework, which allows to address multiple-input
multiple-output (MIMO) nonlinear systems. A multikernel normal-
ized LMS algorithm operating in a direct sum of reproducing ker-
nel Hilbert spaces (RKHS), with independently tuned dictionaries, is
considered in [22]. In [23], the authors introduce the mixture KLMS
algorithm. This approach uses a gate model to adapt the combination
weights of single-kernel LMS algorithms. The individual KLMS al-
gorithms in the existing multikernel approaches use the same error
signal to adjust the coefficients of all the filters, which is a significant
difference compared with our work.

Convex and affine combinations of two linear LMS with distinct
step-sizes have been extensively studied in the literature [24–28].
Their performance is well-established now, and analyses have shown
that combining two filters potentially allows to obtain the best tran-
sient and steady-state performance of both. In the spirit of these
works, we focus on convex combinations of two single-kernel adap-
tive filters with distinct settings including kernel definition and pa-
rameterization, step-size, and sparsification criterion. We also con-
sider the case of two distinct algorithms to estimate filter coefficients.
Our work differs from [23] in that we use the vector-valued func-
tional framework introduced in [21], and, to eliminate potential side
effects due to coupling, the individual KLMS algorithms do not use
the same error signal to adapt. This paper is organized as follows.
First, we introduce an appropriate framework to derive multikernel
LMS. Then, we present the convex combination strategy. Finally,
we illustre our approach with simulation examples.

2. MULTIKERNEL LMS

We shall now introduce the so-called multikernel LMS (MKLMS)
algorithm. It differs from existing solutions by the filter structure.
See, e.g., [17, 21, 23] for an overview of existing techniques.

2.1. A preliminary framework

Let H denote a Hilbert space of real-valued functions ψ(·) on a
compact subspace U ⊂ IRL, and let 〈·, ·〉H be the inner product in
the space H. Suppose that the functional evaluation Lu defined by
Lu[ψ] = ψ(u) is linear with respect to function ψ(·) and bounded,
for all u ∈ U . By virtue of Riesz representation theorem, it exists
a unique positive definite function u 7→ κ(u,u′) in H, denoted by
κ(·,u′) and called representer of evaluation, which satisfies [29]

ψ(u′) = 〈ψ(·), κ(·,u′)〉H, ∀ψ ∈ H (1)
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for every fixed u′ ∈ U . A proof of this can be found in [30]. Re-
placing ψ(·) by κ(·,u) in (1) yields

κ(u,u′) = 〈κ(·,u), κ(·,u′)〉H (2)

for all u,u′ ∈ U . Equation (2) is the origin of the now generic term
reproducing kernel to refer to κ(·, ·), andH is the RKHS associated
to this kernel. Denoting by ϕ the map that assigns the kernel func-
tion κ(·,u′) to each input data u′, property (2) immediately implies
that κ(u,u′) = 〈ϕ(u), ϕ(u′)〉H. The kernel thus evaluates the in-
ner product of any pair of elements of U mapped to H without any
explicit knowledge of ϕ(·) and H. This key idea is known as the
kernel trick. Many kernel functions have been proposed in the liter-
ature. In this paper, without any loss of generality, we focus on the
Gaussian kernel κ(u,u′) = exp(−‖u−u′‖22/2ξ2) with ξ > 0 the
kernel bandwidth.

2.2. Problem statement

Let {κk}Kk=1 be the family of candidate kernels, and Hk the RKHS
defined by the kernel function κk. Consider the multidimensional
mapping

Φ : U →M

u 7→ Φ(u) = [ϕ1(u), . . . , ϕK(u)]>
(3)

with ϕk ∈ Hk, and let 〈·,·〉M be the inner product inM defined as

〈Φ,Φ′〉M =

K∑
k=1

〈ϕk, ϕ′k〉Hk . (4)

The space M of vector-valued functions equipped with the inner
product 〈·,·〉M is a Hilbert space as (Hk, 〈·,·〉Hk ) is a Hilbert space
for all k. We can then define the vector-valued representer of evalu-
ation κM(·,u) such that

Φ(u) = [Φ, κM(·,u)]

= [〈ϕ1, κ1(·,u)〉H1 , . . . , 〈ϕK , κK(·,u)〉HK ]>
(5)

with κM(·,u) = [κ1(·,u), . . . , κK(·,u)]> and [·,·] the entrywise
inner product. This yields the following reproducing property

κM(u,u′) = [κM(·,u),κM(·,u′)]. (6)

Let Ψ = [ψ1, . . . , ψK ]> be a vector-valued function in space M,
and let ψ =

∑K
k=1 ψk be the scalar-valued function that sums the

entries of Ψ, namely, ψ = 1>KΨ.
Given a set {(u(n), d(n))}Nn=1 of pairs of input vectors and de-

sired output scalars, we aim at estimating a multidimensional func-
tion Ψ inM that minimizes the regularized mean-square error

min
Ψ∈M

J(Ψ) =
1

K

N∑
n=1

K∑
k=1

[
d(n)−ψk(u(n))

]2
+ λ

K∑
k=1

‖ψk‖2Hk

=
1

K

N∑
n=1

∥∥d(n)−Ψ(u(n))
∥∥2

2
+ λ‖Ψ‖2M

(7)

with ψk ∈ Hk and d(n) = d(n)1K ∈ IRK , and λ a nonnegative
regularization constant. Calculating the directional Fréchet deriva-
tive of J(Ψ) with respect to Ψ, and equating it to zero, yields

Ψ(·) =

[
N∑
n=1

αn,1 κ1(·,u(n)), . . . ,

N∑
n=1

αn,K κK(·,u(n))

]>
(8)

whereαk = [α1,k, . . . , αN,k]> for all k, is the k-th solution of each
linear system in IRN :

(Kk + λIN )αk = d. (9)

The matrixKk is the so-called Gram matrix with (i, j)-th entry de-
fined by κk(u(i),u(j)), and IN is the identity matrix. Finally, the
optimal function ψ(u) =

∑K
k=1 ψk(u) is given by

ψ(·) =

N∑
n=1

K∑
k=1

αn,k κk(·,u(n)). (10)

2.3. Multikernel LMS algorithm

We start by defining the cost function J(Ψ) = 1
K

∑K
k=1 E{e

2
k(n)}

with ek(n) = d(n)− ψk(u(n)) the k-th estimation error. For sim-
plicity, without loss of generality, we have omitted the regularization
term in problem (7). Applying steepest descent means to calculate
the gradient of J(Ψ) with respect to Ψ. Its k-th entry is

∂ψkJ(Ψ) = − 2

K
E {ek(n)κk(·,u(n))} . (11)

Approximating the expectation in the above equation by the instan-
taneous estimate ∂ψkJ(Ψ) ≈ − 2

K
ek(n)κk(·,u(n)), we obtain the

recursive update equation of the multikernel algorithm:

Ψn+1(·) = Ψn(·) + η �

 e1(n)κ1(·,u(n))
...

eK(n)κK(·,u(n))

 (12)

with η = [η1, . . . , ηK ]> a vector of step-sizes, and� the Hadamard
product. It can be observed from (12) that the function Ψ is itera-
tively updated with K different step-sizes and estimation errors. For
each sub-filter, we have

ψn+1,k(·) = ψn,k(·) + ηk ek(n)κk(·,u(n))

=

n∑
j=1

ηk ek(j)κk(·,u(j)).
(13)

In order to overcome the problem of the increasing amount n of ob-
servations in an online context, a fixed-size model is usually adopted

ψ(·) =

K∑
k=1

Mk∑
m=1

αm,k κk(·,u(ωm,k))

=

K∑
k=1

α>k κω,k(·)

(14)

with Dk = {κk(·,u(ωm,k))}Mk
m=1 the so-called dictionary of the

filter ψk, Mk its length, and κω,k(·) the Mk × 1 vector with m-th
entry κk(·,u(ωm,k)). For simplicity, in this paper, the construction
strategy of individual dictionaries for each KLMS filter is based the
coherence sparsification criterion [3]

max
m=1,...,Mk

|κk(u(n),u(ωm,k))| ≤ µk (15)

with µk in [0, 1[ a threshold that determines both the level of sparsity
and the coherence of the k-th dictionary. See [3] for details. There
are two cases for each KLMS filter depending on whether the condi-
tion (15) is met. At each time instant n, and each filter ψk, upon the
arrival of (u(n), d(n)), repeat:



• Case 1: maxm=1,...,Mk |κk(u(n),u(ωm,k))| > µk

αk(n) = αk(n− 1) + ηk ek(n)κω,k(u(n)) (16)

• Case 2: maxm=1,...,Mk |κk(u(n),u(ωm,k))| ≤ µk

Dk = Dk ∪ {κk(·,u(n))}

αk(n) =

[
αk(n− 1)

0

]
+ ηk ek(n)κω,k(u(n))

(17)

In Case 2, κk(·,u(n)) becomes the (Mk + 1)-th element of the
dictionary. Accordingly, it is denoted by κk(·,u(ωMk+1,k))).

3. CONVEX COMBINATION OF KERNEL FILTERS

Limiting the number of single-kernel filters to K = 2, the adaptive
convex combination scheme described in [24–28] applies. The block
diagram is depicted in the Fig. 1. The overall weighted function ψ(·)
is now defined as

ψ(·) = λ(n)ψ1(·) + [1− λ(n)]ψ2(·)

= λ(n)

M1∑
m=1

αm,1κ1(·,u(ωm,1))

+ [1− λ(n)]

M2∑
m=1

αm,2 κ2(·,u(ωm,2))

(18)

where ψ1 and ψ2 are updated at each time instant n with KLMS
update equations (16)–(17). As illustrated in the following, the com-
bination scheme (18) can be generalized by considering other kernel
adaptive filtering techniques such as KRLS, KAPA, KNLMS, etc.

We shall now introduce a strategy to adapt the combination
weight λ(n). Following [24, 26], a possible strategy is to define
λ(n) as a sigmoid function of the variable a(n):

λ(n) = sgm(a(n)) = [1 + exp(−a(n))]−1. (19)

Parameter a(n) is updated via stochastic gradient descent of the es-
timation error E{e2(n)}. We get

a(n+ 1)= a(n)− µ

2

∂e2(n)

∂a(n)
(20)

= a(n) + µe(n)[ψ1(u(n))− ψ2(u(n))]λ(n)[1− λ(n)].
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Fig. 1. Adaptive combination of two single-kernel adaptive filters.

The adaptation speed is reduced by a factor of λ(n)[1−λ(n)] when
λ(n) tends to 0 or 1. In order to circumvent this drawback, a(n)
can be limited to an interval [−a0, a0], restricting λ(n) to be in the
range [1− λ0, λ0] with λ0 = sgm(a0).

4. EXPERIMENTS

In this section, we consider two nonlinear system identification prob-
lems to illustrate the performance of our algorithm.

4.1. Combination of two KLMS filters

Consider first the convex combination of two KLMS algorithms with
Gaussian kernels of different bandwidths. We used the nonlinear
system described by the difference equation [3]

d(n) = [0.8− 0.5 exp(−d(n− 1)2)] d(n− 1)

− [0.3 + 0.9 exp(−d(n− 1)2)] d(n− 2)

+ 0.1 sin(d(n− 1)π)

(21)

with d(n) the system output, and u(n) = [d(n − 1), d(n − 2)]>

the input. The initial condition was set to d(0) = d(1) = 0.1. The
output d(n) was corrupted by an additive zero-mean white Gaussian
noise z(n) with standard deviation σ = 0.1. A comparison was per-
formed between the convex combination of two KLMS algorithms,
called ComKAF hereafter, the two KLMS algorithms considered
separately, the MKLMS algorithm [18, 21], and the MxKLMS algo-
rithm [23]. The coherence criterion was used to construct the filter
dictionaries. The coherence thresholds were set in order to get the
same filter length for all the filters. The parameter setting for each
algorithm is provided in Table 1. The parameters µ and a0 were set
to 80 and 4, respectively. The learning rate used to update the gate
function of the MxKLMS algorithm was set to 0.1. The experiments
were averaged over 200 Monte Carlo runs.

Table 1. Parameters setting for experiment 1.
Algorithm Kernel bandwidth Step-size Coherence

ξ η threshold µ
KLMS1 0.25 0.05 0.5
KLMS2 1 0.05 0.9576
MKLMS [0.25; 1] 0.03 [0.5; 0.9576]

MxKLMS [0.25; 1] 0.15 [0.5; 0.9576]
ComKAF [0.25; 1] [0.05; 0.05] [0.5; 0.9576]

Figure 2 (left) shows that our algorithm got the best of both
single-kernel KLMS: it converged as fast as the fastest KLMS, and
achieved the lowest steady-state EMSE of both algorithms. This
behavior is due to the adaptive gate function λ(n) that allows to
switch between the two single-kernel algorithms, as illustrated in
Figure 2 (right). Figure 2 (middle) confirms that, for fair compari-
son, the coherence thresholds were set in order to get the same dic-
tionary length for all the algorithms. Regarding method comparison,
Figure 2 (left) shows that the three multikernel methods obtained
almost the same performance. Figure 2 (right) shows that the gate
function of MxKLMS did not converge toward the same value as our
approach.

4.2. Combination of KLMS and KRLS filters

Consider now the convex combination of KLMS and KRLS algo-
rithms. We addressed a nonlinear channel equalization problem de-
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fined as follows. At first, the input signal passes through a channel
consisting of the linear part and nonlinear part{
x(n) = −0.8u(n) + 0.7u(n− 1)− 0.6u(n− 2) + 0.1u(n− 3)

d(n) = x(n) + 0.08x(n)2 + z(n)

with z(n) an additive white Gaussian noise with SNR = 15dB. Af-
ter 1× 104 time samples, the channel abruptly changes into the fol-
lowing system{
x(n) = 0.6u(n)− 0.9u(n− 1) + 0.5u(n− 2)− 0.4u(n− 3)

d(n) = x(n) + 0.1x(n)2 + z(n).

The sample set was defined as {(u(n), d(n))} = {[u(n), . . . , u(n−
` + 1)]>, d(n − δ)}, with equalizer length ` = 5 and equalization
time delay δ = 2. The coherence criterion was used to construct
the filter dictionaries. The coherence thresholds were set in order
to get the same filter length for all the filters. The parameter setting
for each algorithm is provided in Table 2. The parameters µ and a0

were set to 40 and 4, respectively. The learning rate used to update
the gate function of the MxKLMS algorithm was set to 0.1. The
experiments were averaged over 200 Monte Carlo runs.

As shown in Figure 3 (left), the proposed algorithm got the best
of KLMS and KRLS algorithm. During the first stage of the experi-
ment, it performed as well as the KRLS algorithm. Nevertheless, the
latter is characterized by a poor tracking ability. During the second
part of the experiment, the proposed algorithm then switched to the
KLMS behavior as illustrated in Figure 3 (right). Figure 3 (middle)
confirms that, for fair comparison, the coherence thresholds were set
in order to get the same dictionary length for all the algorithms. Re-
garding method comparison, Figure 3 (left) shows that our method

Table 2. Parameters setting for experiment 2.
Algorithm Kernel bandwidth Step-size Coherence

ξ η threshold µ
KLMS 2.5 0.05 0.6457
KRLS 3.5 − 0.8

MKLMS [2.5; 3.5] 0.025 [0.6457; 0.8]
MxKLMS [2.5; 3.5] 0.05 [0.6457; 0.8]
ComKAF [2.5; 3.5] 0.05 [0.6457; 0.8]

outperformed the other multikernel approaches during the first part
of the experiment. The three multikernel methods obtained almost
the same performance during the second part of the experiment. Fig-
ure 3 (right) shows that, unlike our approach, the gate function of
MxKLMS did not converged toward a steady-state value. This be-
havior is confirmed by the experiments depicted in [23].

5. CONCLUSION

As an ongoing extension of convex or affine combinations of two
LMS filters with different step-sizes, we proposed a flexible combi-
nation of two single-kernel adaptive filters. Simulations illustrated
the ability of our mixture of filters to get the best of both single-
kernel adaptive filters. In a future work, we shall analyze the con-
vergence behavior of the proposed and consider the combination of
more than two filters. To adapt multiple gate coefficients λk(n) in an
online manner, subject to nonnegativity and sum-to-one constraints,
the so-called NNLMS algorithm described in [31–33] appears as a
promising strategy.
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