
KERNEL LMS ALGORITHM
WITH FORWARD-BACKWARD SPLITTING FOR DICTIONARY LEARNING

Wei Gao †‡, Jie Chen †, Cédric Richard †, Jianguo Huang ‡, Rémi Flamary †

†Université de Nice Sophia-Antipolis, CNRS, Observatoire de la Côte d’Azur, Nice, France

{jie.chen, cedric.richard, remi.flamary}@unice.fr
‡ College of Marine Engineering, Northwestern Polytechnical University, Xian, China

gao wei@mail.nwpu.edu.cn; jghuang@nwpu.edu.cn

ABSTRACT

Nonlinear adaptive filtering with kernels has become a topic of high

interest over the last decade. A characteristics of kernel-based tech-

niques is that they deal with kernel expansions whose number of

terms is equal to the number of input data, making them unsuitable

for online applications. Kernel-based adaptive filtering algorithms

generally rely on a two-stage process at each iteration: a model order

control stage that limits the increase in the number of terms by in-

cluding only valuable kernels into the so-called dictionary, and a fil-

ter parameter update stage. It is surprising to note that most existing

strategies for dictionary update can only incorporate new elements

into the dictionary. This unfortunately means that they cannot dis-

card obsolete kernel functions, within the context of a time-varying

environment in particular. Recently, to remedy this drawback, it has

been proposed to associate an ℓ1-norm regularization criterion with

the mean-square error criterion. The aim of this paper is to provide

theoretical results on the convergence of this approach.

Index Terms— Nonlinear adaptive filtering, reproducing ker-

nel, sparsity, online forward-backward splitting, convergence

1. INTRODUCTION

During the last decade, adaptive filtering in reproducing kernel

Hilbert spaces (RKHS) has become an attractive tool for nonlinear

system identification. Indeed, this framework allows the use of

linear structures to solve nonlinear estimation problems. For an

overview of these approaches, we refer the reader to [1]. In the

block diagram presented in Figure 1, the subspace U is a compact

of IRq, κ : U × U → IR is a reproducing kernel, and (H, 〈·,·〉H) is

the induced RKHS with its inner product. The noise z(n) is white,

Gaussian with zero-mean. Considering the least-squares approach,

given N input vectors un and desired outputs d(n), the problem

consists of identifying the function ψ(·) in H that solves the problem

ψ∗ = argmin
ψ∈H

{

J(ψ) =
1

2

N
∑

i=1

(di − ψ(ui))
2

}

. (1)

By virtue of the representer theorem [2], the function ψ(·) can be

written as a kernel expansion in terms of available training data,

This work was partly supported by the National Natural Science Foun-
dation of China (61271415).

namely, ψ(·) =
∑N

j=1 αj κ(·,uj). The above optimization prob-

lem becomes

α
∗ = argmin

α∈IRN

{

J(α) =
1

2

N
∑

i=1

(di −α
⊤
κi)

2

}

. (2)

where κi is the (N × 1) vector with j-th entry κ(ui,uj). Online

prediction of time series data raises the question of how to process

an increasing amount N of observations as new data is collected. To

overcome this drawback, several authors have focused on fixed-size

models of the form

ψ(·) =
M
∑

j=1

αj κ(·,uωj
). (3)

We call D = {κ(·,uωj
)}Mj=1 the dictionary, and M the order of the

kernel expansion by analogy with linear transversal filters. Online

identification of kernel-based models generally relies on a two-stage

process at each iteration: a model order control step that updates the

dictionary, and a parameter update step. The algorithms developed

using this idea include the kernel recursive-least-square (KRLS) al-

gorithm [3], the kernel least-mean-square (KLMS) algorithm [1, 4],

the kernel normalized least-mean-square (KNLMS) algorithm and

the kernel affine projection (KAPA) algorithm [5, 6, 7]. These meth-

ods use more or less sophisticated strategies to decide, at each time

instant n, whether κ(·,un) deserves to be included into the dictio-

nary or not. One of the most informative criteria uses approximate

linear dependence condition to test the ability of the dictionary ele-

ments to approximate the current input κ(·,un) linearly [3]. Other

well-known criteria include the novelty criterion [8], the coherence

criterion [6], the surprise criterion [1], and the quantization crite-

rion [4]. Without loss of generality, we focus on the KLMS algo-

rithm with coherence-sparsification criterion (CS).

It is surprising to note that most, if not all, the existing strategies

for dictionary update can only incorporate new elements into the dic-

tionary. This unfortunately means that they cannot discard obsolete

kernel functions, within the context of a time-varying environment

in particular. Recently, sparsity-promoting regularization was con-

sidered within the context of linear adaptive filtering [9, 10, 11]. All

these works propose to use, either the ℓ1-norm of the vector of filter

coefficients as a regularization term, or some other related regular-

izer to limit the induced bias. The optimization procedures consist of

subgradient descent method [9], projection onto the ℓ1 ball [10], or

online forward-backward splitting [11]. Surprisingly, this idea was

little used within the context of kernel-based adaptive filtering. To

the best of our knowledge, only Yukawa suggested in [12] the use

Nonlinear system

Adaptive algorithm

un

ψ(un)

αn

z(n)

e(n)
U → H

d(n)

κω,n d̂(n)

+

+

+

−

Fig. 1. Kernel-based adaptive system identification.

of ℓ1-norm regularization with the mean-square error criterion. This

study was conducted in the multi-kernel context.

In this paper, we focus the attention on Yukawa’s approach [12]

in a single-kernel setting. By using a sparsity-promoting regulariza-

tion term, it allows minor contributors in the kernel dictionary to be

automatically discarded. Our aim is to provide theoretical results on

the convergence of this approach.

2. KERNEL LMS ALGORITHMS

Several versions of the KLMS algorithm were proposed in the liter-

ature, depending on if gradient descent is performed on ψ(·) in the

functional space H by considering problem (1), or on vector α by

considering problem (2). The former strategy is considered in [4] for

instance, and the latter in [6]. Before presenting them, note that the

main drawback of all these approaches is that the growing number

of training data (un, dn) needs us to focus on fixed-size models of

the form (3), and to define a strategy for updating the dictionary D.

2.1. Dictionary update

Coherence is a fundamental parameter to characterize a dictionary in

linear sparse approximation problems. In the kernel-based context,

it is defined as [6]

µ = max
i6=j

|κ(uωi
,uωj

)| (4)

where κ is a unit-norm kernel. Coherence criterion suggests insert-

ing the candidate input κ(·,un) into the dictionary provided that its

coherence remains below a given threshold µ0

max
j=1,...,M

|κ(un,uωj
)| ≤ µ0, (5)

where µ0 is a parameter in [0, 1[determining both the level of

sparsity and the coherence of the dictionary. Before ending, note

that the quantization criterion introduced in [4] consists of compar-

ing the minimum distance of un from the elements of D, namely,

minj ‖un − uωj
‖, to a threshold δ0. Quantization and coherence

criteria are equivalent in the case of radial kernels, such as the

Gaussian kernel for instance.

2.2. Filter parameter update

At iteration n, upon the arrival of new data, one of the following al-

ternatives holds. If κ(·,un) does not satisfy the coherence rule (5),

the dictionary remains unaltered. On the other hand, if condition (5)

is met, κ(·,un) is inserted into the dictionary where it is now de-

noted by κ(·,uωM+1
). The LMS algorithm applied to the paramet-

ric form (2) leads to the following algorithm [6]

• Case 1: maxj=1,...,M |κ(un,uωj
)| > µ0

αn = αn−1 + η en κω,n (6)

• Case 2: maxj=1,...,M |κ(un,uωj
)| ≤ µ0

αn =

(

αn−1

0

)

+ η en κω,n (7)

where en = dn − α⊤
n−1κω,n represents the estimation error, and

κω,n the (M×1) vector with i-th entry defined by κ(un,uωi
). The

coherence criterion guarantees that the dictionary dimension is finite

for any input sequence {un}∞n=1 due to the compactness of the input

space U [6]. The steady-state behavior and the transient behavior of

the KLMS algorithm with Gaussian kernel were carefully studied

in [13], for Gaussian input signals. Recursive expressions for the

mean-weight-error vector and the mean-square-error were derived.

A condition for convergence was proposed in [13, 14].

The KLMS algorithm derived in [4] adopts the Fréchet’s notion

of differentiability to derive a gradient descent direction with respect

to ψ(·) in problem (1), that is,

∇E{(dn − ψ(un))
2} = −2E{enκ(·,un)} (8)

This leads to the following update equations where, without loss of

generality but to be consistent with (6)-(7), we apply the coherence

rule rather than the quantization rule [4]

• Case 1: maxj=1,...,M |κ(un,uωj
)| > µ0

αn(j0) = αn−1(j0) + η en (9)

where j0 = argmaxj=1,...,M |κ(un,uωj
)|

• Case 2: maxj=1,...,M |κ(un,uωj
)| ≤ µ0

αn =

(

αn−1

η en

)

(10)

or, equivalently, αn(M + 1) = η en.

The update equation (10) is directly obtained from a stochastic ap-

proximation of the gradient (8) in the case where κ(·,un) is inserted

into the dictionary. If not, the heuristic rule (9) is used. It consists

of using the correction term ηen to update the j0-th entry of αn−1,

where κ(·,uj0) is the closest dictionary element to κ(·,un) in the

sense of the coherence parameter (4).

We have observed that the functional approach (9)-(10) con-

verges slightly slower than the parametric approach (6)-(7). The use

of the heuristic coordinate descent (9) rather than the steepest gradi-

ent descent (6), in the most common case where the dictionary has

reached a steady-state form, justifies this difference. Because of this,

and our understanding of its convergence behavior [13, 14], we shall

focus on algorithm (6)-(7) in the following.

3. KERNEL LMS ALGORITHM

WITH SPARSITY-PROMOTING REGULARIZATION

In order to possibly remove kernels from the dictionary D, Yukawa

proposed to use a sparsity-promoting regularization term with cri-

terion (2), which considers the contribution of each element to the

performance of the filter [12]. With this algorithm, minor contrib-

utors are automatically discarded. In order to solve the resulting

stochastic optimization problem, forward-backward splitting can be

performed as follows.

3.1. Forward-backward splitting method

Let us consider the following optimization problem

α
∗ = argmin

α∈IRN

{Q(α) = J(α) + λΩ(α)} (11)

where J(·) is a convex empirical loss function with Lipschitz contin-

uous gradient and Lipschitz constant 1/η0, Ω(·) is a convex, contin-

uous, but not necessarily differentiable regularization function, and

λ is a regularization parameter. This composite problem has been

extensively studied in the literature, and can be solved efficiently us-

ing forward-backward splitting. See [15, 16] for an overview. In a

nutshell, this approach consists of iteratively minimizing the follow-

ing quadratic approximation of Q(α) at a given point αn

Qη(α,αn) = J(αn) +∇J(αn)⊤(α−αn)

+
1

2η
‖α−αn‖22 + λΩ(α)

(12)

since Q(α) ≤ Qη(α,αn) for any η ≤ η0. Function Qη(α,αn)
admits a unique minimizer, denoted by αn+1. Simple algebra shows

αn+1 = argmin
α∈IRN

{

λΩ(α) +
1

2η
‖α− α̂n‖22

}

(13)

where α̂n = αn − η∇J(αn) can be interpreted as an intermedi-

ate gradient descent step on the cost function J(·). Problem (13)

is called the proximity operator for the regularization function Ω(·),
denoted by ProxληΩ(·)(·). Let us recall that convergence of the pro-

cess (13) to a global minimum is ensured if 1/η is a Lipschitz con-

stant of ∇J(α). With J(α) = 1
2
‖d − Kα‖22 as in problem (2), a

typical condition ensuring convergence of αn+1 to a minimizer of

problem (11) is to require that [16]

0 < η < 2/λmax(K
⊤
K) (14)

where λmax(·) denotes the maximum eigenvalue.

Forward-backward splitting is an efficient method for minimiz-

ing empirical risk with sparse regularization, which was originally

derived for offline learning. A generalization of this algorithm for

stochastic optimization, called Fobos, was recently proposed in [17].

Practically, it consists of using a stochastic approximation for the

gradient ∇J at each iteration. This online approach can be coupled

with the KLMS algorithm. For convenience, in the next subsection,

we shall begin by describing the offline setup based on problem (2).

3.2. Application to kernel LMS algorithm

In order to automatically discard irrelevant elements from the dic-

tionary D, we shall now consider the optimization problem (2) with

sparsity-promoting convex regularization function Ω(·)

α
∗ = argmin

α∈IRN

{

Q(α) =
1

2
‖d−Kα‖2 + λΩ(α)

}

(15)

where K is the (N×N) Gram matrix with (i, j)-th entry κ(ui,uj).
Obviously, problem (15) is of the general form (11) and can be

solved with forward-backward splitting method described previ-

ously. Two regularization processes are successively considered.

Firstly, we consider the celebrated ℓ1-norm regularization func-

tion defined as Ω1(α) =
∑

j |α(j)|. It is often used for sparse

regression and its proximity operator is separable. The j-th entry of

the latter can be expressed as

(

Proxλ‖·‖1(α)
)

(j) = sign{α(j)}max{|α(j)| − λ, 0} (16)

known as the soft thresholding operator. Secondly, we suggest an

adaptive ℓ1-norm function of the form Ωa(α) =
∑

j
wj |α(j)|

where the wj ’s are weights to be dynamically adjusted. The prox-

imity operator for this regularization function is defined by

(

ProxλΩa(·)(α)
)

(j)

= sign{α(j)}max{|α(j)| − λw(j), 0}
(17)

This regularization function has been proven to be more consistent

than the usual ℓ1-norm [18], and tends to reduce the induced bias.

The weights are usually chosen as w(j) = 1/|αo(j)|, where αo is

the least-square solution of the problem (2). Since αo is not avail-

able in our case, we chose w(j) = 1/(|αn−1(j)|+ǫα) at each itera-

tion n, where ǫα is a small constant to prevent the denominator from

vanishing [19]. This technique, also referred to as reweighted least

square, is performed at each iteration of the stochastic optimization

process. Note that a similar regularization term was used in [9] in

order to approximate the ℓ0-norm.

The pseudocode for KLMS algorithm with sparsity-promoting

regularization is provided in Algorithm 1. It can be noticed that the

proximity operator is applied after the gradient descent step. The

dictionary elements associated with null coefficients in vector αn are

removed. This approach reduces to the KLMS algorithm if λ = 0.

3.3. Stability in the mean

From now on, the environment is assumed stationary. The system

inputs u(n) are zero-mean, independent, and identically distributed

Gaussian (q×1) vectors. The components of u(n) can, however, be

correlated. Let Ruu be their autocorrelation matrix. A direct conse-

quence of the above independence assumption is that the kernelized

inputs κω,n are also statistically independent (M × 1) vectors.

To conduct the stability analysis in the mean of the KLMS algo-

rithm with the sparsity-inducing regularization (16), we first observe

that the update equation can be rewritten as

αn = αn−1 + η en κω,n − fn−1 (18)

with

fn−1(j) =

{

λ sgn(α̂n−1(j)) if |α̂n−1(j)| ≥ λ
α̂n−1(j) otherwise

(19)

where α̂n−1 = αn−1 + η en κω,n. Up to a change of variable in λ,

the general form (18)–(19) remains the same for the regularization

function (17). It is important to note that the sequence |fn(j)| is

bounded in both cases, by λ and λ/ǫα, respectively.

Let vn = αo − αn be the weight-error vector, where αo is

the solution of the non-regularized problem (λ = 0). In order to

make the study of the stochastic behavior of vn mathematically fea-

sible, the following simplifying assumption is required. It has been

successfully employed in several adaptive filter analyses [13].

Assumption 1. The modified independence assumption (MIA) con-

siders that κω,nκ
⊤
ω,n is statistically independent of v(n).

The following theorem guarantees the asymptotic mean stability of

the KLMS algorithm with sparsity-promoting regularization (16)

and (17).

Theorem 1. Assume MIA holds. For any initial condition α0, the

regularized KLMS algorithm asymptotically converges in the mean

if the step-size is chosen to satisfy

0 < η < 2/λmax(Rκκ) (20)

To prove this theorem, let us rewrite the equation (18) as follows

vn = vn−1 − ηκω,n(κ
⊤
ω,nvn−1 + z(n)) + fn−1 (21)

Taking the expected value of both sides and using the MIA, the re-

cursion (21) leads to

E{vn} = (I − ηRκκ)
nE{v0}

+
n−1
∑

i=0

(I − ηRκκ)
iE{fn−i−1}

(22)

where Rκκ is the autocorrelation matrix of κω,n, and E{v0} is the

initial condition. To prove the convergence of E{vn}, we have to

demonstrate that both terms on the r.h.s. of this expression converge

as n goes to infinity. The first term converges to zero if we can ensure

that δ , ‖I − ηRκκ‖ < 1. We can easily check that this condition

is met for any step-size η satisfying (20) since

δ = |1− η λmax(Rκκ)| (23)

Let us show now that condition (20) also implies that the second

term on the r.h.s. of equation (22) asymptotically converges to a finite

value, thus leading to the overall convergence of this recursion. Each

term of this series is bounded because

‖(I − ηRκκ)
iE{fn−i−1}‖
≤ ‖(I − ηRκκ)‖i E{‖fn−i−1‖}
≤

√
M δi fmax

(24)

where fmax = λ or λ/ǫα, depending if one uses the regularization

function (16) or (17). Condition (20) implies that δ < 1 and, as a

consequence,

n−1
∑

i=0

‖(I − ηRκκ)
iE{fn−i−1}‖ ≤

√
M fmax

1− δ
(25)

To summarize, because the two terms of the r.h.s. of equation (22)

asymptotically converge to finite values, we conclude that E{vn}
will converge to a steady-state value. Finally, we shall now evaluate

the constant δ. Following [13], it can be shown that

Rκκ = (rmd − rod) I + rod 11
⊤

(26)

for any reproducing kernel κ, with 1 the all-one vector, and

rmd = E{κ2(un,uωi
)}

rod = E{κ(un,uωi
)κ(un,uωj

)}, i 6= j
(27)

the main-diagonal and off-diagonal entries of Rκκ. Simple algebra

shows that λmax(Rκκ) = rmd + (M − 1)rod.

4. EXPERIMENTAL RESULTS

This section presents simulation examples to illustrate the algorithm

performance. We used the coherence sparsification criterion (CS)

with the same threshold µ0 for all the methods, in order to com-

pare the dictionary sizes. KRLS served as a reference for comparing

KLMS with CS (KLMS-CS), KLMS-CS with ℓ1-norm regulariza-

tion (KLMS-CSL1), and adaptive ℓ1-norm (KLMS-CSAL1). The

Gaussian kernel defined as κ(ui,uj) = exp(−‖ui − uj‖2 /2β2
0)

with the same the kernel bandwidth β0 was used with all the methods

mentioned above.

Algorithm 1 KLMS with sparsity-inducing regularization.

1: Initialization

Select the step size η, and the parameters of the kernel;

Insert κ(·,u0) into the dictionary, α0 = 0.

2: for n = 1, 2, · · · , do

3: if maxj=1,...,M |κ(un,uωj
)| > µ0

Compute κω,n and αn using equation (6);

4: elseif maxj=1,...,M |κ(un,uωj
)| ≤ µ0

Incorporate κ(·,un) into the dictionary;

Compute κω,n and αn using equation (7);

5: end if

6: αn = ProxληΩ(·)(αn)
7: Remove κ(·,uωj

) from the dictionary if αn(j) = 0.

8: end for

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

x 10
4

−10

−5

0

5

10

Iteration
1

0
*l

o
g

1
0

(M
S

E
)

d
B

(a)

KRLS−CS
KLMS−CS
KLMS−CSL1
KLMS−CSAL1

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

x 10
4

0

20

40

60

80

100
(b)

Iteration

Fig. 2. (a) Ensemble-average learning curves; (b) Evolution of size

of the dictionaries.

In this experiment described in [20], an input Gaussian signal dn
with 3 distinct mean values (−4, 0, 4) and unit variance was consid-

ered to generate 3 segments of 2× 104 data. It was transmitted in a

channel consisting of the linear part tn = −0.8dn + 0.7dn−1 and

the memoryless nonlinear part qn = tn + 0.25t2n + 0.11t3n. Then,

this signal was corrupted with an additive white Gaussian noise and

observed as un. The equalizer length and the equalization time de-

lay were set to 5 and 2, respectively. The SNR was set to 15 dB. The

kernel bandwidth β0 and step size η of the KLMS were respectively

set to 3.536 and 0.1. Parameter λwas set to 0.0005 for KLMS-CSL1

and KLMS-CSAL1. The coherence sparsification threshold µ0 was

set to 0.3 for all the methods. The simulation experiments were con-

ducted on 6×104 samples, and averaged over 200 Monte Carlo runs.

The ensemble-average learning curves and the evolution of size of

dictionary are shown in Figure 2. Observe that each change in the

statistics of the input signal causes the KLMS-CS and the RLS-CS

algorithms to insert new elements into the dictionaries. As expected,

KLMS-CSL1 and KLMS-CSAL1 were able to discard the obsolete

dictionary elements, with an advantage to KLMS-CSAL1.

5. REFERENCES

[1] W. Liu, J. Principe, and S. Haykin, Kernel Adaptive Filtering,

Wiley, New Jersey, 2010.

[2] B. Schölkopf, R. Herbrich, and R. Williamson, “A generalized

representer theorem,” Tech. Rep. NC2-TR-2000-81, Neuro-

COLT, Royal Holloway College, University of London, UK,

2000.

[3] Y. Engel, S. Mannor, and R. Meir, “Kernel recursive least

squares,” IEEE Transactions on Signal Processing, vol. 52,

no. 8, pp. 2275–2285, 2004.

[4] B. Chen, S. Zhao, P. Zhu, and J. Principe, “Quantized kernel

least mean square algorithm,” IEEE Transactions on Neural

Networks and Learning Systems, vol. 23, no. 1, pp. 22–32, Jan.

2012.

[5] P. Honeine, C. Richard, and J. C. M. Bermudez, “On-line non-

linear sparse approximation of functions,” in Proc. IEEE ISIT,

2007, pp. 956–960.

[6] C. Richard, J.-C M. Bermudez, and P. Honeine, “Online pre-

diction of time series data with kernels,” IEEE Transactions on

Signal Processing, vol. 57, no. 3, pp. 1058–1067, March 2009.

[7] K. Slavakis and S. Theodoridis, “Sliding window generalized

kernel affine projection algorithm using projection mappings,”

in EURASIP Journal on Advances in Signal Processing, 2008.

[8] J. Platt, “A resource-allocating network for function interpola-

tion,” Neural Computation, vol. 3, no. 2, pp. 213–225, 1991.

[9] Y. Chen, Y. Gu, and A. O. Hero, “Sparse lms for system iden-

tification,” in Proc. IEEE ICASSP, 2009, pp. 3125–3128.

[10] K. Slavakis, Y. Kopsinis, and S. Theodoridis, “Adaptive al-

gorithm for sparse system identification using projections onto

weighted l1 balls,” in Proc. IEEE ICASSP, 2010, pp. 3742–

3745.

[11] Y. Murakami, M. Yamagishi, M. Yukawa, and I. Yamada, “A

sparse adaptive filtering using time-varying soft-thresholding

techniques,” in Proc. IEEE ICASSP, 2010, pp. 3734–3737.

[12] M. Yukawa, “Multikernel adaptive filtering,” IEEE Transac-

tions on Signal Processing, vol. 60, no. 9, pp. 4672–4682, Sept.

2012.

[13] W. D. Parreira, J.-C. M. Bermudez, C. Richard, and J.-Y.

Tourneret, “Stochastic behavior analysis of the Gaussian

kernel-least-mean-square algorithm,” IEEE Transactions on

Signal Processing, vol. 60, no. 5, pp. 2208–2222, 2012.

[14] C. Richard and J.-C M. Bermudez, “Closed-form conditions

for convergence of the gaussian kernel-least-mean-square al-

gorithm,” in Proc. Asilomar, 2012.

[15] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski, Optimiza-

tion for Machine Learning, chapter Convex optimization with

sparsity-inducing norms, MIT Press, 2011.

[16] A. Beck and M. Teboulle, “A fast iterative shrinkage-

thresholding algorithm for linear inverse problems,” SIAM

Journal on Imaging Sciences, vol. 2, no. 1, pp. 183–202, 2009.

[17] J. Duchi and Y. Singer, “Efficient online and batch learning us-

ing forward backward splitting,” Journal of Machine Learning

Research, vol. 10, pp. 2899–2934, December 2009.

[18] H. Zou, “The adaptive lasso and its oracle properties,” Journal

of the American Statistical Association, vol. 101, no. 476, pp.

1418–1429, 2006.

[19] E. J. Candes, M. B. Wakin, and S. P. Boyd, “Enhancing sparsity

by reweighted l1 minimization,” Journal of Fourier Analysis

and Applications, vol. 14, no. 5, pp. 877–905, 2008.

[20] K. Slavakis, P. Bouboulis, and S. Theodoridis, “Online learn-

ing in reproducing kernel hilbert spaces,” Signal Processing,

E-Reference, 2012 (to appear).

