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ABSTRACT

In this paper, we introduce a distributed strategy for local-
ization in a connected wireless sensor network composed of
limited range sensors. Our distributed algorithm is computed
through the network and provides sensor position estimation
from local connectivity measurements. This work takes ad-
vantage of a conditionally and locally convex criterion that is
easier to compute than the non-convex Kruskal’sStress. In
addition, no initialization is required such as estimating dis-
tances between sensors and absolute reference positions. Our
iterative technique is distributed among sensors and guaran-
tees the minimization of a global cost function. It might be
used in a Mobile Ad-hoc Network framework (MANet) thanks
to its fast convergence, its low computational cost and its
much higher accuracy compared to state-of-the-art methods.

Index Terms: localization, distributed signal processing,
sensor network

1. INTRODUCTION

Recent technological advances in electronics and wireless
communications have led to the development of tiny, low-
power and active sensors for phenomenon observations pur-
pose. Deploying randomly and densely a large number of
low-cost devices in the environment of interest, designing an
energy-appropriate routing scheme and implementing an effi-
cient distributed algorithm through the sensor network seem
to be opened to large opportunities, specially in monitoring
and tracking applications [1]. The first step of estimating the
sensor-location after deployment is thus a crucial issue. GPS
system, which is a free service, may solve in practice our lo-
calization problem for each node of the embedded network.
However, GPS receivers at each device may be too expensive
and too power-intensive for the desired application, whose
low energy consumption is the main constraint to respect [2].
As a consequence, we just consider few sensors, calledan-
chor nodes, which have a perfect a priori knowledge of their
coordinates thanks to GPS receivers.

Our work respects all these features which characterize
wireless sensor localization problem: distributed processing,

limited power, limited memory, limited energy reserve and
limited computional capacities.

The RSSI technique -Received Signal Strength Indicator-
can be used and allows us to estimate dissimilarity measure-
ments between sensor nodes by log-degradation of the signal
strength with distances and setting a received power thresh-
old. Despite its relative poor accuracy, this technology is
widespread because of its simple execution and its cheap cost
[3].

This paper is organized as follows: In section2, we briefly
describe the problem statement. Section3 presents the devel-
oped algorithm. In section4, a probalistic interpretation of
the localization criterion is given. In section5, experimental
results confirming the algorithm efficiency are shown.

2. PROBLEM STATEMENT

Consider a network ofN = m + n sensors, living in ap-
dimensional space (p = 2 or 3 upon localization takes place
in plane or space, withn À m > p). Let xi ∈ Rp be the sen-
sori’s coordinates,{xi}m

i=1 is the set of anchor nodes coordi-
nates which positions are known,{xi}N

i=m+1 are the unknown
remaining sensors coordinates. If we assume that maximum
spotting sensor range is equal to the distancer, therefore sen-
sor i will consider sensorj as a neighbour if and only if the
distance‖xi − xj‖ is lower thanr. However, two cases must
be considered:

First, if sensors proximity measurements are connectivities
(i.e, δcon

ij = 1 if the sensori detectsj, δcon
ij = 0 otherwise),

∆con is similar to an adjacence matrix pertubated by detection
inaccuracy. Therefore, the purpose is to estimate unknown
coordinates{xi}N

i=m+1 in a simple and distributed way, from
local dissimilarities measurementsδcon

ij , namely connectivi-
ties, and anchors nodes coordinates{xi}m

i=1.

In the second case, sensors proximity measurements are
not connectivities but estimated distances by RSSI technique
for instance within a certain range. The dissimilarity matrix
∆dis = [δdis

ij ]Ni,j=1 ' [‖xi − xj‖2]Ni,j=1 may be made by the
Euclidean distances approximated between neighbour sensors
(i, j). Thus, the goal is still the same: estimating unknown
coordinates{xi}N

i=m+1 thanks to a distributed process, from
local distances measurementsδdis

ij and anchors nodes coordi-
nates{xi}m

i=1.
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Fig. 1. Estimated positions of72 sensors randomly spread over a
90 × 90 surface within a static framework. The network has8
peripheral anchors, represented by squares. Only connectivity mea-
surements were available. Device range was fixed to20. Estimated
locations of nodes are indicated by crosses. Distance errors with
respect to true positions are symbolized by segments.

3. DEVELOPED ALGORITHM

The proposed algorithm, calleddG-Loc(distributed Gamma-
Localization), uses connectivity measurements and Gammaa
priori distribution for computing sensor positions. Motivated
by seeking a robust convex criterion, we compute sensor po-
sitions by minimizing the following cost function:

S(X) =
N∑

i=m+1

[ ∑

j∈V(i)

(‖xi − xj‖2 − αr,σ log ‖xi − xj‖2
)]

(1)
whereX = [x]Ni=m+1 is the matrix of sensor positions to es-
timate,V(i) the set of neighbors of thei-th sensor, andαr,σ

a parameter that is dependent on sensor ranger and detection
accuracyσ. We suggest to useαr,σ = r/2− 2σ2/r that will
be argued in the next section.

A regularization term associated to anchor position helps
the convergence and points the network (see next section):

x̂i = arg min
xi

X

j∈V(i)

(
‖xi − xj‖2 − αr,σ log ‖xi − xj‖2

)
+ λ‖xi − xk‖2

(2)

wherexk is absolute coordinate of anchor node neighboor of
nodei and the weightλ sized beforehand.

SinceS is a sum of local cost functionsS =
∑N

i=m+1 Si, a
gradient descent performs minimization in a distributed man-
ner. Minimization ofS(X) is performed from sensor to sensor

with i = {m + 1...N}:
x̂i = arg min

xi

Si + λ‖xi − xk‖2 (3)

Cycles are repeated until convergence of the algorithm (see
Fig. 1). The pseudo-code used for simulations in a static
framework is given in Tab. 1 while the other one for the mo-
bile sensor network case is given in Tab. 2.

Inputs: {xi}m
i=1,V(i),m

Initialization: compute randomlyxi for i = {m + 1 . . . N }
for c = 1 to C

for i = m + 1 to N

- find x̂(c)
i from equation (4) at nodei

- communicatêx(c)
i to neighbors of nodei

end for
end for

Table 1. Pseudo-code for localization estimation in a static frame-
work. The number of cyclesC is equal to 5 on average which is
sufficient for efficient accuracy and helps for high computing speed.

Inputs: {xi}N
i=1,V(i),m

Initialization: t = 0, applydG-Locas in a static framework
for t = 1 to T

for i = m+1 to N
- computexi according to a random motion
- compute new connectivities of nodei
end for
for c = 1 to C

for i = m + 1 to N

- find x̂(c)
i from equation (4) at node numberi

- communicatêx(c)
i to neighbors of nodei

end for
end for

end for

Table 2. Pseudo-code forMANet framework ofT motions. The
number of cyclesC after each motion is very low (2 or 3 cycles are
generally sufficient).

4. PROBABILISTIC INTERPRETATION

Under a Bayesian framework, minimizing (1) can be consid-
ered as maximizing thea posteriori distribution associated
with sensor location given the measurements of proximity:

X̂ = arg max
X

p(X |E)

whereE is the graph modelling the neighborhood relations.
The a posteriori distribution p(X |E) is given by Gamma
density with meanr

2 , which represents half of sensor range,
and varianceσ2 depending on sensor capability. We justify



this Gamma choice by its definition domainR+∗ and sim-
plicity of computing (see Fig. 2). The strict positiveness of
the Gamma argument avoids the aggregation of the points to
a single point.
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Fig. 2. The strong plausible region of location for nodej (neighboor
of nodei) is shown shaded as regards to Gamma distribution shape.
The parameter of the distribution correspond toIE(x) = r

2
= 10 and

V(x) = 10 such as experimental conditions used for simulations.

We assume that neighbors of i-th node are independently
identically Gamma distributed which can be parameterized in
terms of a shape parameterk and rate parameterθ. The mean
IE(x) is fixed at half of sensor range i.e.kθ = r

2 and the
variance V(x) = kθ2 equal toσ2. The sensor positions are
thus derived as solution of the following optimization process:

x̂i = arg max
xi

log f({xi}/{xj}j∈V(i))

= arg max
xi

log
∏

j∈V(i)

Γ(‖xi − xj‖2; k; θ)

= arg max
xi

∑

j∈V(i)

(
θ(k − 1) log ‖xi − xj‖2 − ‖xi − xj‖2

)

= arg min
xi

∑

j∈V(i)

(‖xi − xj‖2 − αr,σ log ‖xi − xj‖2
)

= arg min
xi

Si

whereαr,σ = r/2− 2σ2/r.

It is clear that the global criterion is not necessarily con-
vex. The regularization term associated to anchor position is
thus used to incorporate more informations in the process and
avoid inherent transformations (reflexion, rotation...). This
additional term can be considered asa priori information on
sensors situated close to an anchor:

x̂i = arg min
xi

Si + λ‖xi − xk‖2

where the weightλ can be viewed as the inverse variance of
the Gaussiana priori distribution with meanxk.

5. EXPERIMENTS

Since our approach does not require estimating node-anchor
distances, we are not concerned withflooding information
problemwhich is very energy-expensive for large networks,
even for low anchor density. Therefore, we avoid being
tricked by this scaling problem, contrary to state-of-the-art
distributed localization algorithms such asAd-hoc position-
ing [4], Robust positioning[5] andN-hop multilateration[6].

Before comparing with other models, we try to evaluate the
performance of our algorithm in a special case where best and
worst mean error can be evaluated geometrically. Consider-
ing the configuration such as the one in Fig 1,8 peripheral
anchors and72 sensors which location has to be estimated
are deployed in a90 × 90 area. The detection range is fixed
to 20. Our ideal case considers that anchor sensors are always
situated in the periphery and non-anchor sensor are regullary
spread (i.e. neighboors are equidistant from each other) in or-
der to uniformly cover all the surface. Thereby, each sensor is
situated at the center of a10 × 10 square surface. To evaluate
geometrically the highest and lowest error at any node, this
configuration supposes that all neighboors are fixed to their
true location. Potential points situated inside the gray area
(see Fig. 3) do not change the gradient of any exclusively con-
nectivity based criterion (without a priori information). Thus,
the best error that can be observed is0 and the worst error is
7.32 in this particular case. We test ourdG-Localgorithm on
this special configuration, with initial random configurations.
We obtain a mean distance error per sensor, over 300 simu-
lations, equal to0.52. This result (0.52 ¿ 7.32) confirms
that the proposed algorithm achieves good results consider-
ing that the dead zone[0; 7.32] is calculated in advantageous
hypothesis (knowing the exact location of neighboor).

We compare ourdG-Loc algorithm with the distributed
method dwMDS [7], which needs peripheral anchors and
RSSI technique too. ThedwMDS algorithm locally mini-
mizes theStresscriterion defined asR(xi) =

∑
j∈V(i)(δ

2
ij −

‖xi − xj‖2)2. For comparative experimentations, node loca-
tions were randomly generated over a square surface90× 90,
each configuration being used by the two methods. Sensor
ranger was fixed to20, so that many sensors were anchor-
blind. Detection accuracyσ was fixed to

√
10. ThedwMDS

algorithm performs a gradient descent at each iteration on
a four-degree polynomial, which significantly increases its
computation complexity compared to our method. In addi-
tion, dwMDScan be entrapped into local minima. Three hun-
dreds simulations with 8 cycles each were run. CPU alloca-
tion mean time fordwMDSwas equal to130.17 seconds per
cycle, and39.79 seconds per cycle for our algorithm (Matlab
6.1, CPU3.40 GHz,1.00 Go RAM). Fig. 4 compares conver-
gence speed and steady-state error of both algorithms. The
mean distance error per sensor, averaged over300 configu-
rations, is presented in Tab. 3. Simulations were also per-



Fig. 3. The area colored in gray represents the feasible region for
the sensori where connetivities constraints with its8 neighboors are
respected (range detection is fixed to20).

formed with moving sensors in order to test the accuracy and
the tracking capabilities of our algorithm (see Fig. 5).

Error mean Standard deviation
dwMDS 7.47 1.32
dG-Loc 5.11 1.82

Table 3. dwMDSanddG-Locperformances comparaison.
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Fig. 4. Convergence of mean distance error per sensor as a function
of computation time. (dG-Loc: triangles;dwMDS: squares). Each
triangle/square corresponds to a cycle.

In order to test the robustness ofdG-Loc algorithm, the
connectivities measurements between non-anchor nodes are
noised. In practice, a threshold on the received power asso-
ciated to the sensor range is fixed. If the signal power of the
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Fig. 5. Evolution of mean distance error per sensor, within a mobile
framework. Random moving vectors for each sensor are distributed
according to a Gaussian function with mean8 and variance equal to
1, and motions are strictly allowed inside the experimental surface.

sensorj received at sensori is higher than the threshold, the
neighboor relation between nodei and j is admitted. Oth-
erwise, the maximum spotting sensor ranger is considered
surpassed and sensori andj are not connected. However, it
has to be considered that detection measurement accuracy de-
grades with distance on RSS receiver [7]. Thus, we consider
that a sensori detects a neighboor nodej with a probabil-
ity 1 if ‖xi − xj‖ < r

2 . Nevertheless, there is a probability
of non-detection equal to0.2 when r

2 ≤ ‖xi − xj‖ ≤ r i.e.
δcon
ij takes the value0. The probability of false alarm which

consists in detecting a non-neighboor sensor, distanced by3r
2

to the maximum, is fixed to0.1 (δcon
ij takes the value1 despite

r < ‖xi−xj‖ ≤ 3r
2 ). The mean distance error per sensor with

noised connectivities measurements at each cycle, averaged
over300 simulations, is presented in the Fig. 6. Performance
results are shown for differentN values (number of nodes).
We note that localization performances are significantly de-
graded for low densities.

6. CONCLUSION

In this paper, we have shown that our algorithm offers in-
teresting performance compared to a state-of-the-art models.
This model offers good opportunities with incorporing inter-
distances measurements instead of connectivities in the mean
Gamma distribution. We are more interested now in inves-
tigating kernel approaches which offers a non-linear denois-
ing process and is strongly related toMetric MDSresolution.
Preliminary results show that performances are better when
proximities measurements are highly corrupted such as con-
nectivities.
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Fig. 6. Evolution of mean distance error per sensor function of
network density (m = 8, s = 20, N varying)
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