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a b s t r a c t

Statistical inference subject to nonnegativity constraints is a frequently occurring problem in learning
problems. The nonnegative least-mean-square (NNLMS) algorithmwas derived to address such problems
in an online way. This algorithm builds on a fixed-point iteration strategy driven by the Karush–Kuhn–
Tucker conditions. It was shown to provide low variance estimates, but it however suffers from un-
balanced convergence rates of these estimates. In this paper, we address this problem by introducing a
variant of the NNLMS algorithm. We provide a theoretical analysis of its behavior in terms of transient
learning curve, steady-state and tracking performance. We also introduce an extension of the algorithm
for online sparse system identification. Monte-Carlo simulations are conducted to illustrate the perfor-
mance of the algorithm and to validate the theoretical results.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Online learning aims at determining a mapping from a dataset to
the corresponding labels when the data are available in a sequential
fashion. In particular, algorithms such as the Least-Mean-Square
(LMS) and the Recursive Least-Square (RLS) algorithms minimize the
mean square-error cost function in an online manner based on in-
put/output measurement sequences [1,2]. In practice, rather than
leaving the parameters to be estimated totally free and relying on
data, it is often desirable to introduce some constraints on the
parameter space. These constraints are usually introduced to impose
some specific structures, or to incorporate prior knowledge, so as to
improve the estimation accuracy and the interpretability of results in
learning systems [3,4]. The nonnegativity constraint is one of the
most frequently used constraints among several popular ones [5]. It
can be imposed to avoid physically unreasonable solutions and to
comply with physical characteristics. For example, quantities such as
intensities [6,7], chemical concentrations [8], and material fractions
of abundance [9] must naturally fulfill nonnegativity constraints.
Nonnegativity constraints may also enhance the physical interpret-
ability of some analyzed results. For instance, Nonnegative Matrix
Factorization leads to more meaningful image decompositions than
Principle Component Analysis (PCA) [10,11]. PCA and neural net-
works can also be conducted subject to nonnegativity constraints in
order to enhance result interpretability [12,13]. Finally, there are

important problems in signal processing that can be cast as
optimization problems under nonnegativity constraints [14]. Other
applications of learning systems related to nonnegativity constraints
can be found in [15–17,5,18–20].

Nonnegativity constrained problems can be solved in a batch
mode via active set methods [21,22], gradient projection methods
[23,24], and multiplicative methods [25], to cite a few. Online
system identification methods subject to nonnegativity constraints
can also be of great interest in applications that require to adap-
tively identify a dynamic system. An LMS-type algorithm, called
the non-negative least-mean-square (NNLMS) algorithm, was
proposed in [26] to address the least-mean-square problem under
nonnegativity constraints. It was derived based on a stochastic
gradient descent approach combined with a fixed-point iteration
strategy that ensures convergence toward a solution satisfying the
Karush–Kuhn–Tucker (KKT) conditions. In [27], several variants of
the NNLMS were derived to improve its convergence behavior in
some sense. The steady-state performance of these algorithms was
analyzed in [28]. It was observed that one limitation of the NNLMS
algorithm is that the filter coefficients suffer from unbalanced
convergence rates. In particular, convergence of small coefficients
in the active set (the set of zero-valued optimum weights), that is,
those tending to zero at steady-state, progressively slows down
with time and almost stalls when approaching the steady-state
(see [27] and also Fig. 3(a)). Another limitation of the NNLMS al-
gorithm is its vulnerability to the occurrence of a large coefficient
value spread. A large spread of coefficient values in NNLMS lead to
a large spread of the weight updates, increasing the coefficient
variances and complicating the choice of an adequate step-size.
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The Exponential NNLMS algorithm was proposed in [27] to alle-
viate the first limitation. This algorithm applies a Gamma scaling
function to each component of the NNLMS update. Although this
NNLMS variant leads to more balanced coefficient convergence
rates, it does not completely solve large coefficient update spread
problem, as the scaling function is still unbounded on the coeffi-
cient values. Moreover, the exponential scaling operation tends to
be computationally expensive for real-time implementations re-
quiring a large number of coefficients. Thus, it is of interest to
investigate alternative algorithms that may simultaneously ad-
dress these two NNLMS limitations.

In this paper, we propose a variant of the NNLMS algorithm
that balances more efficiently the convergence rate of the different
filter coefficients. The entries of the gradient correction term are
reweighted by a bounded differentiable sign-like function at each
time instant. This gives the filter coefficients balanced convergence
rates and largely reduces the sensitivity of the algorithm to large
coefficient spreads. The stochastic behavior of the algorithm is
then studied in detail. A statistical analysis of its transient and
steady-state behavior leads to analytical models that are able to
accurately predict the algorithm performance. In particular, con-
trary to a previous analysis [27] the algorithm tracking behavior is
studied using a nonstationarity model that allows for a bounded
covariance matrix of the optimal solution, a more practical sce-
nario. The accuracy of the derived analytical models is verified
through Monte Carlo simulations. Finally, the applicability of the
proposed algorithm to problems whose definition does not specify
nonnegativity constraints on the coefficients is illustrated through
an example of identification of sparse system responses.

The rest of this paper is organized as follows. Section 2 reviews
the problem of system identification under nonnegativity con-
straints and briefly introduces the NNLMS algorithm. Section 3
motivates and introduces the new variant of the NNLMS algo-
rithm. In Section 4, the behavior in the mean and mean-square-
error sense, and the tracking performance of this algorithm are
studied. Section 5 provides simulation results to illustrate the
properties of the algorithm and the accuracy of the theoretical
analysis. Section 6 concludes the paper.

In this paper normal font letters (x) denote scalars, boldface
small letters (x) denote vectors, boldface capital letters (X) denote
matrices with I being the identity matrix. All vectors are column
vectors. The superscript (·)⊤ represents the transpose of a matrix or
a vector, {·}tr denotes trace of a matrix, and {·}E denotes statistical
expectation. Either Dx or { … }D x x, , N1 denote a diagonal matrix
whose main diagonal is the vector = [ … ]⊤x x x, , N1 . The operator

{·}diag forms a column vector with the main diagonal entries of its
matrix argument.

2. Online system identification subject to nonnegativity
constraints

Consider an unknown system with input-output relation
characterized by the linear model:

α( ) = ( ) + ( ) ( )⋆⊤xy n n z n 1

with α α α α= [ … ]⋆ ⋆ ⋆ ⋆ ⊤, , , N1 2 an unknown parameter vector, and
( ) = [ ( ) ( − ) … ( − + )]⊤x n x n x n x n N, 1 , , 1 the vector of regressors

with positive definite correlation matrix >R 0x . The input signal x
(n) and the desired output signal y(n) are assumed zero-mean
stationary. The modeling error z(n) is assumed zero-mean sta-
tionary, independent and identically distributed (i.i.d.) with var-
iance sz2, and independent of any other signal. We seek to identify
this system by minimizing the following constrained mean-square
error criterion:

α α

α

= ( )

≥ ∀ ( )
α

J

i

arg min

subject to 0, 2

o

i

where the nonnegativity of the estimated coefficients is imposed
by inherent physical characteristics of the system, and α( )J is the
mean-square error criterion

α α( ) = {[ ( ) − ( )] } ( )⊤xJ E y n n 32

and αo is the solution of the constrained optimization problem (2).
The Lagrange function associated with this problem is given by

α α λ αλ( ) = ( ) − ⊤L J, , with λ being the vector of nonnegative La-
grange multipliers. The KKT conditions for (2) at the optimum αo

can be combined into the following expression [29,26]

αα [ − ∇ ( )] = ( )α J 0 4i
o o

i

where ∇α stands for the gradient operator with respect to α. Im-
plementing a fixed-point strategy with (4) leads to the compo-
nent-wise gradient descent updating rule [26]

α αα α η α( + ) = ( ) + ( ) ( ( )) ( )[ − ∇ ( ( ))] ( )αn n n f n n J n1 5i i i i i

where η( )n is the positive step size that controls the convergence
rate, α( ( ))f ni is a nonnegative scalar function of vector α that
weights its ith component αi in the update term. Selecting dif-
ferent functions α( ( ))f ni leads to different adaptive algorithms.
Particularly, making α( ( )) =f n 1i , using stochastic gradient ap-
proximations as done in deriving the LMS algorithm, and rewriting
the update equation in vectorial form, we obtain the NNLMS al-
gorithm [26]:

α α η( + ) = ( ) + ( ) ( ) ( ) ( ) ( )αD xn n n n n e n1 6

where ( )αD n is the diagonal matrix in which the elements of α( )n
compose the main diagonal, and e(n) is the estimation error at
time instant n:

α( ) = ( ) − ( ) ( ) ( )⊤ xe n y n n n . 7

This iteration is similar in some sense to the expectation max-
imization (EM) algorithm [30]. The algorithm requires to be in-
itialized with positive values. Suppose that α( )n is nonnegative at
time n. If the step size satisfies

η< ( ) ≤ − ( ) ( ) ( )
n

e n x n
0 min 1 ,

8i i

for all ∈ { ( ) ( ) < }i j e n x n: 0j , the nonnegativity constraint is satisfied
at time +n 1 with (6). If ( ) ( ) ≥e n x n 0i , there is no restriction on the
step size to guarantee the nonnegativity constraint. Convergence
of the NNLMS algorithm was analyzed in [26]. Its steady-state
excess mean-square error (EMSE) was studied in [28].

3. Motivating facts and the algorithm

3.1. Motivation

The weight update in (6) corresponds to the classical stochastic
gradient LMS update with its ith component scaled by α ( )ni . The
mean value of the update vector ( ) ( ) ( )αD xn n e n is thus no longer in
the direction of the gradient of α( )J , as is the case for LMS. On the
other hand, it is exactly this scaling by α ( )ni that enables the cor-
rections α ( ) ( ) ( )n x n e ni i to reduce gradually to zero for coefficients
α ( )ni tending to zero, which leads to low-variance estimates for
these coefficients.1 If a coefficient α ( )nk that approaches zero turns

1 The update for these weights will be necessarily small in amplitude as α ( )ni
tends to zero, thus leading to a small variance of the adaptive coefficient.
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negative due to the stochastic update, its negative sign will induce
a change α ( ) ( ) ( )n x n e nk k in the kth weight component that is con-
trary to what would indicate the stochastic gradient, and thus
towards zero.

The presence of the factor α ( )ni in the update α ( ) ( ) ( )n x n e ni i of
the ith coefficient leads to different convergence rates for coeffi-
cients of different values. This is particularly problematic for the
coefficients in the active set as they approach zero. Because of the
factor α ( )ni , the convergence of these coefficients eventually stalls
due to insignificant correction along their axes. Though the algo-
rithm leads to a very low steady-state error for these coefficients,
this happens only after a long convergence process. In addition,
the dispersion of coefficient values introduces difficulties for step
size selection and coefficient initialization, since each estimated
coefficient acts as a different directional gain for the same step
size. In order to address these problems, it is of interest to derive a
variant of the NNLMS algorithm that satisfies the following
requirements:

! The coefficients should converge to the fixed point satisfying
(4), so that it still solves the nonnegativity constrained problem
(2).

! The sensitivity of the algorithm (6) to the spread of the
coefficient values at each iteration should be reduced, yielding
more balanced convergence rates and steady-state weight
errors than the original algorithm (6).

! The performance improvement should be achieved without
introducing significant computational burden.

3.2. The inversely proportional NNLMS algorithm

The Exponential NNLMS [27] replaces the gradient scaling α ( )ni
with α α α( ) = ( ( ))| ( )|γ γn n nsgni i i , where γ γ γ= /1 2 with γ1 and γ2 being
two odd numbers such that γ γ> > 02 1 . This variant mitigates the
aforementioned drawbacks of NNLMS to some extent, but in-
troduces additional computational burden. In addition, the stabi-
lity of the algorithm is still affected by the weight dynamics since
α ( )γ ni is unbounded.

To reduce the slow-down effect caused by the factor α ( )ni in the
update term of (6) while keeping zero as a fixed-point to attract
the entries α ( )ni in the active set, we propose the following ex-
pression for α( ( ))f ni in (5):

α α( ( )) = ( ) = | ( )| + ϵ ( )
f n f n

n
1

9i i
i

with ϵ being a small positive parameter so that ( ) >f n 0i as needed.
Defining the diagonal matrix ( )D nf with ith diagonal entries given
by fi(n), and using this matrix to reweight the gradient correction
term at each iteration, leads to the following algorithm:

α α αη η( + ) = ( ) + ( ) ( ) ( ) ( ) = ( ) + ( ) ( ) ( ) ( )αD D x D xn n n n n e n n n n e n1 10f w

where

( ) = ( ) ( ) ( )αD D Dn n n 11w f

is the diagonal matrix with ith element

α α
α( ) = ( ) ( ) = ( )
| ( )| + ϵ ( )

w n f n n
n

n
.

12i i i
i

i

In expression (10), as each entry of the NNLMS correction term is
reweighted by a scalar value that is inversely proportional to
α| ( )| + ϵni , we name this algorithm Inversely-Proportionate NNLMS
(IP-NNLMS) by analogy with the terminology Proportionate LMS
[31]. The weight wi(n) corresponds to the application of a function
φ ( ) = (| | + ϵ)x x x/IPNNLMS at α= ( )x ni . The function φ ( )xIPNNLMS is
plotted in Fig. 1 for ϵ = 0.1 and ϵ = 0.01. Observe that φ ( )xIPNNLMS is

a smooth approximation of the sign function. The same function
has been considered in [32] in the context of sparsity enhancing by
reweighted ℓ1 minimization. The correction terms wi(n) in (12) are
bounded, and adjustments in the positive orthant are close to 1
(except around the origin), which does not impose scaling effect
on the gradient entries. Correction terms also converge to 0 for
filter coefficients α ( )ni that gradually tend to 0, so as to ensure
convergence for these coefficients in the active set. Furthermore,
as the gradient correction terms are in ] − [1, 1 , the sensitivity of
the algorithm to the dynamic range of the filter coefficients is
reduced. The corresponding gradient correction terms for the
NNLMS and Exponential NNLMS algorithms are determined by the
application of functions φ ( ) =x xNNLMS and φ ( ) = | | γx x xENNLMS . These
functions are also depicted in Fig. 1 (for γ = 3/7) for comparison.

3.3. Computational complexity:

A comparison of the computational complexities in the im-
plementation of the NNLMS, Exponential NNLMS and IP-NNLMS
algorithms needs to consider only the weight update term, since
this term is what distinguishes the three algorithms. We consider
their real-time implementation using N coefficients and m-bit
integer operations. Also, because there exists a variety of multi-
plication algorithms, let us denote by ( )4 m the complexity of the
chosen algorithm to multiply two m-bit integers. The NNLMS
update (6) sets the weighting function wi(n) to α ( )ni , and has
complexity of ( ( ))6 4N m . The Exponential NNLMS [27] sets

α α( ) = γ−fi i
1 in (5), which leads to α α( ) = | ( )| ( )γw n n ni i i . Evaluating

α ( )γ ni has complexity of ( ( ) )6 4 m mlog because it uses exponential
and logarithm elementary functions. The Exponential NNLMS thus
has complexity of ( ( ) )6 4N m mlog . The IP-NNLMS update (10) sets

( ) = α
α

( )
| ( ) | +ϵw ni

n
n
i

i
, and thus has complexity of ( ( ))6 4N m since eval-

uating each fi(n) has complexity of ( ( ))6 4 m . Hence, IP-NNLMS has
the same order of complexity as NNLMS, while the complexity of
the Exponential NNLMS algorithm is larger than that of the other
two by a factor of mlog . Then, IP-NNLMS addresses the two im-
portant NNLMS limitations described above without a significant
increase in computational complexity.

Fig. 2 presents the computation time required for the calcula-
tion of the weight updates of NNLMS, IP-NNLMS and Exponential
NNLMS for 106 iterations on a laptop with Matlab as a function of
the number of filter coefficients N. This experiment shows that
complexity of these algorithms increases linearly with N, with a
factor that is significantly larger for Exponential NNLMS.

Fig. 1. Gradient scaling function of NNLMS, IP-NNLMS ( ϵ = 0.1 and 0.01), and Ex-
ponential NNLMS with γ = 3

7
[27]. Note that w(x) is unbounded for NNLMS and

Exponential NNLMS.
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4. Stochastic behavior study

Direct analysis of the IP-NNLMS update relation for deriving
stochastic behavior models is made difficult by the nonlinearity of
the correction term. Even for the Proportionate LMS algorithm, the
analysis was conducted by considering a fixed reweighting matrix
[31]. In this section, we shall derive analytical models for the IP-
NNLMS algorithm. The analysis requires hypotheses and approx-
imations for feasibility. Simulations to be presented in Section 5
will validate the proposed models.

4.1. Weight error equation

Define the weight error vector ( )v n as the difference between
the estimated weight α( )n and the unconstrained optimum α⋆,
that is,

α α( ) = ( ) − ( )⋆v n n . 13

Subtracting α⋆ from both sides of the weight update relation (10)
yields

η( + ) = ( ) + ( ) ( ) ( ) ( )v v D xn n n n e n1 14w

The estimation error e(n) can also be expressed in terms of ( )v n as
follows:

α( ) = ( ) − ( ) ( ) = ( ) − ( ) ( ) ( )⊤ ⊤x v xe n y n n n z n n n . 15

Using (14) and (15), the weight error update relation can then be
expressed as

η η( + ) = ( ) − ( ) ( ) ( ) ( ) + ( ) ( ) ( ) ( )⊤v v D x x v D xn n n n n n n n z n1 16w w

4.2. Statistical hypotheses and approximations

The analysis is performed for an input signal x(n) stationary,
zero-mean and Gaussian with autocorrelation matrix

= { ( ) ( )}⊤R x xE n nx , and under the following statistical assumptions
and approximations:

(A1) The modeling error z(n) is zero-mean, independent and
identically distributed (i.i.d.), Gaussian, and statistically in-
dependent of any other signal.

(A2) ( ) ( )⊤x xn n and ( )v n are statistically independent. This assumption
is usually termed modified independence assumption (MIA), and

is required for mathematical tractability. MIA is a milder as-
sumption than the often employed independence assumption
(IA), which assumes statistical independence of ( )x n and ( )v n [2].

(A3) In evaluating higher order (greater than 2) moments of ( )v n , we
approximate ( ) ( )⊤v vn n by its mean value ( ) = { ( ) ( )}⊤K v vn E n n .
This approximation preserves the mean (in odd order mo-
ments) and fluctuation behaviors of ( )v n while keeping the
mathematical problem tractable. It has been previously em-
ployed with success in analyses of adaptive algorithms with
weight updates that are nonlinear with respect to the weight
vector [33].

The simulation results will show that Assumptions A1 and A2 and
Approximation A3 lead to analytical models that are accurate
enough in predicting the behavior of the algorithms for design
purposes.

4.3. Mean weight behavior analysis

Taking the expected value on both sides of (16) and using A1
we note that the last term on its RHS is equal to zero. The eva-
luation of { ( ) ( ) ( ) ( )}⊤D x x vE n n n nw requires approximations due to
the strong nonlinearity on ( )v n . An approximation that leads to
mathematical tractability without significantly compromising ac-
curacy is obtained by using a zeroth-order approximation of the
scaling factors wi(n) about α{ ( )}E ni . Thus, we write

α
α

α
α( ) = ( )

| ( )| + ϵ ≈ { ( )}
| { ( )}| + ϵ = …

( )
w n

n
n

E n
E n

i N, for 1, , .
17i

i

i

i

i

Using this approximation in the expectation of (16) yields

η α
α

α
α{ ( + )} = { ( )} − { ( )}

| { ( )}| + ϵ … { ( )}
| { ( )}| + ϵ

{ ( ) ( ) ( )} ( )⊤

⎧⎨⎩
⎫⎬⎭v v D

x x v

E n E n
E n

E n
E n

E n

E n n n

1 , ,

. 18

N

N

1

1

Using (13) and A2, the mean weight error behavior can finally be
described by

η α
α

α
α

{ ( + )} = { ( )}

− { ( ) + }
| { ( ) + }| + ϵ

… { ( ) + }
| { ( ) + }| + ϵ

{ ( )}
( )

⋆

⋆

⋆

⋆
⎧⎨⎩

⎫⎬⎭

v v

D R v

E n E n

E v n
E v n

E v n
E v n

E n

1

, , .
19

x
N N

N N

1 1

1 1

Monte Carlo simulations reported in Section 5, and depicted in
Fig. 3, illustrate the consistency of this model.

Model (19) is nonlinear with respect to ( )v n , which makes
derivation of a condition for stability difficult. Interested readers
are referred to [26] for a related analysis done for the NNLMS al-
gorithm and based on a fixed-point equation analysis.

4.4. Transient excess mean-square error model

The objective of this section is to derive a model for the tran-
sient mean-square error (MSE) behavior of the algorithm. Squaring
(15) and using A1 and A2 yields following expression for the MSE:

σ
{ ( )} = {( ( ) − ( ) ( ))( ( ) − ( ) ( ))}

= + { ( )} ( )

⊤ ⊤v x v x

R K

E e n E z n n n z n n n

tr n . 20xz

2

2

where ( ) = { ( ) ( )}⊤K v vn E n n is the autocorrelation matrix of the
weight error vector. The second term in the RHS of (20) in-
corporates the excess mean-square error (EMSE), which is due to
the vector α α( ) −n o, and part of the minimum MSE as, the latter is
composed by the noise power sz2 and by the power contributed by
the vector difference α α−⋆ o, which affects ( )v n . As the analytical
determination of αo is not possible except for the case of white

Fig. 2. Computation time in seconds of NNLMS, IP-NNLMS and Exponential NNLMS
for 106 iterations as a function of the number of filter coefficients N.
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input signals, we derive a model for the behavior of
ζ( ) = { ( )}R Kn tr nx . Thus, in the sequel we determine a recursive
update equation for ( )K n .

Although the zeroth-order approximation (17) may be suffi-
cient for deriving accurate mean weight behavior models, it is
insufficient to accurately characterize the second-order behavior
of the algorithm. To proceed with the analysis, we then

approximate the nonlinear scaling term (12) by its first-order
Taylor series about α{ ( )}E ni

α
α α α α( ) ≈ { ( )}

| { ( )}| + ϵ + ∇ ( { ( )})( ( ) − { ( )}) = ( )

+ ( ) ( ) ( )

w n
E n

E n
w E n n E n r n

s n v n 21

i
i

i
i i i i

i i

Fig. 3. Mean weight behavior of NNLMS, IP-NNLMS and Exponential NNLMS algorithms. Left column: uncorrelated input. Right column: correlated input with τ = 0.5. Red
curves were obtained with theoretical models, and blue curves were obtained by averaging over 100 Monte Carlo simulations. (For interpretation of the references to color in
this figure caption, the reader is referred to the web version of this paper.)
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where

α
α

α( ) = { ( )} +
| { ( )} + | + ϵ

− ∇ ( { ( )} + ) { ( )}
( )

⋆

⋆
⋆r n

E v n
E v n

w E v n E v n
22i

i i

i i
i i i

α( ) = ∇ ( { ( )} + ) ( )⋆s n w E v n . 23i i i

Defining the diagonal matrix ( ) = { ( ) … ( )}D Dn s n s n, ,s N1 , (21) can be
written in vector form as

( ) ≈ ( ) + ( ) ( ) ( )w r D vn n n n . 24s

Post-multiplying (14) by its transpose, using (24), taking the ex-
pected value, and using A1–A3, yields

η
η
η
η σ

( + ) = ( ) − ( ( ) ( ) + ( ) ( ))
− ( ( ) ( ) + ( ) ( ))
+ ( ( ) + ( ) + ( ) + ( ))
+ ( ( ) + ( ) + ( ) + ( )) ( )

⊤

⊤

⊤

⊤

K K P K K P

P K K P

P P P P

P P P P

n n n n n n

n n n n

n n n n

n n n n

1

25z

1 1

5 5
2

6 7 7 8
2 2

2 3 3 4

with

( ) = { ( ) ( ) ( )} = ( ) ( )⊤P D r x D Rn E n n n n 26x r x1

( ) = { ( ) ( ) ( ) ( )} = ( ) ( ) ( )⊤P D r r D D R Dn E n n n n n n 27x x r x r2

( ) = { ( ) ( ) ( ) ( ) ( )} ≈ ( ) { ( )} ( ) ( )⊤P D r v D D D R D Dn E n n n n n n E n n 28x s x r x v s3

( ) = { ( ) ( ) ( ) ( ) ( ) ( )} ≈ ( )( ○ ( ))
( ) ( )

⊤P D D v v D D D R K

D

n E n n n n n n n n

n 29
x s s x s x

s

4

( ) = { ( ) ( ) ( ) ( )} = { { ( )}} ( ) ( )⊤P v x D D R v Dn n n n n diag E n n 30x s x s5

( ) = { ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )} ≈ ( ) ( )
( ) ( )

⊤ ⊤ ⊤P v x D r r D x v D Z

D

n E n n n n n n n n n n

n 31
x x r

r

6

( ) = { ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )} ≈ ( )
( ) { ( )} ( ) ( )

⊤ ⊤ ⊤P v x D r v D D x v D

Z D D

n E n n n n n n n n n n

n E n n 32
x s x r

v s

7

( ) = { ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )}
≈ ( )( ( )○ ( )) ( ) ( )

⊤ ⊤ ⊤P v x D D v v D D x v

D Z K D

n E n n n n n n n n n n

n n n n 33
x s s x

s s

8

where ( ) = { ( ) … ( )}D Dn r n r n, ,r N1 , the symbol ○in (30) denotes the
Hadamard product, and ( )Z n in (31)–(33) is given by

( ) = ( ) + { ( )} ( )Z R K R R K Rn n2 tr n . 34x x x x

The derivation of the expectations in (26)–(33) is lengthy but
straightforward using A1–A3, and the details are omitted to con-
serve space.

Using (26)–(33) with (25) leads to a recursive model for the
transient behavior of ( )K n . Monte Carlo simulations reported in
Section 5, and depicted in Fig. 4, illustrate the consistency of this
model.

4.5. Steady-state performance and tracking properties

To characterize the steady-state performance and the tracking

properties of the algorithm, we consider in this section the fol-
lowing time-variant unknown parameter vector [34,2]

α α θ( ) = + ( ) ( )⋆ ⋆n n 35

with

θ θρ( ) = ( − ) + ( ) ( )qn n n1 36

where ρ− < <1 1 and ( )q n is a zero-mean i.i.d. sequence with
covariance matrix σ=R Iq q

2 . At steady-state, the covariance matrix
of θ( )n is then given by

ρ
=

− ( )θR R1
1

.
37q2

With the unknown parameter vector (35), the weight error vector
( )v n is given by

α α( ) = ( ) − ( ) ( )⋆v n n n . 38

Assuming convergence of α( )n to α(∞), the weight error vector
(38) can then be expressed as

α α α α
α α θ α α

( ) = [ ( ) − { (∞)}] + [ { (∞)} − ( )]
= [ ( ) − { (∞)} − ( )] + [ { (∞)} − ] ( )

⋆

⋆
v n n E E n

n E n E . 39

We define

α α θ′( ) = ( ) − { (∞)} − ( ) ( )v n n E n 40

and note that the second term on the RHS of (39) is equal to
{ (∞)}vE since θ{ ( )} =E n 0. Then, the estimation error at instant n

can be written as

Fig. 4. Learning curves of NNLMS, IP-NNLMS and Exponential NNLMS algorithms.
Left column: uncorrelated input. Right column: correlated input with τ = 0.5.
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( ) = ( ) − ′ ( ) ( ) − { (∞)} ( ) ( )⊤ ⊤v x v xe n z n n n E n . 41

Hence, ζ σ( ) = { ( )} −n E e n z
2 2 can be expressed as

ζ( ) = {[ ( ) ′( )] } + { { (∞)} { (∞)}} + { ′ ( )}

{ (∞)} ( )
ζ ζ

⊤

′( )

⊤ ⊤

∞
     x v R v v v

R v

n E n n E n

E

tr E E 2

. 42

x

x

n

2

To determine ζ( )→∞ nlimn we note that the second term ζ∞ on the
RHS of (42) is deterministic. Also, the third term vanishes since

{ ′(∞)} =→∞ vElim 0n . Then, we need to evaluate ζ′( )→∞ nlimn . Sub-
tracting (40) at nþ1 from the same expression at n and using (10)
and (36) we have

θη ρ′( + ) = ′( ) + ( ) ( ) ( ) + ( − ) ( ) − ( + ) ( )v v D x qn n n n e n n n1 1 1 . 43w

For the analysis that follows, we group the weights wi(n) into two
distinct sets. The set +: contains the indices of the weights that
converge in the mean to positive values, namely,

= { { (∞)} > } ( )+: i E w: 0 . 44i

The set :0 contains the indices of the weights that converge in the
mean to zero, namely,

= { { (∞)} = } ( ): i E w: 0 . 45i0

Considering that the nonnegativity constraint is always sa-
tisfied at steady-state, if { (∞)} =E w 0i for all ∈ :i 0, then α (∞) = 0i

for all ∈ :i 0 and for any realization. This implies from (40) that:

θ′(∞) = − (∞) ∈ ( ):v i, for all . 46i i 0

Now let ( )−D nw
1 be the diagonal matrix with entries

[ ( )] = ( ) ∈

∈ ( )

− +
⎧
⎨⎪
⎩⎪

:

:
D n w n

i

i

1 ,

0, 47
w ii i

1

0

and I the diagonal matrix defined as

[ ] =
∈
∈ ( )

+
⎪

⎪⎧⎨⎩
:
:

I
i

i

1,
0, . 48

ii
0

With these matrices, we have

( ) ( ) = ( )−D D In n . 49w w
1

Now, evaluating the weighted square-norm ‖·‖
( )

−D
2

w n
1 of both sides of

(43), taking the expected value of both sides, and taking the limit
as → ∞n we have

θ

θ

θ

η η

ρ

ρ η ρ

‖ ′( + )‖

= ‖ ′( )‖

+ { ′ ( ) ( ) ( )} + ( ) ( ) ( ) ( )

+ ( − ) ‖ ( )‖ + ‖ ( + )‖

+ ( − ) ′ ( ) ( ) ( ) + ( − )

{ ( ) ( ) ( )}
( )

→∞ ( )

→∞ ( )

⊤ ⊤

( ) ( )

⊤ −

⊤

−

−

− −

⎧⎨⎩
⎫⎬⎭

⎛
⎝⎜

⎧⎨⎩
⎫⎬⎭

⎧⎨⎩
⎫⎬⎭

⎧⎨⎩
⎫⎬⎭

⎧⎨⎩
⎫⎬⎭

⎧⎨⎩
⎫⎬⎭

⎞
⎠⎟

v

v

v Ix x ID x

q

v D

x I

E n

E n

E n n e n E n n n e n

E n E n

E n n n

E e n n n

lim 1

lim

2

1 1

2 1 2 1

.
50

D

D

D D

n n

n n

w

n n

w

2

2

2 2

2 2 2

1

w

w

w w

1

1

1 1

Assuming convergence, the following relation is valid at steady-
state:

‖ ′( + )‖ = ‖ ′( )‖
( )→∞ ( ) →∞ ( )− −

⎧⎨⎩
⎫⎬⎭

⎧⎨⎩
⎫⎬⎭v vE n E nlim 1 lim .

51D Dn n n n
2 2

w w
1 1

Before evaluating all the terms on the RHS of (50), we calculate the
cross-covariance matrix θ{ ′( ) ( )}⊤vE n n at steady-state, namely,

θΓ = { ′( ) ( )}
→∞

⊤vE n nlim .
n

Post-multiplying both sides of (43) by θ ( + )⊤ n 1 , taking expected
value under A1 and A2 and taking the limit as → ∞n , we have

θ θ θ

η

ρ
ρ ηρ ρ ρ

Γ

Γ Γ

= {[ ′( ) + ( ) ( ) ( )]

( + ) + [( − ) ( ) − ( + )] ( + )}
= [ − { (∞)} ] + [ ( − ) − ] ( )θ

→∞
⊤ ⊤

v D x

q

D R R R

E n n n e n

n n n n

E

lim

1 1 1 1

1 , 52x q

n
w

w

which yields

ρ ρ ηΓ = + [ ( − { (∞)} ) − ]
( )

−⎛
⎝⎜

⎞
⎠⎟ I D R I RE1

1
.

53x qw
1

Using (41) and A2, the second term on the RHS of (50) for
→ ∞n can be expressed as

ζ ζ

Γ

{ ′ ( ) ( ) ( )}

= − { ′ ( ) ( ) ( ) ′( ) + ′ ( ) ( ) ( ) { (∞)}}

= − ′(∞) + { ′ ( )( − ) ( ) ( ) ′( )} = − ′(∞)

− { ( − )} ( )

→∞
⊤

→∞
⊤ ⊤ ⊤ ⊤

→∞
⊤ ⊤

v Ix

v Ix x v v Ix x v

v I I x x v

R I I

E n n e n

E n n n n n n n E

E n n n n

lim

lim

lim

tr 54x

n

n

n

where we used θ′(∞) = − (∞)vi i for ∈ :i 0 (see (46)), and
{ ′(∞)} =vE 0. Consider now the third term on the RHS of (50). As

this term is of second order in η and we are interested on its value
at steady-state, we approximate its evaluation by disregarding the
correlation between ( )e n2 and ( ) ( ) ( )⊤x I D xn n nw for → ∞n . This
approximation is reasonable because ( ) ( ) ( )⊤x I D xn n nw corresponds
to the energy of the input vector components exciting the nonzero
coefficients (here assumed to be much larger than ϵ so that the
corresponding wi approach 1 per (12)), and this part of the input
vector tends to be uncorrelated with the estimation error is stea-
dy-state. Under this approximation and using A1 and A2,

σ ζ ζ

{ ( ) ( ) ( ) ( )} ≈ { { (∞)} }

( + ′(∞) + ) ( )
→∞

⊤

∞

x ID x D RE n n n e nlim tr E

. 55

x
n

w w

z

2

2

The fourth and the fifth terms in the RHS of (50) can be directly
expressed as

θ‖ ( )‖ = { { (∞)} }
( )θ→∞ ( )

−
−

⎧⎨⎩
⎫⎬⎭ D RE nlim tr E

56Dn n
w

2 1

w
1

‖ ( + )‖ = { { (∞)} }
( )→∞ ( )

−
−

⎧⎨⎩
⎫⎬⎭q D RE nlim 1 tr E

57D
q

n n
w

2 1

w
1

where we have used the independence of both θ( )n and ( )q n with
respect to ( )−D nw

1 as → ∞n , as the latter becomes approximately
time invariant for the nonzero coefficients. Using the same as-
sumptions and approximations as above, the sixth term on the
RHS of (50) can be written as

θ Γ{ ′ ( ) ( ) ( )} = { { (∞)} } ( )→∞
⊤ − −v D DE n n nlim tr E , 58n

w w
1 1

and, finally, the last term is given by

θ θ

Γ

{ ( ) ( ) ( )} = − { ( ) ( ) ( ) ( )}

= − { } ( )
→∞

⊤
→∞

⊤ ⊤x I v x x I

I R

E e n n n E n n n nlim lim

tr 59x

n n
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Replacing (51)–(59) into (50) and solving the equation with re-
spect to ζ′(∞), we have

ζ η σ ζ β η γ
η

′(∞) = { { (∞)} }( + ) + +
− { { (∞)} } ( )

∞ −D R
D R

tr E
2 tr E 60

x

x

w z

w

2 1

where

β Γ= { ( − )} ( )R I Itr 61x

γ ρ η ρΓ Γ= { { (∞)}[ + ( − ) ]} − ( − ) { } ( )
−D R I Rtr 2 E 1 2 1 tr . 62q xw

1

with Γ given by (52). Finally, using (42), we obtain the steady-state
result:

ζ η σ ζ β η γ
η ζ(∞) = { { (∞)} }( + ) + +

− { { (∞)} } +
( )

∞ −
∞D R

D R
tr E

2 tr E
.

63
x

x

w z

w

2 1

To obtain the steady-state performance in a stationary environ-
ment, it is sufficient to set ρ and Rq (and thus Γ) to zero in (61) and
(62).

5. Simulation results

This section presents simulation results to validate the derived
theoretical models. The simulation curves were obtained by

averaging over 100 Monte Carlo runs.

5.1. Model validation in a stationary environment

Consider the application of NNLMS-type algorithms for the
online identification of the 30-coefficient sparse impulse response

α =
− = …

= …
− ( − ) = … ( )

⋆
⎧
⎨⎪
⎩⎪

i i
i

i i

1 0.05 1, , 20
0 21, , 25

0.01 25 26, , 30. 64
i

where the last five negative coefficients were included in order to
activate the nonnegativity constraints. The input signal x(n) was
generated with the first-order AR model

τ ξ( ) = ( − ) + ( ) ( )x n x n n1 , 65

where ξ( )n was an i.i.d. zero-mean Gaussian sequence with var-

iance σ τ= −ξ 12 2 so that σ = 1x
2 , and independent of any other

signal. We considered the two settings τ = 0 and τ = 0.5. The
former corresponds to an uncorrelated input, while the latter re-
sults in a correlated input. The additive noise z(n) was zero-mean i.
i.d. Gaussian with variance σ = 0.01z

2 . The filter coefficients were
initialized with α ( ) =0 0.5i for all = …i N1, , , with N¼30.

Besides verifying the IP-NNLMS model accuracy, we also com-
pare the performance of IP-NNLMS with the original NNLMS and
the Exponential NNLMS algorithms. Their step sizes were set to
η = 0.002NNLMS , η = 0.0018ENNLMS , and η = 0.001IPNNLMS , respectively,
so that they approximatively reach the same steady-state perfor-
mance. The exponential parameter γ of the Exponential NNLMS
algorithm was set to γ = 3

7
. The parameter ϵ in the IP-NNLMS al-

gorithm was set to 0.01.
The mean weight behaviors of these algorithms are shown in

Fig. 3. The theoretical curves for the IP-NNLMS algorithm were
obtained with model (19). Those of the other two algorithms were
obtained with the models derived in [26,27]. All the theoretical
curves match well those obtained with Monte Carlo simulations.
As already mentioned, the original NNLMS algorithm is char-
acterized by low convergence rates for small coefficients. Several
NNLMS coefficients in the active set had not converged to zero
even after a long time. Compared to the NNLMS algorithm, the
Exponential NNLMS and the IP-NNLMS algorithms have more
balanced convergence rates for all coefficients. The Exponential
NNLMS, however, has a higher computational complexity than the
IP-NNLMS. Fig. 4 provides the behavior of ζ( )n for the three al-
gorithms. For the sake of clarity, only the theoretical learning
curves are represented for the NNLMS and Exponential NNLMS
algorithms. They were obtained from [26,27]. The transient
learning curves of the IP-NNLMS algorithm were obtained using
(25). The steady-state performance was estimated by (63). All
these results show that the proposed algorithm has a performance
that is at least comparable to those of the other algorithms, and
that the theoretical model accurately predict its performance.

5.2. Tracking performance in a non-stationary environment

Consider the time-varying system with coefficients defined by
the time-variant relation (35). The mean values of the coefficients
were set as in (64). The parameter ρ of the random perturbation in
(35) was set to ρ = 0.5. The random vector ( )q n had a covariance
matrix σ=R Iq q

2 , with σ = × −0.2 10q
2 4 and σ = × −5 10q

2 4 succes-
sively. The step size was set to η = −10 5. All the other parameters
were not changed compared to the previous experiment. The re-
sults for uncorrelated and correlated inputs are shown in Fig. 5. As
expected, it can be observed that the steady-state estimation error
increases with the variance sq2.

Fig. 5. Learning curves of NNLMS, IP-NNLMS and Exponential NNLMS algorithm for
a time-varying system. Left column: uncorrelated input. Right column: correlated
input with τ = 0.5. The dash-dot lines represent the steady-state ζ( )n values cal-
culated with (63). Solid learning curves were obtained by averaging over 100
Monte Carlo simulations.
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5.3. Application to sparse online system identification

Consider the online system identification problem consisting of
minimizing the MSE criterion with ℓ1-norm regularization

α α αν= {[ ( ) − ( )] } + ∥ ∥ ( )α

⊤xE y n narg min 1
2 66

o 2
1

with the parameter ν providing a tradeoff between data fidelity
and solution sparsity. This problem can be rewritten as a standard
NNLMS problem by introducing two N$1 nonnegative vectors α+

and α− such that

α α α α α= − ≥ ≥ ( )+ − + −with 0 and 0. 67

Let us define the vectors α α α˜ = { }+ −col , and
˜( ) = { ( ) − ( )}x x xn n ncol , where the operator {·}col stacks its vector
arguments on top of each other. The problem (66) can then be
reformulated as

α α α

α

ν˜ = {[ ( ) − ˜ ( ) ˜ ] } + ˜

˜ ≥ ( )
α̃

⊤ ⊤xE y n n 1arg min 1
2

subject to 0 68

o 2

where 1 is an all-one vector of length 2N. Problem (68) is a
quadratic problemwith nonnegativity constraint with respect to α̃ .
Note that although there are an infinite number of the decom-
positions satisfying (67), the regularization term α̃⊤1 forces (68) to
admit a unique solution. Using the proposed IP-NNLMS algorithm,

Fig. 6. EMSE learning curves for the four compared algorithms. The advantage of
the NNLMS-based algorithm is evident from these results.

Fig. 7. Filter coefficients corresponding to a single realization. Though all these algorithms converge to the same result in the mean sense, NNLMS based algorithms converge
more accurately for each realization, which is a favorable property for practical applications.
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problem (68) can be solved in an online manner as follows [35]:

α α η ν˜( + ) = ˜( ) + ( ) ( )[ ˜( ) ( ) − ] ( )α̃D D xn n n n n e n 11 69f

with ( )D nf being the diagonal matrix with ith diagonal entries fi(n)

defined in the form of (9), namely, ( ) = α| ˜ ( ) | +ϵf ni n
1

i
. The performance

of the algorithm can be further improved by considering a re-
weighted ℓ −norm1 approach, which leads to the algorithm

α α γη ν˜( + ) = ˜( ) + ( ) ( )[ ˜( ) ( ) − ( )] ( )α̃D D xn n n n n e n n1 70f

where the ith entry of γ( )n is given by γ( ) = α μ˜ ( ) +ni n
1

i
, with μ being a

small positive number.
The above algorithm was tested by considering the sparse

system of order N¼100 defined as follows:

α α α α
α α α

α

= = = = −
= − = =

= ( )

⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆

⋆

⎧
⎨
⎪⎪

⎩
⎪⎪

0.8, 0.5, 0.4, 0.6,

0.3, 0.2, 0.1

0, otherwise. 71i

1 3 4 5

95 96 100

The input signal was generated with the autoregressive model (65)
with τ = 0.5. The observation noise z(n) was zero-mean i.i.d.
Gaussian with variance σ = 0.1z

2 . The algorithm (70), the LMS al-
gorithm, the Sparse LMS algorithm [36] with reweighted ℓ −norm1
regularizer defined as

( )
α α η ν α

α μ
α

α μ( + ) = ( ) + ( ) ( ) − ( ( ))
| ( )| + … ( ( ))

| ( )| +
⎡
⎣
⎢⎢

⎧⎨⎩
⎫⎬⎭

⎤
⎦
⎥⎥ 72

x Dn n n e n
n

n
n

n
1

sgn
, ,

sgn N

N

1

1

and the projected-gradient algorithm given by

α α γη ν˜( + ) = { ˜( ) + [ ˜( ) ( ) − ( )] } ( )xn n n e n n 01 max ; 73

where {· ·}max ; denotes the component-wise maximum operator
applied to its vector arguments, were tested for comparison pur-
pose. The parameters ν and μ in (70) and (72) were set to ν = 0.001
and μ = 0.01, respectively. The parameter ϵ in (70) was set to
ϵ = 0.01. The step sizes were set to η = 0.002 for all the algorithms.

Fig. 6 shows the EMSE learning curves of all the algorithms. The
gain from promoting sparsity is clearly shown by the performance
of the Sparse LMS and the proposed algorithm. The proposed al-
gorithm shows lower estimation error compared with the others
since it encourages small values to converge toward 0. This ad-
vantage can be seen in Figs. 7(a)–(d), which depict instantaneous
weight values at steady-state for a single realization. The values of
filter coefficients α ( )ni with = …i 40, , 60 are shown in zoomed-in
subfigures for a clearer presentation. The IP-NNLMS algorithm
shows a clear advantage in accurately estimating these null-valued
coefficients.

6. Conclusion

In this paper, we proposed a new algorithm for solving online
learning problems subject to nonnegativity constraint. This algo-
rithm has been designed to address two important limitations of
the existing NNLMS algorithm. One limitation is the unbalanced
convergence rate for coefficients of different values, which pena-
lizes specially the coefficients in the active set (those that converge
to zero). The second limitation is the larger variability of the
NNLMS weight updates corresponding to larger coefficients, what
may complicate the choice of a suitable step-size. Both issues are
addressed through the proposition of a new scaling function for
the weight updates. The proposed function is bounded and tends
to unity for large coefficient values. Moreover, the proposed non-
linear function has a large derivative for coefficients close to zero,
what significantly accelerates the convergence of the coefficients
in the active set. We analyzed the algorithm in the mean and

mean-square-error senses, and considered the case of time-vary-
ing systems to determine its tracking properties. Simulations were
conducted to illustrate the performance of the proposed algorithm
and to validate the theoretical models. Finally, an application to
sparse identification was considered in which the nonnegativity
constraint is not a direct requirement of the defined problem.
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