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Abstract—The diffusion LMS algorithm has been extensively
studied in recent years. This efficient strategy allows to address
distributed optimization problems over networks in the case
where nodes have to collaboratively estimate a single parameter
vector. Nevertheless, there are several problems in practice that
are multitask-oriented in the sense that the optimum parameter
vector may not be the same for every node. This brings up the
issue of studying the performance of the diffusion LMS algorithm
when it is run, either intentionally or unintentionally, in a multi-
task environment. In this paper, we conduct a theoretical analysis
on the stochastic behavior of diffusion LMS in the case where
the single-task hypothesis is violated. We analyze the competing
factors that influence the performance of diffusion LMS in the
multitask environment, and which allow the algorithm to continue
to deliver performance superior to non-cooperative strategies
in some useful circumstances. We also propose an unsupervised
clustering strategy that allows each node to select, via adaptive
adjustments of combination weights, the neighboring nodes with
which it can collaborate to estimate a common parameter vector.
Simulations are presented to illustrate the theoretical results, and
to demonstrate the efficiency of the proposed clustering strategy.
Index Terms—Adaptive clustering, collaborative processing, dif-

fusion strategy, distributed optimization, multitask learning, sto-
chastic performance.

I. INTRODUCTION

D ISTRIBUTED adaptive estimation is an attractive and
challenging problem that allows a collection of intercon-

nected nodes to perform preassigned tasks from streaming mea-
surements, such as parameter estimation. Although centralized
strategies may benefit from information collected throughout a
network, in most cases, distributed strategies are more robust
to solve inference problems in a collaborative and autonomous
manner [2].
Most recent efforts in the study of distributed estimation

problems have focused on scenarios where the network is
employed to collectively estimate a single parameter vector.
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Several strategies have been proposed for this purpose for
sequential data processing over networks, including consensus
strategies [3]–[10], incremental strategies [11]–[15], and diffu-
sion strategies [16], [17]. Diffusion strategies are particularly
attractive due to their enhanced adaptation performance and
wider stability ranges when constant step-sizes are used to
enable continuous learning [18]. For this reason, we focus on
this class of strategies in the remainder of the article. These
strategies estimate a common parameter vector by minimizing,
in a distributed manner, a global criterion that aggregates neigh-
borhood cost functions. Nodes exchange information locally
and cooperate only with their neighbors, without the need for
sharing and requiring any global information. The resulting
networks benefit from the temporal and spatial diversity of
the data and end up being endowed with powerful learning
and tracking abilities [18], [19]. The performance of the corre-
sponding adaptive networks have been extensively studied in
the literature, under favorable and unfavorable conditions such
as model non-stationarities and imperfect communication [20],
[21]. This framework has also been extended by considering
more general cost functions and data models [19], [22]–[24],
by incorporating additional regularizers [25]–[27], or by ex-
panding its use to other scenarios [28]–[31].
The working hypothesis for these earlier studies on diffusion

LMS strategies is that the nodes cooperate with each other to es-
timate a single parameter vector. We shall refer to problems of
this type as single-task problems. However, many problems of
interest happen to be multitask-oriented in the sense that there
are multiple optimum parameter vectors to be inferred simulta-
neously and in a collaborative manner. The multitask learning
problem is relevant in several machine learning formulations
[32]–[34]. In the distributed estimation context, which is the
focus of this work, there exist many applications where either
agents are subject to data measurements arising from different
models, or they are sensing data that varies over the spatial do-
main. Only a handful of works have considered problem formu-
lations that deal multitask scenarios. A brief summary follows.
For instance, if different groups of agents within a network

happen to be tracking different moving targets, then all agents
within the same cluster would be interested in estimating the
same parameter vector (say, the vector that describes the lo-
cation of their target). If the targets are moving in formation,
then their location vectors would be related to each other and,
therefore, cooperation among clusters would be beneficial. In a
second example [35], we consider agents engaged in coopera-
tive spectrum sensing over cognitive radio networks. These net-
works involve two types of users: primary users and secondary
users. Secondary users are allowed to detect and occupy tem-
porarily unused spectral bands provided that they do not cause
interference to primary users. Therefore, secondary users need
to estimate the aggregated spectrum transmitted by all primary
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users, as well as local interference profiles. This multitask es-
timation problem requires cooperation between nodes because
noncooperative strategies would lead to local spectral profiles
that are subject to hidden node effects [35]. In another example,
a network may be deployed to estimate the spatially-varying
temperature profile over a certain region, where the parame-
ters that determine how the temperature varies across the agents
may be space-dependent [36]. In another example, the works
[37], [38] describe a multitask estimation algorithm over a fully
connected broadcasting network. These works assume that the
node-specific parameter vectors to estimate lie in a common la-
tent signal subspace and exploit this property to compress in-
formation and reduce communication costs. Another scenario is
described in [39], [40], where incremental and diffusion strate-
gies are used to solve a distributed estimation problem with
nodes that simultaneously estimate local and global parameters.
In [41], the parameter space is decomposed into two orthogonal
subspaces with one of them being common to all nodes.
In all these previous examples, it is assumed beforehand that

the nodes have some prior knowledge about clustering or about
the parameter space, such as which agents belong to a partic-
ular cluster or how the parameter space is subdivided. The aim
of the current work is different and does not assume prior in-
formation about the tasks or clusters. It then becomes critical to
assess the performance limits of diffusion strategies when used,
knowingly or unknowingly, in an multitask environment. Due
to inaccurate modeling, or minor differences between tasks ne-
glected intentionally, there may be situations in which the dif-
fusion LMS algorithm is applied to multitask scenarios. When
these situations occur, the distributed implementation will lead
to biased results that may be acceptable depending on the ap-
plication at hand. This biased solution may still be beneficial
compared to purely non-cooperative strategies provided that the
local optimums are sufficiently close to each other.
These observations motivate us to examine the performance

of the diffusion LMS strategy when it is run, either intentionally
or unintentionally, in a multitask environment. In this respect,
we shall analyze the performance of the diffusion LMS in
terms of its mean weight deviation and mean-square error in
the case when the single-task hypothesis is violated. We shall
also identify and analyze the competing factors that influence
the performance of diffusion LMS in the multitask environ-
ment, and which allow this algorithm to continue to deliver
performance superior to non-cooperative strategies in some
useful circumstances. We shall also propose an unsupervised
clustering strategy that allows each node to select, via adaptive
adjustments of combination weights, the neighboring nodes
with which it should collaborate to improve its estimation
accuracy. In the related work [35], we formulated the multitask
problem directly over networks with connected clusters of
nodes. In that work, the clusters are assumed to be known
beforehand and no clustering is proposed. We then derived ex-
tended diffusion strategies that enable adaptation and learning
under these conditions. In the current work, on the other hand,
the clusters are not assumed to be known. It then becomes
necessary to examine how this lack of information influences
performance. It also becomes necessary to endow the nodes
with the ability to identify and form appropriate clusters to
enhance performance. One clustering strategy was proposed in

the earlier work [42]; its performance is dependent on the initial
conditions used by the nodes to launch their adaptation rules.
In this work, we propose a more robust clustering strategy.
Notation: Boldface small letters denote vectors. All vectors

are column vectors. Boldface capital letters denote matrices.
The superscript represents the transpose of a matrix or a
vector. Matrix trace is denoted by trace , Kronecker product
is denoted by , and expectation is denoted by . Identity
matrix of size is denoted by , and the all-one vector
of length is denoted by . We denote by the set of node
indices in the neighborhood of node , including itself, and

its cardinality. The operator stacks its vector argu-
ments on the top of each other to generate a connected vector.
The other symbols will be defined in the context where they are
used.

II. MULTITASK PROBLEMS AND DIFFUSION LMS

A. Modeling Assumptions and Pareto Solution
We consider a connected network composed of nodes. The

problem is to estimate unknown vectors at each node
from collected measurements. Node has access to temporal

wide-sense stationary measurement sequences ,
with denoting a scalar zero-mean reference signal, and

an regression vector with a positive definite covari-
ance matrix . The data at node
are assumed to be related via the linear regression model:

(1)

where is a zero-mean i.i.d. additive noise at node
and time . Noise is assumed to be independent of any
other signals and has variance . Let denote the
mean-square-error cost at node , namely,

(2)

It is clear from (1) that each is minimized at . De-
pending on whether the minima of all the are achieved
at the same location or not, referred to as tasks, the distributed
learning problem can be single-task or multitask oriented [35].
In a single-task network, all nodes have to estimate the same

parameter vector . That is, in this case we have that

(3)

Diffusion LMS strategies for the distributed estimation of
under this scenario were derived in [2], [16], [17], [43] by
seeking the minimizer of the following aggregate cost function:

(4)

in a cooperative manner in order to improve estimation accu-
racy. In a multitask network, on the other hand, each node needs
to determine its own parameter vector . In [35], we assume
that the parameter vectors at two connected nodes and may
satisfy certain similarity properties, such as being close to each
other in some Euclidean norm sense. Nodes can also be inter-
ested in simultaneously estimating some parameters of local in-
terest as well as parameters of global interest [40], [41]. Co-
operation between these nodes can therefore be beneficial to
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infer and . A possible way to exploit and model relation-
ships among tasks is to formulate optimization problems with
appropriate co-regularizers [35]. An alternative is to build on the
principle that the node hypothesis spaces partially overlap [40],
[41]. These formulations, however, require some prior knowl-
edge about how tasks are related to each other. In this work,
we do not assume the availability of any prior information; in
particular, nodes do not know which other nodes share similar
objectives. Now since each cost function may not bemin-
imized at the same location, the minimizer of the aggregate cost
(4) can be shown to correspond to a Pareto optimum solution for
the multi-objective optimization problem [22], [44], [47]. Dif-
fusion LMS thus leads to a compromise for the entire network,
and we would like to examine how its performance is affected
when used in a multitask scenario.

B. Diffusion LMS

The diffusion LMS algorithm was originally designed for
minimizing the cost function (4) in an adaptive and distributed
manner [16], [17], [43], [45]. Let denote the estimate of
the minimizer of (4) at node and time instant . The general
structure of the algorithm consists of the following steps:

(5)

(6)
(7)

The non-negative coefficients , and are the
-th entries of two left-stochastic matrices, and , and

a right-stochastic matrix , that is,

(8)

and satisfy
(9)

Several adaptive strategies can be obtained as special cases of
(5)–(7) through appropriate selections of , and . For in-
stance, setting yields the so-called adapt-then-com-
bine (ATC) diffusion LMS. Setting leads to the com-
bine-then-adapt (CTA) diffusion LMS. By setting

, the algorithm degenerates to non-cooperative LMS
that will be considered in the sequel for comparison purposes.
When applying ATC diffusion LMS without gradient infor-

mation exchange, that is, with , the agents converge
toward the Pareto optimum with a bias of the order ,
where denotes the largest step-size parameter across all
nodes [22]. In this paper, rather than focusing on this conver-
gence point that can be perceived as a compromise, we shall
study analytically how diffusion LMS (5)–(7) behaves in a
multitask environment in relation to the optimum vectors .
Moreover, in order to generalize the analysis, we shall consider
drifting optimums around a fixed value , namely,

(10)

where is a zero-mean random perturbation independent of
any other signal, with zero-mean and covariance matrix .
Under (10), model (1) is replaced by

(11)

III. PERFORMANCE ANALYSIS OF DIFFUSION LMS FOR
MULTITASK NETWORKS

We collect the information from across the network into block
vectors and matrices. In particular, we denote by , and

the block weight estimate vector (12), the block optimum
mean weight vector (13), and the instantaneous block optimum
weight vector (14), all of size , that is,

(12)
(13)
(14)

The weight error vector for each node at iteration is
defined by

(15)

Let
(16)

be the weight error vector between and the fixed weight
vector . The following relation holds

(17)

This relation allows us to derive recursions with respect to
, and then get back to . The weight error vectors
and are also stacked on top of each other to get

the block weight error vectors:

(18)
(19)

To perform the theoretical analysis, we introduce the following
independence assumption.
Assumption 1 (Independent Regressors): The regression vec-

tors arise from a zero-mean random process that is tem-
porally (over ) stationary, white, and independent over space
(over ) with .
A direct consequence is that is independent of

for all and . Although not true in general, this assump-
tion is commonly used for analyzing adaptive constructions be-
cause it allows to simplify the derivation without constraining
the conclusions. There are several results in the adaptation liter-
ature that show that performance results that are obtained under
the above independence assumptions match well the actual per-
formance of the algorithms when the step-sizes are sufficiently
small. (see, e.g., [46, App. 24.A] and [47, Chs. 10–11] and the
many references therein).

A. Mean Weight Behavior Analysis
Subtracting optimum vectors from both sides of the first

step of diffusion LMS, namely (5), gives

(20)
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Defining and using ,
expression (20) can be expressed in block-based form:

(21)

Note that the term , which does not appear for
single-task networks, is inherited from the multitask context1.
The estimation error in the second step (6) of diffusion LMS
can be rewritten as

(22)

For single-task networks, in the above expression
reduces to since for all , . In the
multitask context, we can establish the following relationship:

(23)

where is the difference between the fixed weight vectors
and . Incorporating this expression into (22) yields:

(24)

Subtracting from both sides of (6) and using the above rela-
tion, we have

(25)

Let us introduce the following block diagonal matrices
with blocks of size :

(26)

(27)

and the following vectors of length :

(28)

(29)

(30)

1In the single-task context, and since all nodes share the same optimum, say
, we can write . Consequently,

, where the last step is due to the fact
that is left-stochastic. This result leads to .

Using the above notation and (21) and (25), the block weight
error vector can be expressed as

(31)

Let . The combination step (7) of diffusion LMS
leads to

(32)

Subtracting from both sides of (32), we get

(33)

Again, note that the term does not appear for
single-task networks and is inherited from the multitask con-
text. Combining (31) and (33), we obtain the update relation for

in a single expression as follows:

(34)

In order to make the presentation clearer, we use the following
notation for terms in expression (34):

(35)
(36)

(37)

Then, recursion (34) can be rewritten as

(38)

The non-zero driving term , arising from the multitask sce-
nario and the random perturbations , introduces a further
level of complexity in the algorithm analysis, especially in the
mean-square error behavior one. This analysis reduces to the
traditional analysis of diffusion LMS by setting . Let

be the expected value of given by

(39)

in terms of the neighborhood covariance matrices:

(40)

Let be the expected value , that is,

(41)



CHEN et al.: DIFFUSION LMS OVER MULTITASK NETWORKS 2737

The independence assumption (Assumption 1), and the statis-
tical properties of noise and perturbations , lead us
to the following expected values for , and :

(42)
(43)

(44)

where , and denote the expected values of ,
and , respectively. Note that the expected value is ex-
pressed as because . Taking the expectation
of both sides of (34), and observing that and are
independent under Assumption 1, we get

(45)

Moreover, (17) tells us that

(46)

Theorem 1 (Stability in the Mean): Assume data model (1)
and Assumption 1 hold. Then, for any initial condition, the
diffusion LMS strategy (5)–(7) applied to multitask networks
asymptotically converges in the mean if the step-sizes are
chosen to satisfy

(47)

where denotes the maximum eigenvalue of its matrix
argument. In that case, it follows from (45) that the asymptotic
mean bias is given by

(48)

Proof: Since the last two terms on the RHS of (45) are
constant, the convergence of this recursion requires that the
matrix be stable. As shown in [43], because and
are left-stochastic, the spectral norm of is
upper bounded by the spectral norm of . The former
is thus stable if the latter is stable. This yields condition (47)
considering that is a block diagonal matrix of the form (39).

Inspecting expression (48), we observe that the bias of
diffusion LMS originates from the multiple local optimums

and information exchange among neighbors. This means
that, even though the algorithm converges toward the Pareto
optimum over multitask networks [22], the bias (48) can be
large if the distance between the is large, and if nodes
cooperate to estimate them.

B. Mean-Square Error Behavior Analysis
By Assumption 1, (38), and definition (36) of where

is a zero-mean noise independent of any other signal, the
mean-square of the weight error vector weighted by

any positive semi-definite matrix satisfies the following rela-
tion:

(49)

with , and . The
freedom in selecting will allow us to derive several perfor-
mance metrics. Let

(50)

where . For the sake of clarity, let us introduce

(51)

Relation (49) can then be written as

(52)

Let denote the operator that stacks the columns of a ma-
trix on top of each other. Vectorizing both matrices and by

and , it can be checked that

(53)

where is the matrix given by

(54)

We can rewrite as , with an error term
that depends on the square of the (maximum) step-size entry
(see [43, Section 6.5] and [47, Ch. 10]). It is sufficient for the
exposition in this work to focus on the case of sufficiently small
step-sizes where terms involving higher powers of the step-sizes
can be ignored. Therefore, we continue our discussion by letting

(55)

Let us now examine the term . Consider
first the weighted norm :

(56)

We note that the stochastic components in , and
depend on the square of the step-sizes. We can write

(57)

Likewise, we can write

(58)

By ignoring the higher-order terms for small step-sizes, we can
continue the presentation by considering:

(59)
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In this way, relation (52) can be approximated as follows:

(60)

where we are using the notation and interchangeably
to refer to the same square weighted norm using or its vector
representation.
Theorem 2 (Mean-Square Stability): Assume model (1) and

Assumption 1 hold. Assume that the step-sizes are suffi-
ciently small such that condition (47) is satisfied and approx-
imations (55) and (59) are justified by ignoring higher-order
powers of . Then, the diffusion LMS strategy (5)–(7) ap-
plied over multitask networks is mean-square stable if the ma-
trix is stable. Under approximation (55), the stability of is
guaranteed for sufficiently small step-sizes that also satisfy (47).

Proof: Iterating (60) starting from , we find that

(61)

with the initial condition . Provided that ma-
trix is stable, the terms on the RHS of (61) converge either to
zero, or to bounded values. The algorithm is then mean-square
stable for sufficiently small step-sizes.
Corollary 1 (Transient MSD): Consider sufficiently small

step-sizes that ensuremean andmean-square stability, and let
. Then, the mean-square deviation (MSD) learning

curve of the diffusion LMS algorithm in a multitask environ-
ment, defined by , evolves according to
the following recursion for

(62)

where is evaluated as follows

(63)

(64)

with

Proof: Comparing (61) at instants and , we can
relate to :

(65)

where

(66)

We can then rewrite (65)–(66) as (63)–(64).
Corollary 2 (Steady-state MSD): If the step-sizes are suf-

ficiently small to ensure mean and mean-square-error conver-
gences, then the steady-state MSD for diffusion LMS in a mul-
titask environment is given by

(67)

with determined by (48).
Proof: The steady-state MSD is given by the limit

(68)

Recursion (60) with yields

(69)

In order to use (69) in (68), we select to satisfy:

(70)

This leads to expression (67).
The transient and steady-state MSD for any single node

can be obtained by setting
in Corollaries 1 and 2, with the identity matrix at the -th
diagonal block and the all-zero matrix at the others.
The steady-state MSD can be expressed in an alternative

form, which will facilitate the performance analysis. Since
is stable when the network is mean-square stable, we can write

(71)

Consider now the following formula involving the trace of a
product of matrices and the Kronecker product [48]

(72)
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where to denote matrices with compatible sizes. Using
expansion (71) with (72), the first term on the RHS of (67) can
be expressed as follows

(73)

Similarly, the second term on the RHS of (67) can be written as

(74)

Finally, we can express the steady-state MSD (67) as

(75)

In the sequel, this formulation will allow us to compare the per-
formance of different algorithms.

C. Performance Comparison With Non-Cooperative LMS

We shall now compare the performance of the ATC and
CTA diffusion LMS algorithms with the non-cooperative LMS
strategy when applied to a multitask network. We consider
the case of uniform step-sizes, , for a meaningful
comparison. Diffusion LMS degenerates to non-cooperative
LMS by setting

(76)

from which the performance of the latter can be easily derived.
In this case, matrices and reduce to

(77)
(78)

where we use the subscript LMS for clarity. Note that in this
case we have . In addition, since and

, we have . This implies that . The
steady-state MSD for non-cooperative LMS is then given by:

(79)

It is useful to note that the matrices and for diffusion LMS
can be expressed in terms of and :

(80)

with for the ATC diffusion strategy, and
for the CTA diffusion strategy. Using the series expansions
for and , the difference between the
MSDs for non-cooperative LMS and diffusion LMS is given by

(81)

Note that the first term is the difference in performance between
the non-cooperative LMS strategy and the cooperative diffusion
strategy. It was first analyzed in [43] and, because it is not spe-
cific to the multitask context, it is denoted by .
Only the second term, which depends on , is specific to themul-
titask scenario. Thus, it is denoted by . There-
fore,

(82)

In order to obtain analytical results that allow some under-
standing of the algorithm behavior, we further assume that
the matrices , and in the diffusion implementation
are doubly stochastic, and the regression covariance matrices
are uniform across the agents, that is, . With these
assumptions, it was shown in [43, Sec. 7] that the first term

on the RHS of (81) is always nonnegative,
namely,

(83)

We need to check under which conditions the second term
on the RHS of equation (81) is nonnega-

tive so that it can be viewed as a degradation factor caused
by the multitask scenario. Introduce the symmetric matrix

. We
find that

(84)

We conclude that expression (84) is non-negative for all if, and
only if, is a symmetric positive semidefinite
matrix. Now, we show that this condition is met for a large class
of information exchange protocols. Assume, for instance, that
either or is symmetric, depending on whether the focus
is on the CTA or ATC strategy. Recalling conditions

and for uniform data profile, it then holds that
is a symmetric matrix. It can be further verified that

and are positive definite when is stable. Now, we
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verify that the product is a symmetric positive
semidefinite matrix.
Lemma 1 (Positivity of a Matrix Product): [49, Fact 8.10.11]

Given two symmetric positive semidefinite matrices and
with compatible sizes. Then, is symmetric positive

semidefinite if, and only if, is normal, that is, if it satis-
fies: .
By setting and , observe

that is symmetric. It then holds that
is normal. By Lemma 1, is a symmetric pos-
itive semidefinite matrix, which means that
is nonnegative under the conditions specified above. It follows
that this term can be viewed as a degradation factor caused by
the cooperation of nodes performing different estimation tasks,
which can be expressed as . We summarize
the results in the following statement.
Theorem 3 (Non-Cooperative vs. Cooperative Strategies):

Consider the same setting of Theorems 1 and 2, with the addi-
tional requirement that the conditions for a uniform data profile
hold. The adaptive ATC or CTA diffusion strategies outperform
the non-cooperative strategy if, and only if,

(85)

Given doubly stochastic and , the gain in
performance between the cooperative diffusion strategy and the
non-cooperative LMS strategy, which is independent of , is
nonnegative. Furthermore, by assuming that is symmetric,
then the degradation in performance caused
by the multitask environment is positive. It is given by

(86)

where .
Although condition (85) allows to determine whether using

the diffusion LMS is beneficial for multitask learning com-
pared to the non-cooperative LMS strategy, it cannot be easily
exploited to estimate appropriate combination coefficients
because of its complexity and the need to handle dynamic
problems. The aim of the next section is to derive an efficient
strategy to estimate these coefficients.

IV. NODE CLUSTERING VIA COMBINATIONMATRIX SELECTION

We now derive a clustering strategy where each node can
adjust the combination weights in an online manner, for

, in order to adapt to multitask environments. It is sufficient
to focus on the adapt-then-combine diffusion LMS defined by
steps (6) and (7). For ease of presentation, the corresponding
algorithm is summarized below:

(87)
where is used instead of . As shown in the previous
section, running (87) in a multitask environment leads to biased
results. We now discuss how to cluster nodes in order to reduce
this effect.

A. Clustering via Matrix Adjustments

Following [42], we suggest to adjust matrix in an online
manner via MSD optimization. At each instant , the instanta-
neous MSD at node is given by

(88)

Computation of this quantity requires the knowledge of . Be-
cause the matrix is assumed left-stochastic, this expression
can be rewritten as

(89)

Let be the matrix at each node with -th entry defined
as

,

otherwise
(90)

Let . Minimizing (89) for node at time
, subject to left-stochasticity of and for , can

be formulated as follows:

(91)

Generally, it is not possible to solve this problem at each node
since and are unknown. We suggest to use an approx-

imation for , to approximate matrix by an instantaneous
value, and to drop its off-diagonal entries in order to make the
problem tractable and have a closed-form solution (see (93)).
The resulting problem is as follows:

(92)

with some approximation for . The objective function
shown above has the natural interpretation of penalizing the
combination weight assigned by node to node if the local
estimate at node is far from the objective at node . The solu-
tion to this problem is given by2

(93)

2To achieve this result, discard the non-negativity constraint first, and write
the Lagrangian function with respect to the equality constraint only. The so-
lution to this simplified problem is given by (93). Observe that it satisfies the
non-negativity constraint . Consequently, (93) is also the solution to
problem (92).
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Let us now construct an approximation for to be used in (93).
In order to reduce the MSD bias that results from the coopera-
tion of nodes performing distinct estimation tasks, one strategy
is to use the local one-step approximation:

(94)

Since the true gradient of at is not available
in an adaptive implementation, we can approximate it by using
the instantaneous value with

. This yields the following approxi-
mation:

(95)

Substituting this expression into (93), we get the combination
rule

(96)

This rule admits a useful interpretation. On the one hand, as
mentioned above, it relies on the local estimate (94) in order to
reduce the MSD bias effect caused by the cooperation of neigh-
boring nodes estimating distinct parameter vectors. On the other
hand, consider the inverse of the numerator of rule (96):

(97)

The first term on the RHS accounts
for the distance of the current estimates between nodes and
; this term tends to decrease the combination weight
if this distance is large, and to limit information exchange.

Now, consider the first-order Taylor series expansion of
at :

(98)

The second term on the
RHS of (97) is proportional to

. This term also tends to decrease the combination weight
if . Indeed, in

this case, it is not recommended to promote the combination of
models and because the latter induces an
increase of the cost function. Finally, is the same
for all . To summarize this discussion, the combina-
tion rule (96) considers the closeness of the local estimate to
the neighboring estimates, and the local slope of the cost func-
tion, to adjust the combination weights. This tends to promote
information exchange between nodes that estimate the same op-
timum parameter vector, and thus to reduce the MSD bias and
improve the estimation accuracy.

Fig. 1. (a) Network studied in Section V-A, with 8 nodes. (b) Input signal and
noise variances for each sensor node. (a) Network topology. (b) Input variances
(top) and noise variances (bottom).

Algorithm 1: ATC Diffusion LMS With Adaptive Clustering
for Multitask Problems

Initialization:Set and .

Set for all .

Algorithm: At each time instant , and for each node
, update :

(100)

Update the combination coefficients:

Optional: normalize , i.e., use

(101)

Optional:

Combine weights:

(102)

Algorithm
The flexibility of multitask networks may be exploited by

considering distinct cost functions for each node. This raises the
issue of sharing information via the exchange matrix , which
can be simply set to the identity. However, the time-variant com-
bination matrix determined by (96) describes how each
agent combines the parameter vectors transmitted by its neigh-
bors as a function of the estimated contrast between tasks. An
additional way to exploit this information is that each agent uses
the reciprocity principle defined by

(99)
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Fig. 2. Node coefficients centered at with , , and (from left to right).

Fig. 3. Network MSD behavior for the deterministic case. Theoretical MSD
curves were obtained by Corollary 1 and steady-stateMSD values were obtained
by Corollary 2. Simulated and theoretical transient MSD curves are perfectly
superimposed.

The rationale underlying this principle is that the magnitude of
reflects the similarity of the estimation tasks performed by

nodes and , as it is perceived by node . It is reasonable
that node should use this information, and scale the local cost
function accordingly. The smaller is, the smaller should
be because nodes and do not address the same estimation
problem. Other strategies, in the spirit of (96), may be consid-
ered to estimate the coefficients . Moreover, we found that
using the normalized gradient , with a
small positive number to avoid division by zero, prevents pre-
mature convergence due to over-corrections. The ATC diffusion
algorithm with adaptive clustering defined by time-variant com-
bination matrices and is summarized in Algorithm
1. Considering that no prior information on clusters is avail-
able, we suggest to initialize the combination matrices and

with . During simulations, we did not experience con-
vergence issues with other initial settings, provided that
and are left-stochastic and right-stochastic, respectively.
Further analysis can help guide more informed choices for the
combination policies.

V. SIMULATIONS

In this section, we report simulation results that validate the
algorithm and the theoretical results. The ATC diffusion LMS
algorithm is considered. All nodes were initialized with zero
parameter vectors . All simulated curves were obtained

by averaging over 100 runs, since this gave sufficiently smooth
curves to check consistency with theoretical results3.

A. Model Validation
For the validation, we consider a network consisting of 8

nodes with interconnections shown in Fig. 1(a). The parameter
vectors to be estimated are of length . The optimum mean
vectors are uniformly distributed on a circle of radius centered
at , that is,

(103)

The regression inputs were zero-mean 2 1 random
vectors governed by a Gaussian distribution with covariance
matrices . The background noises were
i.i.d. zero-mean Gaussian random variables, and independent
of any other signal. The variances and are depicted in
Fig. 1(b). We considered the ATC diffusion LMS with measure-
ment diffusion governed by a uniform matrix such that

for all . The combination matrix simply aver-
aged the estimates from the neighbors, namely,
for . For all nodes, the step-sizes were set to .
1) Stationary Optimums: We first check the convergence

analysis with stationary parameter vectors, that is,
for all nodes. Four groups of coefficient vectors, centered at

with , , and
were considered, as illustrated in Fig. 2. Note that the case
corresponds to the single-task network where for each
node. Running ATC diffusion LMS with these four settings, we
obtained the MSD curves shown in Fig. 3. Observe that the the-
oretical and simulated transient MSD curves are accurately su-
perimposed. The non-cooperative LMS algorithm was also con-
sidered. Since the average steady-state MSD of the non-cooper-
ative LMS algorithm over all nodes is approximately given by
[45], [46]:

(104)

then the MSD behavior with the different settings is almost the
same, provided the other parameters remain unchanged. Con-
sequently, the theoretical MSD curve for the non-cooperative
LMS algorithm is only provided for . It can be observed
that diffusion LMS can still be advantageous over non-coop-
erative LMS if the differences between local optimum weight

3Matlab source code is available at http://www.jie-chen.com.
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Fig. 4. Network MSD behavior for the perturbation-only case. Theoretical
MSD curves were obtained by Corollary 1 and steady-state MSD values were
obtained by Corollary 2. Note that simulated and theoretical transient MSD
curves are superimposed.

Fig. 5. Network MSD behavior for correlated inputs. Theoretical MSD curves
were obtained by Corollary 1 and steady-state MSD values were obtained by
Corollary 2. Simulated curves and theoretical curves are accurately superim-
posed.

vectors are sufficiently small, and in this simu-
lation. However, when the contrast between the tasks increases,
diffusion LMS provides lower performance than non-coopera-
tive LMS due to the bias introduced by the algorithm,
and in this simulation.
2) Randomly Perturbed Optimums: We now consider the

network described previously with so that the differ-
ences between the optimum weight vectors arise from
the random perturbations . Keeping all the other param-
eters unchanged, the variance of these perturbations was suc-
cessively set to , 0.01, 0.05 and 0.1 for all the agents.
MSD curves for diffusion LMS and non-cooperative LMS are
provided in Fig. 4. It can be observed that diffusion LMS always
outperformed its non-cooperative counterpart. This experiment
shows the advantage provided by cooperation. The relative per-
formance gain becomes smaller as increases because weight
lags caused by random perturbations dominate the estimation
error.

Fig. 6. Network topology in Section V-B1 and associated input variances and
noise variances. (a) Network topology (b) Input variances (top) and noise vari-
ances (bottom).

Fig. 7. Network MSD comparison in a stationary multitask environment, and
estimated cluster structure by the proposed algorithm (averaged over the last
100 instants in one realization). The weight iterates for [42] were initialized
at the same value. If random well-separated initial conditions are used across
the nodes, then the performance of [42] becomes similar to that of the non-
cooperative solution in the above plot. (a) MSD behavior. (b) Estimated cluster
structure.

3) Correlated in Time Inputs: This simulation example illus-
trates the accuracy of models (62)–(67) for inputs correlated in
time. We considered regression vectors

(105)

with a first-order AR model given by

(106)
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Fig. 8. Evolution of cluster structures of the network (1 cluster clusters clusters cluster).

The parameters were set as in Fig. 1(b). The noise
was i.i.d. and drawn from a zero-mean Gaussian distribution
with variance , so that

The diffusion LMS algorithm was tested in the following exper-
imental settings:

(107)

Although Assumption 1 is not valid, observe in Fig. 5 that the
theoretical and simulated transient MSD curves are superim-
posed. This illustrates the accuracy of the analysis when the
step-sizes are sufficiently small.

B. Adaptive Clustering in Multitask Networks
We shall now illustrate the performance of diffusion LMS

with adaptive clustering in a multitask environment. Our ap-
proach is compared with the strategy introduced in [42]. For
the latter, as suggested in [42], the so-called smoothing factor
was set to 0.1. A stationary problem is first considered. Next,

a dynamic problem with time-varying clusters is introduced in
order to confirm the reliability of our approach.
1) Stationary Environment: Consider the network of 16

agents depicted in Fig. 6(a). The regression inputs were
zero-mean 2 1 random vectors governed by a Gaussian
distribution with covariance matrices . The
background noises were i.i.d. zero-mean Gaussian
random variables, independent of any other signals. The vari-
ances and are depicted in Fig. 6(b). The scenario
under study is a multitask problem with a cluster structure.
Nodes 1 to 4 belong to the first cluster. Nodes 5 to 9 are in the
second cluster. Nodes 10 to 14 compose the third cluster, and
nodes 15 and 16 are in the fourth cluster. The parameter vectors
to be estimated are as follows:

Cluster 1
Cluster 2
Cluster 3
Cluster 4.

(108)

Note that the distances between the optimum parameter vectors
for clusters 1, 2 and 3 are much smaller than those with respect
to cluster 4, which acts as an outlier. The following algorithms
were considered for estimating the four optimum parameter vec-
tors: 1) diffusion LMS with a uniform combination matrix ,

Fig. 9. Evolution of clusters over time. Colors and markers are consistent with
those of clusters in Fig. 8. Dashed lines represent optimums during transient
episodes.

2) non-cooperative LMS, 3) diffusion LMS with the clustering
strategy introduced in [42], 4) diffusion LMSwith our clustering
strategy, with and . The step-size was set
to for all nodes.
Fig. 7(a) illustrates the MSD convergence behavior for these

algorithms. Due to large bias of the estimated weights, diffu-
sion LMS with a uniform combination matrix had large MSD.
Non-cooperative LMS performed much better as it provides un-
biased estimates. The proposed algorithm with achieved
better performance, and led to additional per-
formance gain due to information exchange. Finally, in order
to provide a straightforward but visually-meaningful clustering
result, we averaged the combination matrix over the last 100
iterations of a single realization, and we considered that

represents a one-way connection from to . The esti-
mated relationships between nodes provided in Fig. 7(b) per-
fectly match the ground truth configuration.
2) Non-Stationary Environment: Consider now a more com-

plex environment where clusters vary over time. Four stationary
stages and three transient episodes were modeled in this ex-
periment. Properties of input signals and noise were the same
as those in the stationary case considered above. From instant

to 1000, the network consisted of one cluster with a
unique optimum parameter vector to estimate. From
to 2500, nodes were split into two clusters with two different op-
timums. From to 4000, nodes were split again to give
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Fig. 10. Mean weight behavior of various algorithms in the non-stationary environment. Colors and markers are consistent with cluster colors in Fig. 6(a). (a)
Diffusion LMS with uniform , . (b) Non-cooperative LMS. (c) Algorithm in [42]. (d) Proposed with .

four clusters. Finally, from instant , nodes were ag-
gregated into one cluster with another unique parameter vector
to estimate. Transient episodes were designed with linear inter-
polation between each steady-state stage over a period of 500
time samples. Taking, for example, the first component of the
weight vector of node 1 over the time interval 1 to 2500, the
time-variant optimum is expressed by

.
(109)

Cluster structures and optimum parameter vectors are illustrated
in Figs. 8 and 9, respectively.
The same four algorithms as before were considered for

comparison. Fig. 10 shows their mean weight behavior. Con-
ventional diffusion LMS with a uniform combination matrix
made all nodes converge to the same Pareto optimum during
all phases. The non-cooperative LMS estimated the optimum
weight vectors without bias. The algorithm presented in [42],
which generally performs well for well-separated tasks and
well-separated initial random weights, did not perform well
with this setting. Our algorithm showed the same convergence
behavior for and . Only the case

is presented here due to space limitation. It can be
observed that, for each node, the parameter vector converged
properly in accordance to the original cluster structures repre-
sented in Fig. 8. MSD learning curves are shown in Fig. 11.
Transient stages can be clearly observed on both weight be-
havior and MSD behavior curves. Diffusion LMS enforced
the weight vectors estimated by each agent to converge to
the same solution at each stage. As a consequence, the MSD
learning curve shows poor performance due to large bias.
Non-cooperative LMS converged without bias towards the
optimum parameter vectors. The algorithm introduced by [42]
showed some ability to conduct clustering but did not provide
satisfactory results during transient episodes. During stages 1
and 4, it worked as well as diffusion LMS. However, during
stages 2 and 3, it only performed slightly better than diffusion
LMS. The proposed algorithm was able to track the system
dynamic with correct clustering and appropriate convergence
in the mean-square sense.
3) Large Network and High-dimensional Regressors: For

the sake of simplicity, previous experiments were conducted
with relatively small networks and low-dimensional optimum
parameter vectors. A network consisting of two clusters with 50

Fig. 11. Network MSD behavior comparison in the time variant multitask en-
vironment.

nodes in each cluster was randomly deployed in a given area,
with physical connections defined by the connectivity matrix
in Fig. 12(b). The optimum parameter vectors were set as fol-
lows: for , and for

. The regression inputs were zero-mean
50 1 random vectors governed by a Gaussian distribution with
covariance matrices . The background noises

were i.i.d. zero-mean Gaussian random variables, and in-
dependent of any other signal. The variances and were
uniformly sampled in and , respectively.
For all nodes, the step-sizes were set to . The same
four algorithms as before were considered. Our algorithm was
used with the normalized gradient and

. MSD learning curves are shown in Fig. 12(a), and the
connectivity matrix determined by our algorithm is represented
in Fig. 12(c). It can be observed that the performance of our al-
gorithm is better than that of other methods.

C. Collaborative Target Tracking Over Sensor Networks

Consider now a target tracking problem to illustrate our adap-
tive clustering strategy with diffusion LMS. We focused on a
scenario involving four targets, numbered from to 4,
moving according to the state-transition equation

(110)



2746 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 11, JUNE 1, 2015

Fig. 12. Simulation results on a large network with high-dimensional regressors . (a) Comparison of MSD learning curves. (b) Initial
connectivity matrix, where gray elements represent physical connections. (c) Connectivity matrix resulting from our clustering strategy. (a) MSD learning curves.
(b) Network physical connection matrix. (c) Connection selected by the algorithm.

Fig. 13. (a) Trajectories of four targets with initial coordinates , from to 100. (b) Comparison
of MSD learning curves for the estimate . (a) Target trajectories. (b) MSD learning curves.

where is the 2-dimensional coordinates for target at in-
stant . Matrices are 2 2 state-transition matrices that were
set to

(111)

and is the modeling error with i.i.d. zero-mean Gaussian
distribution with covariance matrix . The standard deviation
was set to . The initial coordinates for the four targets
were

(112)
Fig. 13(a) shows the trajectories of the four targets from instant

to 100. A network with nodes was randomly
deployed in a given area, with physical connections defined by
the connectivity matrix in Fig. 14(a).
We supposed that each node was able to track only one target

during the experiment, with noisy observations :

(113)

with an i.i.d. zero-mean Gaussian observation noise with
covariance matrix and standard deviation . For
ease of presentation, we assumed that nodes 1–25 tracked target
1, nodes 26–50 tracked target 2, nodes 51–75 tracked target 3,
and nodes 76–100 tracked target 4.
Considering as input data and as the desired

output data for the learning algorithm, each node was aimed to
track a target or, equivalently, to estimate its transition matrix
given input-output noisy data. Without cooperation, this task
can be performed by each node by minimizing the following
cost function with respect to matrix :

(114)
Collaboration among nodes may be beneficial as several nodes
are conducting the same task, including nodes that track the
same target and nodes that track distinct targets with the same
state-transition matrix. Clearly, diffusion LMS with a uniform
combination matrix is not suitable within this context since
neighboring nodes may not have the same task to conduct. This
problem requires adaptive clustering to automatically aggregate
nodes that perform a similar task.
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Fig. 14. (a) Initial connectivity matrix, where gray elements represent physical connections. (b) Connectivity matrix resulting from our clustering strategy. Blue
elements correspond to the connections used to estimate the transition matrices . Red and green elements correspond to the connections used to estimate
the transition matrices and , respectively. Gray elements can be considered as false connections because they involve nodes that do not estimate the same
transition matrix. (a) Network physical connection matrix. (b) Connections selected collaboratively by the algorithm.

Algorithm 1 was run with and was initialized with
. The step-size was set equal to .

Fig. 13(b) shows the MSD learning curves of transition ma-
trices estimated by non-cooperative LMS, and diffusion LMS
with adaptive clustering strategy. The performance gain can be
clearly seen from these figures. Fig. 14(b) shows the connec-
tivity matrix determined by the clustering strategy at iteration

. Gray elements in this figure represent the combina-
tion weights that are larger than 0.05. It can be seen that
connections are distributed in 4 blocks on the diagonal, each
one corresponding to a target, and 2 other blocks (upper-right
and lower-left ones) where nodes track two distinct targets with
the same state-transition matrix.

VI. CONCLUSION AND PERSPECTIVES
Many practical problems of interest happen to be multitask-

oriented in the sense that there are multiple optimum parameter
vectors to be inferred simultaneously. In this paper, we studied
the performance of the single-task diffusion LMS algorithm
when it is run in amultitask environment. Accurate meanweight
behavior model and mean square deviation model were derived.
Next, we proposed an unsupervised clustering strategy that al-
lows each node to select the neighboring nodes with which it
can collaborate to address a given task. Simulations were pre-
sented to demonstrate the efficiency of the proposed clustering
strategy.
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