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Abstract—Due to the inherent physical characteristics of
systems under investigation, non-negativity is one of the most
interesting constraints that can usually be imposed on the parame-
ters to estimate. The Non-Negative Least-Mean-Square algorithm
(NNLMS) was proposed to adaptively find solutions of a typical
Wiener filtering problem but with the side constraint that the
resulting weights need to be non-negative. It has been shown to
have good convergence properties. Nevertheless, certain practical
applications may benefit from the use of modified versions of this
algorithm. In this paper, we derive three variants of NNLMS. Each
variant aims at improving the NNLMS performance regarding
one of the following aspects: sensitivity of input power, unbalance
of convergence rates for different weights and computational cost.
We study the stochastic behavior of the adaptive weights for these
three new algorithms for non-stationary environments. This study
leads to analytical models to predict the first and second order
moment behaviors of the weights for Gaussian inputs. Simulation
results are presented to illustrate the performance of the new
algorithms and the accuracy of the derived models.

Index Terms—Adaptive signal processing, convergence analysis,
exponential algorithm, least-mean-square algorithms, non-nega-
tivity constraints, normalized algorithm, sign-sign algorithm.

I. INTRODUCTION

O PTIMIZATION of a cost function given a set of con-
straints is a common objective in signal processing

estimation problems. The constraints are usually imposed
by system specifications which provide a priori information
on the feasible set of solutions. The solution of estimation
problems under constraints poses special problems for online
applications. Common real-time signal processing restrictions
on computational complexity and memory requirements tend to
rule out several good solutions to the constrained optimization
problem.
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Non-negativity is one of the most commonly stated con-
straints. It is often imposed on the parameters to estimate in
order to avoid physically absurd and uninterpretable results.
Non-negativity constraints have been used for image deblur-
ring [1], deconvolution of system impulse response estimation
[2] and audio processing [3]. Another similar problem is the
non-negative matrix factorization (NMF), which is now a pop-
ular dimension reduction technique used in many applications
[4]–[6]. This problem is closely related to blind deconvolution,
and has found direct application in neuroscience [7] and in
hyperspectral imaging [8]. Separation of non-negative mixture
of non-negative sources has also been considered in [9], [10].
Over the last fifteen years, a variety of methods have been de-

veloped to tackle non-negative least-square (NNLS) problems.
Active set techniques for NNLS use the fact that if the set of
variables which activate constraints is known, then the solu-
tion of the constrained least-square problem can be obtained by
solving an unconstrained one that includes only inactive vari-
ables. The active set algorithm of Lawson and Hanson [11] is a
batch resolution technique for NNLS problems. It has become
a standard among the most frequently used methods. In [12],
Bro and De Jong introduced a modification of the latter, called
Fast NNLS, which takes advantage of the special characteris-
tics of iterative algorithms involving repeated use of non-nega-
tivity constraints. Projected gradient algorithms [13]–[16] form
another class, which is based on successive projections onto the
feasible region. In [17], Lin used this kind of algorithm for NMF
problems. Low memory requirements and simplicity make al-
gorithms in this class attractive for large scale problems. Nev-
ertheless, they are characterized by slow convergence rate if
not combined with appropriate step size selection. The class of
multiplicative algorithms is very popular for dealing with NMF
problems [5], [18]. Particularly efficient updates were derived
in this way for a large number of problems involving non-nega-
tivity constraints [19]. However, these algorithms require batch
processing, which is not suitable for online system identifica-
tion problems. In [20], the problem of online system identi-
fication under non-negativity constraints on the parameters to
estimate was investigated. An LMS-type adaptive algorithm,
called Non-Negative Least-Mean-Square (NNLMS) was pro-
posed to solve the Wiener problem under the constraint that
the resulting weights need to be non-negative. It was based
on the stochastic gradient descent approach combined with a
fixed point iteration which converges to a solution satisfying
the Karush-Kuhn-Tucker conditions. The stochastic behavior of
this algorithm was also analyzed in [20], [21].
In this paper, we extend the work of [20], [22] and derive

useful variants of the NNLMS algorithm. Each of these variants
is derived to improve the NNLMS properties in some sense. A
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Fig. 1. Adaptive system under study.

normalized algorithm is proposed to reduce the NNLMS per-
formance sensitivity to the input power value. An exponential
algorithm is proposed to improve the balance of weight conver-
gence rates. Compared to NNLMS, the new algorithm leads to
faster convergence of the weights in the active set (weights for
which the inequality constraint is satisfied with the equal sign).
Finally, a sign-based algorithm is proposed to reduce implemen-
tation cost in critical real-time applications.
The rest of this paper is organized as follows. Section II

reviews the system identification problem under non-negative
constraints and the NNLMS algorithm. Section III motivates
and introduces the NNLMS variants. In Sections IV and V,
the transient behavior of each of these variants is analyzed.
Analytical models are derived for the mean weight and for the
mean-square error behavior. The accuracy of these models is
illustrated through simulations. A final example compares the
performance of the proposed algorithms with those of NLMS
and Projected NLMS in solving an unconstrained non-negative
parameter estimation problem.

II. REVIEW OF NON-NEGATIVE
LEAST-MEAN-SQUARE ALGORITHM

Consider the estimation problem depicted in Fig. 1. The un-
known system is characterized by real-valued observations

(1)

where is the vector of the model pa-
rameters and is the
input data vector. The input signal and the additive noise

are assumed stationary and zero-mean.
In certain applications, inherent physical characteristics of

systems under investigation impose a non-negativity constraint
on the estimate of the system parameters. Therefore, the
problem of identifying the optimum non-negative model can
be formalized as follows

(2)

where is a continuously differentiable and strictly convex
cost function in , and is the solution to the constrained
optimization problem.

A. A Fixed-Point Iteration Scheme

To solve the problem (2), let us consider its Lagrangian func-
tion given by [23]

where is the vector of non-negative Lagrange multipliers. The
Karush-Kuhn-Tucker conditions must necessarily be satisfied at
the optimum defined by , , namely,

(3)

(4)

where stands for the gradient operator with respect to .
Using , these equations can be com-
bined into the following expression

(5)

where the extra minus sign is just used to make a gradient de-
scent of apparent. To solve (5) iteratively, two important
points have to be noticed. First, is also a descent
direction of if is a symmetric positive definite matrix.
Second, equations of the form can be solved with
a fixed-point iteration algorithm by considering the problem

under some conditions on function . Imple-
menting this strategy with (5) leads to the component-wise gra-
dient descent algorithm

(6)

where a positive step size required to get a contraction
scheme and to control the convergence rate, and
is the -th entry of a diagonal matrix . Function
in (6) is an arbitrary positive function of . Some criteria

are defined only for parameter vectors with positive
entries, e.g., the Itakura-Saito distance and the Kullback-Leibler
divergence. If necessary, this condition can be managed by an
appropriate choice of the step size parameter. Let us assume that

. Non-negativity of in (6) is guaranteed if

(7)

If , condition (7) is clearly satisfied and
non-negativity does not impose any restriction on the step size.
Conversely, if , non-negativity of
holds if

(8)

Using a single step size in for all entries of
so that

(9)
the update (6) can be written in vector form as

(10)
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where the th entry of the weight adjustment direction de-
fined as follows

(11)

is a descent direction of because . It
should be noted that condition (9) on the step size guar-
antees the non-negativity of for all , but does not ensure
algorithm stability.

B. The Non-Negative Least-Mean-Square Algorithm

Let us now consider the mean-square error criterion
to be minimized with

respect to so that

(12)

The gradient of with respect to is
, where is the autocorrelation matrix of

and is the correlation vector between and .
Following a stochastic gradient approach, the second-order mo-
ments and are replaced in (11) by the instantaneous esti-
mates and , respectively. Then, choosing

for all in (6), a fixed positive step-size ,
defining and , and
noting that leads to the stochastic
update given by

(13)

where . A detailed study of this
algorithm, named Non-Negative LMS (NNLMS) can be found
in [20].

III. VARIANTS OF THE NON-NEGATIVE
LEAST-MEAN-SQUARE ALGORITHM

A. Normalized NNLMS

A direct extension of the original algorithm is the Normalized
NNLMS. Conditioned on , the product in (13)
has dimension of signal power. Thus, is inversely proportional
to signal power. Hence, setting a constant value for leads to
different weight updates for different signal power levels. This
is the same sensitivity to signal power verified in the LMS algo-
rithm. A popular way to address this limitation is to normalize
the weight update by the input vector squared –norm which
yields the Normalized NNLMS update equation

(14)

Like in Normalized LMS (NLMS) algorithm, adding a
small positive regularization parameter to the denominator

may be necessary to avoid numerical difficulties

when becomes very small. The resulting -Normal-
ized NNLMS will then be

(15)
where we maintained the notation because (14) is a par-
ticular case of (15) for . From now on, we refer to (15)
simply as the Normalized NNLMS algorithm.

B. Exponential NNLMS

Each component in the update term of (13) can be
viewed as a distinct variable step size adjustment along the th
axis1. Hence, each component of will have a different con-
vergence rate in general. Specifically in the case of weights in
the active set (those that tend to zero in steady-state), the con-
vergence rate will progressively reduce in time, becoming very
small near steady-state. To alleviate this convergence rate un-
balance, we introduce the Exponential NNLMS algorithm.
To achieve a faster convergence for the adaptive coefficients

as they get close to zero we propose the use of
in (11), with parameter chosen in order to attract

small values of towards zero. This leads to the th weight
update equation

(16)

For , the th weight update in (16) becomes larger
than that in (13) when , thus accelerating conver-
gence towards a null steady-state coefficient value.
The condition for given can be

easily determined from (16) as

(17)

This condition, however, is not useful for design purposes,
since it requires a priori knowledge of the algorithm behavior.
We then propose a modified version of the update (16) that al-
lows for instantaneous negative values of . The problem
with real and negative instantaneous values of is that it
may lead to a complex value for for . To ob-
tain always real values for we propose to use with
and odd integers and . The oddness of and

guarantees that . Then, the real so-
lution for can be obtained by calculating .
This leads to the following weight update equation for the Ex-
ponential NNLMS algorithm in vector form:

(18a)

with the th component of defined as

(18b)

As in the gamma correction used in image processing, an ex-
ponent in the range reduces the dynamic range of

1Note that (13) can be written as .
Hence, multiplies the th gradient component of the
classical LMS algorithm by .
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TABLE I
COMPUTATIONAL COMPLEXITY

each . Large values of will be compressed to-
wards 1 and small values of will be increased to pre-
vent from stalling convergence. When , the update equa-
tion degenerates into the NNLMS algorithm (13). Using
is generally not recommended, as it tends to spread the vector
component values.

C. Sign-Sign NNLMS

Like Sign-Sign LMS, which has been included in the CCITT
standard for adaptive differential pulse code modulation [24],
the motivation for introducing a Sign-Sign NNLMS algorithm
is its computational simplicity and its robustness against distur-
bances [25]. Replacing the input regressor vector and the esti-
mation error in the update term with their signs reduces compu-
tation time and dynamic range requirements by replacing mul-
tiplications with shifts in real-time implementations. The Sign-
Sign NNLMS algorithm is given by

(19)

After the two signs are evaluated, the th component update is
given by

(20)

where the sign before is determined by . The
step-size is usually selected as a power of , say
for some integer . In this case, (20) can be efficiently im-
plemented using shift-add operations. Moreover, the non-nega-
tivity constraint will be always satisfied if is initialized with
a positive vector and . Table I compares the compu-
tation complexities of NNLMS and its three variants described
above. The rightmost column describes the anticipated property
of each algorithm, to be verified in the following.

IV. MEAN WEIGHT BEHAVIOR

Convergence in the mean sense of the NNLMS algorithm
(13) has been studied in [20] for a stationary environment. We
now study the stochastic behavior of the NNLMS variants in-
troduced in Section III for fixed step sizes and for a time variant
unconstrained solution given by

(21)

where is a deterministic time-variant mean and is
zero-mean with covariance matrix and independent
of any other signal. This simple model provides some informa-
tion on how the performances of the proposed algorithms are
affected by a time variant optimal solution which consists of a

deterministic trajectory and a random perturbation. The anal-
ysis using more elaborate non-stationarity models such as the
random walk model or the autoregressive model [26] leads to
mathematically intractable situations. This is due to the extra
multiplication of the weight update term by a function of in
(13), (15), (18) and (19), as compared to the LMS algorithm. For
the random walk model, the recursive equation for the covari-
ance matrix of the adaptive weight vector becomes a function
of the optimal weight covariance matrix, which becomes un-
bounded as time progresses [26]. For the autoregressive model,
a nonlinear term given by the product of the weight error vector
and the optimal weight update makes it impossible to determine
a recursive adaptive weight vector covariance matrix equation
in the state-space form [27]. The model (21) leads to a tractable
analysis and still permits inferences about the behavior of the al-
gorithms in randomly time variant environments by varying the
power of . Inferences on the ability of the algorithm to
track mean weight variations are also possible but require a dif-
ferent model run for each type of mean time variation of
to be investigated.
To conserve space and to simplify notation without ambi-

guity, from now on we use the generic notations and
whenever the given expression is valid for all the algorithms
under study. Notations , and will be used only for
expressions which are specific to the corresponding algorithm.
The same notational observation applies to any vector or matrix
when referring to a specific algorithm.
For the analyses that follow, we shall define the weight error

vector with respect to the unconstrained solution as

(22)

and the weight error vector with respect to the mean uncon-
strained solution as

(23)

The two vectors are related by .

A. Statistical Assumptions

The following analysis is performed for and zero-
mean stationary Gaussian and for white and statistically
independent of any other signal. We assume in the subsequent
mean weight behavior analysis that the input and weight vectors
are statistically independent, according to the Independence As-
sumption [26]. This assumption is typical in the study of adap-
tive algorithms. It is sometimes used for simplification and fre-
quently required for mathematical tractability. The simulation
results will show that the resulting analytical models have low
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sensitivity to this assumption, as they accurately predict the be-
havior of the three algorithms.

B. Normalized NNLMS Algorithm

Using (22) with the appropriate subscript in (15) and
yields

(24)

where is a deterministic vector
proportional to the derivative of themean unconstrained optimal
solution.
Taking the expected value of (24) and noting that the expec-

tations of the second, third, sixth and seventh terms on the r.h.s.
are equal to zero by virtue of the natures of and yields

(25)

Using the independence assumption, the second expectation
in the r.h.s. of (25) can be written as

(26)

Evaluation of the first expected value in the r.h.s. of (26)
requires approximations. Each numerator element is given by

. The random part of the denominator is given by
. A common approximation that works well for

reasonably large is to neglect the correlation between these
two variates, as the latter tends to vary much slower than the
former [28], [29]. Moreover, given its slow variation we approx-
imate by its mean value , which is reasonable
for large values of . Using these approximations yields

(27)

Using again and removing it from the
expected value, the th component of the second expectation in
the r.h.s. of (25) is

(28)

Taking the expectation, using the independence assumption and
defining we obtain

(29)

which yields

where denotes the vector of diagonal entries in the ma-
trix. Hence, (25) becomes

(30)

This recursion for requires a model for . A
recursive model will be derived for in Section V, see
(44). That model can be used along with (30) to predict the mean
weight behavior of the Normalized NNLMS algorithm. Nev-
ertheless, we have found that a sufficiently accurate and more
intuitive mean behavior model can be obtained by neglecting
the weight error fluctuations and using the following separation
approximation

(31)

This approximation has been successfully used in [20] to study
themean behavior of the NNLMS algorithm.A discussion about
the validity of the approximation can be found in [20]. Extensive
simulation results have shown that this approximation achieves
adequate accuracy in modeling the mean behavior of the adap-
tive weights. We thus obtain the following model

(32)

C. Exponential NNLMS Algorithm

Using (22) with the appropriate subscript in (18),
, and consid-

ering that is equal to the real solution of ,
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the Exponential NNLMS weight error update equation can be
written as

(33)

where is a real vector.
The nonlinear term on the r.h.s. com-

plicates the evaluation of the expected value of (33) because the
statistics of the weight error vector are unknown.We have again
found out that using a zero-th order approximation of
is sufficient to provide a reasonably good model for the mean
weight error behavior. Thus, we make

(34)

Using (34) in (33), taking the expected value and considering
the statistical properties of and yields

(35)

where is the identity matrix and is an
diagonal matrix defined as

with being the vector whose th component is
. It is simple to verify that

this model collapses to the NNLMS model derived in [20] for
.

D. Sign-Sign NNLMS Algorithm

The statistical analysis of the Sign-Sign NNLMS algorithm
behavior is complicated by the fact that the weight update term
is discontinuous in both the input vector and the error
[30]. To make that analysis tractable, we consider the case of
input signal zero-mean and Gaussian [25], [30].
Using (22) with the appropriate subscript in (19) and

, the Sign-
Sign NNLMS weight error update equation can be written as

(36)

Note that, unlike the former two variants, the non-stationarity
effect appears in the weight error update (36) as a nonlinear
function of . The th component of (36) is given by

(37)

To determine the expected value of (37), we first note that it has
been demonstrated in [30], [31] using Price’s theorem [32] that

(38)

for and two zero-mean jointly Gaussian variables with
variances and , respectively. Then, noting that

and are zero-mean Gaussian
when conditioned on and , we assume them jointly
Gaussian2 and use the result in (38) to obtain

(39)

where the -th column of and is the variance
of when conditioned on and .
Now, since is a nonlinear function and the distribu-

tion of its argument is unknown, we proceed as we did for the
Exponential NNLMS algorithm and replace the nonlinear func-
tion by its zero-th order approximation

(40)

with

(41)

Taking the expected value of (37), using the results (39) and
(40) and expressing the result in vector form yields the mean
weight error vector behavior model

(42)

where is the diagonal matrix
with being the vector whose th entry

is given by (40).

V. SECOND MOMENT ANALYSIS

We now study the behavior of the second-order moments
of the adaptive weights for the three algorithms proposed in
Section III. The analysis is performed under the same statistical
hypotheses used in the previous section. The following addi-
tional assumptions are used in the subsequent analysis:
A1) The input vector is Gaussian.
A2) The weight error vector is statistically independent

of . The reasoning for this approximation has
been discussed in detail in [33].

These assumptions are typical in the study of adaptive algo-
rithms. They are sometimes used for simplification and some-
times required for mathematical feasibility.

2As and are independent and both Gaussian, is
jointly Gaussian. When conditioned on and ,

is jointly Gaussian as a linear transformation of
.



3996 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 15, AUGUST 1, 2014

Besides assumptions A1 and A2, the following approxima-
tion is needed to progress in the analysis as the distribution of

is unknown:
A3) In evaluating higher order (greater than 2) moments of

, we approximate by its mean value
. This approximation preserves

the mean (in odd order moments) and fluctuation behav-
iors of while keeping the mathematical problem
tractable. It has been previously employed with success
in analyses of adaptive algorithms with weight updates
that are nonlinear with respect to the weight vector [34].

The simulation results will show that assumptions A1 and A2
and approximation A3 lead to analytical models which are ac-
curate enough in predicting the behavior of the algorithms for
design purposes.
The excess means square estimation error (EMSE) is given

by . Using the relation be-
tween and , the properties of , and noting from
(24), (33) and (36) that and are independent, we can
write as

(43)

with . The term is the
contribution of the random non-stationarity of the system to the
EMSE. In the following, we derive recursive models for
for each of the algorithms.

A. Normalized NNLMS Algorithm

Post-multiplying (24) by its transpose, taking the expectation,
using the approximation in (24), defining

, using A1–A3 and proceeding as in [20] leads
to

(44)

with

(45)

(46)

(47)

(48)

where denotes the so-called Hadamard entry-wise product,

(49)

(50)

where the matrix is defined by
,

(51)

(52)

(53)

(54)

and

(55)

In obtaining (44), it was considered that the products of the
last two term of (24) by the other terms lead to zero mean values
due to the properties of .
Expected values through correspond to the

terms of the weight error vector recursive equation derived for
the NNLMS algorithm in [20] with substituted for . Thus,
we use the results from [20] and indicate their values directly
in (45) through (52). We now derive expressions for
through . These terms convey the effect of the random
part of the environment non-stationarity.
Computing th entry of yields

(56)

As only for ,
. Using the Gaussian

moment factorizing theorem yields

. This enables us to write the result in matrix form

(57)

Similarly, we have

(58)

(59)
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The last term conveys the effect of deterministic
variation of the mean of system weights. Observing the terms
multiplied with , we have

(60)

B. Exponential NNLMS Algorithm

The second order moment analysis of the Exponential
NNLMS algorithm requires an improvement on approximation
(34) for the nonlinearity in (33). We
use instead the following first order approximation for the
real-valued solution of :

(61)

where

(62)

with being the unit step function and a small con-
stant. The reason to include the gate function about

in the regular Taylor series is
that the derivative of tends to in-
finity if approaches . It is simple to
verify that

. The zero-th order approximation is suffi-
cient about the point where the function is equal to zero. With
this new approximation, the term on in (61) will include
moments of the weight error vector which are necessary to
proper modeling its fluctuations.
To use vector notation, we define two deterministic vectors
and whose th entries are respectively

respectively. We define also the corresponding diagonal ma-
trices and . With
these new definitions, the linear approximation can be written
in vector form as

(63)

Post-multiplying (33) by its transpose, using (63), taking the
expected value, using A1–A3 and defining matrix

yields, after simple algebraic manipulations as
done in [20]

(64)

with the eight moments given by

(65)

(66)

(67)

(68)

(69)

(70)

where the matrix in above equations is defined by

(71)

and

(72)

The expectation conveys the non-stationarity effects
and is given by

(73)

Using the first order approximation (63) and simple manipula-
tions yields

(74)
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The last term is obtained in the same form of (60)

(75)

C. Sign-Sign NNLMS Algorithm

Using the weight error vector definition
in (19) and

yields

(76)

Post-multiplying (76) by its transpose, taking the expected value
and rearranging the terms leads to

(77)

where

(78)

(79)

(80)

(81)

(82)

These expected values are calculated in the following for
Gaussian.
Expected value :
Using the properties of statistical expectation can be

written as

(83)

The conditional expectation in (83) is given by (39), which
must be approximated. Approximation (40) for the th element
of (39) is too simple to predict the weight error fluctuations.
A more suitable approximation is given by a first order Taylor
series expansion:

(84)

where the scalar and the vector are deterministic
variables defined respectively as

(85)

(86)

with defined in (41).
Using (84) in (83) and defining the vector with
th element and the matrix with th column

, (83) becomes, after simple manipulations,

(87)

Expected value :
Similar to , we first express in the form

(88)
Then, using (39) and (84) we obtain

(89)

The th element of the expectation in (89) is given by

(90)

Evaluation of the third order moment in (90) requires further
approximation, as the distribution of is unknown. We
assume that the distribution of can be approximated by
a Gaussian distribution about its mean value. Then, using the
properties of Gaussian variables [35] and defining the centered
variable for , we have

(91)

which completes the derivation of (89).
Expected value :
The -th entry of matrix is given by

(92)
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Fig. 2. Steady-state EMSE model validation for NNLMS and its variants. (a) Original NNLMS. (b) Normalized NNLMS. (c) Exponential NNLMS. (d) Sign-Sign
NNLMS.

Using (38),
and

(93)

Finally, expressing the result in the matrix form yields

(94)

where the th elements of the matrix is given by
.

Expected values and :
Using the same reasoning and approximations used to eval-

uate to yields

(95)

(96)

The last term writes

(97)

VI. STEADY-STATE BEHAVIOR

We have derived also analytical models for the steady-state
behavior of the algorithms proposed in Section III for a sta-
tionary environment. The analysis is not shown here for space

limitations. The interested reader is referred to [36]. We present
here simulation examples that illustrate the accuracy of the de-
rived model.
Consider the system in Fig. 1 with an unknown system of

order and weights defined by

(98)

where negative coefficients were explicitly included to activate
the non-negativity constraint. The input signal was the first-
order AR progress given by ,
where is an i.i.d. zero-mean Gaussian sequence with vari-
ance (so that ) and independent of any
other signal. The additive independent noise was zero-
mean i.i.d. Gaussian with variance . The adaptive
weights were initialized with for .
The step sizes were equal to for NNLMS and

for the NNLMS, Exponential NNLMS and Sign-Sign
NNLMS algorithms. Monte Carlo simulation results were ob-
tained by averaging 100 runs. Fig. 2 shows the simulation re-
sults and the behavior predicted by the analytical models. The
theoretical transient EMSE behaviors were obtained using re-
sults obtained in Sections IV and V and the theoretical steady-
state EMSE (horizontal dashed lines) were calculated using the
models derived in [36]. These figures clearly validate the pro-
posed theoretical results.
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Fig. 3. Evolution of the coefficients for the normalized NNLMS algorithm in stationary and nonstationary environments for . Theoretical curves
are from (32): (a) stationary case, and (b) nonstationary case, .

Fig. 4. Evolution of the coefficients for the normalized NNLMS algorithm in stationary and nonstationary environments for . Theoretical curves
are from (32): (a) stationary case, and (b) nonstationary case, .

VII. SIMULATION RESULTS AND DISCUSSION

We now present simulation examples to illustrate the prop-
erties of the three algorithms and the accuracy of the models
derived in Sections IV and V. The parameters for these exam-
ples were chosen to illustrate several properties of the three
algorithms while conserving space. Similar results have been
obtained using a variety of parameter sets. For all examples,

. The unknown stationary system is defined as

.
(99)

For the non-stationary case, we consider an unknown response
defined by

(100)

where the period of the deterministic sinusoidal component
was set to is a zero-mean Gaussian random vector

with correlation matrix with . The input
signal is a first-order AR process given by

, with i.i.d. zero-mean Gaussian with variance ,
adjusted to obtain the desired input power . The noise

is zero-mean i.i.d. Gaussian with variance . The
adaptive weights in were all initialized at for all re-
alizations. The step size was always set to for all but
the normalized variant. For the latter we used ,
which leads to an equivalent step size . Monte Carlo
simulations were obtained by averaging 100 runs.
1) Example 1: Figs. 3 and 4 show the results for the Normal-

ized NNLMS. The parameter was set to 0. Blue curves show
simulation results and red curves show the theoretical predic-
tions from (32). Fig. 3 is for and Fig. 4 is for . It
can be verified that the model (32) accurately predicts the algo-
rithm behavior, and that normalization has made the algorithm
performance basically independent of the input power.
2) Example 2: Fig. 5 illustrates the results for the Exponen-

tial NNLMS algorithm. The parameter was used.
Compared with Fig. 3, these figures clearly show that the coef-
ficients that tend to zero in steady-state had their convergence
rate significantly improved by the Exponential NNLMS algo-
rithm. Also, the accuracy of the theoretical model (35) can be
verified.
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Fig. 5. Evolution of the coefficients for the Exponential NNLMS algorithm in stationary and nonstationary environments. Theoretical curves are from
(35): (a) stationary case and (b) nonstationary case.

Fig. 6. Evolution of the coefficients for the Sign-Sign NNLMS algorithm in stationary and nonstationary environments. Theoretical curves are from (42):
(a) stationary case and (b) nonstationary case.

Fig. 7. Evolution of the EMSE for the Normalized NNLMS algorithm in stationary and nonstationary environment. Light blue dash-dot line and green dashed
line show the theoretical results for and , respectively: (a) curves for the stationary case and two theoretical curves with added and
(b) i’nonstationary case.

3) Example 3: Fig. 6 illustrate the result of the Sign-Sign
NNLMS under stationary and nonstationary environment.
These figures illustrate the accuracy of the model (42). It is also
clear that the Sign-Sign NNLMS coefficients converge much
slower than those for the NNLMS algorithm as expected.

A. Second Moment Behavior

We now illustrate the EMSE behavior of the NNLMS vari-
ants. Again, blue curves were obtained from Monte Carlo sim-
ulation and red curves show the theoretical predictions.
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Fig. 8. Evolution of the EMSE for the Exponential NNLMS algorithm in stationary and nonstationary environment. Light blue dash-dot line and green dashed
line show the theoretical results for and (original NNLMS), respectively: (a) stationary case and (b) nonstationary case.

Fig. 9. Evolution of the EMSE for the Sign-Sign NNLMS algorithm in stationary and nonstationary environment. Theoretical evolution of original NNLMS is
represented by the green dashed line: (a) stationary case and (b) nonstationary case.

1) Example 4: Fig. 7 illustrates the EMSE behavior of the
NormalizedNNLMS algorithm. The accuracy ofmodel (44) can
be easily verified. Two more curves are added to each plot to il-
lustrate the effect of the random non-stationarity parameter .
Random perturbations with different variances were also added
to (Fig. 7(a)) and to the nonstationary case (Fig. 7(b)).
The light blue (dash-dot) lines show the theoretical EMSE for

, while the green (dash) lines show the theoretical
EMSE for . These curves illustrate the expected
extra EMSE due to tracking of the random optimal solution vari-
ations. Simulation curves coincide with the theoretical ones, but
are not shown to preserve the visibility of the other curves.
2) Example 5: Fig. 8 illustrates the EMSE behavior of the

Exponential NNLMS algorithm. The blue and red curves show
again the simulation results and the accurate theoretical predic-
tions using (64) for . The light blue (dash-dot) and
the green (dash) curves show the theoretical predictions of the
EMSE behavior for and (original
NNLMS), respectively. The simulation results agree with these
curves but are not shown for clarity. These results confirm that
the Exponential NNLMS algorithm accelerates the convergence
of the adaptive weights when compared to NNLMS.

Fig. 10. EMSE (db) for the four algorithms compared.

3) Example 6: Fig. 9 illustrates EMSE behavior of the
Sign-Sign NNLMS algorithm. Once more, the red curves and
blue curves illustrate the accuracy of the model (77). The
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Fig. 11. Weights estimated by NLMS, Projected NLMS, Normalized NNLMS, and Exponential NNLMS at for a single realization. Real weights are
marked by . The NNLMS variants determine clearly the support of the response: (a) NLMS algorithm; (b) projected NLMS algorithm; (c) normalized NNLMS
algorithm; (d) exponential NNLMS algorithm; and (e) sign-sign NNLMS algorithm.

green (dashed) curves show the performance of the original
NNLMS in the same conditions. These curves illustrate the
slower convergence rate of Sign-Sign NNLMS when com-
pared to NNLMS, the price paid for a reduced computational
complexity.

B. A Comparative Example

This example compares the performance of the NNLMS al-
gorithm and its variants with that of unconstrained algorithms in

solving the unconstrained solution problem of identifying an un-
known weight vector with non-negative coefficients. This is
an interesting application, as in this case the unconstrained algo-
rithm will converge in the mean to the optimal solution. Though
the problem description may guarantee that the optimal weights
are positive, often in practice one do not have accurate informa-
tion about the number of coefficients in the optimal solution. A
common approach is to set the adaptive filter with a sufficient
number of coefficients, usually larger than the actual unknown
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number. This examples illustrates the performance of the dif-
ferent algorithms in this case.
Consider a non-negative unknown optimal solution

(101)

with and adaptive filters with coeffi-
cients. Five algorithms were tested: NLMS [26], Projected Gra-
dient NLMS [37], Normalized NNLMS, Exponential NNLMS
and Sign-Sign NNLMS. In Projected Gradient NLMS, the co-
efficients which activate the non-negativity constraints are pro-
jected into the feasible region, i.e., set to 0, at each iteration.
The input signal was given by
with so that . The initial weights
were drawn from the uniform distribution . The additive
noise was i.i.d. Gaussian with . The step sizes
were chosen for each algorithm by experimentation so that all
would reach approximately the same steady-state EMSE with
the value of . The step sizes were for
both NLMS and Projected Gradient NLMS, for
Normalized NNLMS, for Exponential NNLMS and

for Sign-Sign NNLMS. Fig. 10 shows the EMSE
evolution for the five algorithms (Monte Carlo simulation aver-
aged over 100 realizations). Fig. 11 shows the estimated weights
for a single realization of the input signal at . Al-
though the unconstrained NLMS algorithm is able to converge
to the optimal solution in the mean sense, it does not provide a
good estimation of the zero-valued coefficients in a single re-
alization. NNLMS-type algorithms, including the Sign-Sign al-
gorithm (which has not even converged to the steady-state at

) do a better job in determining the support of the
actual response.

VIII. CONCLUSION

Many real-life systems require non-negative coefficients
when their physical behavior is parameterized. In such cases,
a non-negativity constraint should be imposed on the pa-
rameters to estimate in order to avoid physically absurd and
uninterpretable results. The Non-Negative Least-Mean-Square
(NNLMS) algorithm has been recently proposed to solve such a
constrained Wiener problem online. In this paper, we proposed
three variants of NNLMS, each addressing a different issue
that may affect NNLMS under given circumstances. The per-
formances of the Normalized NNLMS, Exponential NNLMS
and Sign-Sign NNLMS algorithms were studied for nonsta-
tionary environments. The optimal unconstrained solution was
modeled by a time-variant mean plus a random fluctuation. The
derived analytical models were shown to accurately predict
both the mean and the mean-square behavior of the algorithms.
Their performances were compared and their advantages in
potential applications discussed. Future research efforts will
further explore these NNLMS variants properties and apply
them in practical situations where efficient adaptive solutions
to non-negative filtering problem are required.
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