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Steady-State Performance of Non-Negative
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Abstract—The Non-Negative Least-Mean-Square (NNLMS)
algorithm and its variants have been proposed for online esti-
mation under non-negativity constraints. The transient behavior
of the NNLMS, Normalized NNLMS, Exponential NNLMS and
Sign-Sign NNLMS algorithms have been studied in the liter-
ature. In this letter, we derive closed-form expressions for the
steady-state excess mean-square error (EMSE) for the four algo-
rithms. Simulation results illustrate the accuracy of the theoretical
results. This work complements the understanding of the behavior
of these algorithms.

Index Terms—Non-negative LMS, steady-state performance, ex-
cess mean-square error, stochastic behavior.

I. INTRODUCTION

N ON-NEGATIVITY is one important constraint that
can be imposed on parameters to estimate. It is often

imposed to avoid physically unreasonable solutions and to
comply with natural physical characteristics. Non-negativity
constraints appear, for example, in deconvolution problems
[1]–[3], image processing [4], [5], audio processing [6], remote
sensing [7]–[9], and neuroscience [10]. The Non-Negative
Least-Mean-Square algorithm (NNLMS) [11] and its three
variants, namely, Normalized NNLMS, Exponential NNLMS
and Sign-Sign NNLMS [12], were proposed to adaptively find
solutions of a typical Wiener filtering problem under non-neg-
ativity constraints. The transient behavior of these algorithms
has been studied in [11], [12]. Analytical recursive models have
been derived for the mean and mean-square behaviors of the
adaptive weights.
This paper complements the work in [11], [12] by deriving

closed form expressions for the steady-state excess mean square
error of each of these algorithms. These expressions cannot
be directly obtained from the transient recursions derived in
[11], [12] because the weight updates include nonlinearities
on the adaptive weights. Moreover, they cannot be derived
following the conventional energy-conservation relations [13].
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Hence, new analyses are required to understand the steady-state
behavior of these algorithms.
In this paper, we derive accurate models for the steady-state

behaviors of NNLMS and its variants using a common analysis
framework, with clear physical interpretation of each term in
the expressions. Simulations are conducted to validate the the-
oretical results. This work therefore complements the under-
standing of the behavior of these algorithms, and introduces a
new methodology for the study of the steady-state performance
of adaptive algorithms.We recommend that readers refer to [11],
[12] for a more detailed understanding of the algorithms and
their transient behavior. Readers may also refer to the associ-
ated report [14] for some detailed calculation steps.

II. PROBLEM FORMULATION AND ALGORITHMS

Consider an unknown system with input-output relation char-
acterized by the linear model

(1)

with an unknown parameter vector, and
the regressor vector

with correlation matrix . The input signal and the refer-
ence signal are assumed zero-mean stationary. The mod-
eling error is assumed stationary, independent and identi-
cally distributed (i.i.d.), with zero-mean and variance , and
independent of any other signal. Due to inherent physical char-
acteristics of the system, non-negativity is imposed on the esti-
mated coefficient vector . We seek to identify this system by
minimizing the constrained mean-square error criterion

subject to (2)

In order to solve this problem in an adaptive and online manner,
the Non-Negative Least-Mean-Square (NNLMS) algorithmwas
derived in [11] with weight update relation given by

(3)

where denotes the diagonal matrix with th diagonal
entry , denotes a fixed positive step size,
and the estimation error . Several
useful variants were derived to improve the NNLMS properties
in some sense [12].
The Normalized NNLMS algorithm was proposed to reduce

the sensitivity of the NNLMS performance to the input power.
Its weight update relation is

(4)
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where a small positive value can possibly be added to the de-
nominator in order to avoid numerical difficulties and

. The Exponential NNLMS was proposed to
better balance the convergence rates of the weights:

(5)

where is the diagonal matrix with th entry

equal to the th component of , namely
, and . The

Sign-Sign NNLMS was proposed to reduce the implementation
cost in critical real-time applications. Its update relation is given
by

(6)

with . As the errors are nonlinear
functions of the weights, the theoretical analysis becomes very
challenging and significantly different from those of the LMS-
based algorithms employed for solving unconstrained estima-
tion problems.

III. STEADY-STATE MEAN-SQUARE PERFORMANCE ANALYSIS

In this introduction we use the generic notations ,
and for all the algorithms. The expressions in the following
subsections naturally refer to the variables for the corresponding
algorithm. This simplifies the notation and conserves space
without ambiguity.
Define the weight error vector as the difference between

the estimated weight vector and the real system coefficient
vector , namely

(7)

Assume that the step size of the algorithm is chosen to be suffi-
ciently small to ensure the convergence in the mean and mean-
square senses, and denote the mean weight estimate at steady-
state by . The weight error vector (7) can then be
rewritten as

(8)

The first difference on the right-hand-side (RHS) of (8) is
the weight error vector with respect to themean of the converged
weights. The second difference is the mean weight error (7) at
convergence, i.e., the asymptotic bias .
In the following analyses we use the conventional indepen-

dence assumption, namely, that is independent of for
all [15].
Using (8), can be written as

(9)

and the excess mean-square error (EMSE)
is calculated as

(10)

The steady-state is obtained by taking the limiting value
as . The second term on the RHS of (10) is deterministic.
The third term vanishes as . Then, it remains to evaluate
the first term to determine the steady-state EMSE. The
advantage of working with instead of is that the mean
value of always converges to 0, i.e., , which
is not true for in the constrained optimization problem.
The formulation in (10) is general enough to study different

non-negativity constrained optimization problems. When the al-
gorithm solution is unbiased with respect to the unconstrained
solution , the contribution of will be zero. When the al-
gorithm solution is unbiased with respect to the constrained so-
lution , then accounts for the error due to the constraints.
Otherwise, cannot be analytically calculated but
can be determined by running the recursive models derived in
[11], [12] for the mean weight behavior.
For the analyses that follow, we distinguish the weights into

two sets. The set contains the indices of the weights that
converge in the mean to positive values, namely,

The set contains the indices of the weights that converge in
the mean to zero, namely,

Considering that the non-negativity constraint is always satis-
fied at steady-state, implies that for

for all realizations. The weight error vector is then
deterministic and satisfies

(11)

and, consequently,

(12)

Now let be a diagonal matrix with entries

(13)

and be the diagonal matrix such that

(14)

With these matrices, we have that

(15)

and, as ,

(16)

With these definitions and notations at hand, we now perform
the steady-state analysis for NNLMS and its variants.

A. Steady-State Performance for NNLMS

Subtracting from both sides of (3), we have the
weight error update relation

(17)
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Consider the weighted square-norm such that

. Then we have

(18)

Assuming convergence, we consider the following relation to be
valid at steady-state:

(19)

Using equation (9), the expected value of the second term on
RHS of (18) with is given by

(20)

where we have considered that due to (12)
and (14) and that . For the expected value of
the third term on the RHS of (18), we assume that
is independent of at steady-state, which is similar to the
approximation performed in [13]. This expected value can then
be written as

(21)

Now, using (19) to (21) in (18) yields

(22)

which leads to

(23)

In the above expression, the first term accounts for the EMSE
contribution associated with unbiased components, which
is equivalent to EMSE of the LMS algorithm with compo-
nent-wise step sizes . This result is reasonable when
observing the weight update equation (3). The second term ac-
counts for EMSE introduced in the adaptive process by the bias
with respect to the unconstrained solution. Finally considering
the relation (10), i.e., adding the direct bias contribution, the
steady-state EMSE is given by

(24)

B. Steady-State Performance for Normalized NNLMS

It is common to neglect the correlation between the de-
nominator and the numerator of the weight update
in equation (4) for large filter lengths, as the former tends to
vary much slower [16], [17]. Moreover, for sufficiently large
, and the Normalized NNLMS per-

forms as the NNLMS algorithm with the equivalent step size
. Based on this approximation, the Normalized

NNLMS steady-state EMSE is directly obtained by using in
equation (24):

(25)

C. Steady-State Performance for Exponential NNLMS

Let be a matrix defined as in equation (13), with
entries for ,
otherwise. Following the same steps that led to the EMSE for
the NNLMS algorithm, except by taking the weighted square-
norm when writing the norm equality (18), yields

the following steady-state EMSE for the Exponential NNLMS
algorithm:

(26)

D. Steady-State Performance for Sign-Sign NNLMS

In this subsection, we shall derive the EMSE for Sign-Sign
NNLMS in detail due to the particular nonlinearity introduced
by function. Subtracting from both sides of the
weight update relation (6), we have the relation:

(27)

Taking the expected value of , we have

(28)

Assuming convergence, we consider the following relation to be
valid at steady-state:

(29)

The expected value of the second term on RHS of equation (28)
with is given by

(30)
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where we used Price’s theorem to obtain this result since
and are jointly Gaussian when conditioned on [12].
The conditional variance of is given by

(31)

The term within the expectation in (30) is highly nonlinear
due to function . It is reasonable to approximate the
nonlinear function using the linear expansion about
the point , since the weight errors fluctuate about

at steady-state. As , we have

(32)

with . The expected value of the third
term on the RHS of (28) for is given by

(33)

Using these results in the equality (28), we have the equation

(34)

which yields

(35)

Finally, from equation (10) the the steady-state EMSE of the
Sign-Sign NNLMS algorithm is given by

(36)

IV. EXPERIMENT VALIDATION

In this section, we present examples to illustrate the corre-
spondence between theoretical steady-state EMSE and simu-
lated results for NNLMS and its variants. Consider an unknown
system of order and weights defined by

(37)

where negative coefficients were explicitly included to activate
the non-negativity constraint. The input signal was the first-
order AR progress given by , where

is an i.i.d. zero-mean Gaussian sequence with variance
(so that ) and independent of any other

signal. The additive independent noise was zero-mean i.i.d.
Gaussian with variance . The adaptive weights were
initialized with for . The step sizes
were equal to for NNLMS and for the
NNLMS, Exponential NNLMS and Sign-Sign NNLMS algo-
rithms. Monte Carlo simulation results were obtained by aver-
aging over 100 runs. Fig. 1 shows the simulation results and

Fig. 1. Steady-state EMSE model validation for NNLMS and its variants
(a) Original NNLMS (b) Normalized NNLMS (c) Exponential NNLMS
(d) Sign-Sign NNLMS.

Fig. 2. Bias introduced by the assumptions made in the analysis. The
bias is calculated as the relative difference of the EMSE obtained
from simulations and predicted by the models for step sizes relative to
the stability limit of each algorithm. The relative bias is calculated as

/ .

the behavior predicted by the analytical models. The theoretical
transient EMSE behaviors were obtained using results in [11],
[12], and the theoretical steady-state EMSE (horizontal dashed
lines) were calculated by the expressions derived in this letter.
Fig. 2 shows the relative bias introduced by the assumptions
used in the analysis. The bias is specially low for ,
which is the most used step size range in practical application.
These figures clearly validate the proposed theoretical results.

V. CONCLUSION

In this letter, we derived closed-form expressions for the
steady-state excess mean-square errors of the Non-Negative
LMS algorithm and its variants. Experiments illustrated the
accuracy of the derived results. Future work may include the
derivation of other useful variants of NNLMS and the study of
their stochastic performance.
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