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Nonlinear Estimation of Material Abundances in
Hyperspectral Images With �1-Norm

Spatial Regularization
Jie Chen, Student Member, IEEE, Cédric Richard, Senior Member, IEEE, and Paul Honeine, Member, IEEE

Abstract—Integrating spatial information into hyperspectral
unmixing procedures has been shown to have a positive effect
on the estimation of fractional abundances due to the inherent
spatial–spectral duality in hyperspectral scenes. However, current
research works that take spatial information into account are
mainly focused on the linear mixing model. In this paper, we
investigate how to incorporate spatial correlation into a nonlinear
abundance estimation process. A nonlinear unmixing algorithm
operating in reproducing kernel Hilbert spaces, coupled with
a �1-type spatial regularization, is derived. Experiment results,
with both synthetic and real hyperspectral images, illustrate the
effectiveness of the proposed scheme.

Index Terms—Hyperspectral imaging, �1-norm regularization,
nonlinear spectral unmixing, spatial regularization.

I. INTRODUCTION

HYPERSPECTRAL imaging provides 2-D spatial images
over many contiguous bands. The high spectral resolution

allows to identify and quantify distinct materials from remotely
observed data. This area has received considerable attention in
the last decade. Applications include land use analysis, mineral
detection, environment monitoring, field surveillance, etc. Typi-
cally, the observed reflectance at each pixel is a spectral mixture
of several material signatures, termed endmembers, due to the
limited spatial resolution of certain observation devices and
diversity of materials. For this reason, spectral unmixing is an
important issue for hyperspectral data processing to investigate
information in each pixel [1].

There have been significant efforts during the past decade to
solve linear unmixing problems, and several methods have been
successfully derived within the context of hyperspectral imag-
ing. Nevertheless, linear models can only accurately capture
simple interactions between elements, e.g., in situations where
the mixing of materials is not intimate and multiple scattering
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is negligible [1]. Recently, several researchers have started
aggressively exploring nonlinear unmixing techniques. In [2]
and [3], the authors extended the collection of endmembers
by explicitly adding nonlinear artificial cross-terms of pure
spectral signatures and used a conventional linear unmixing
algorithm over this new dictionary. In [4], a Bayesian infer-
ence algorithm dedicated to the generalized bilinear mixture
model was proposed. In [5], the same strategy was applied
to estimate the fractional abundances of a polynomial post
nonlinear mixing model. Manifold learning techniques were
investigated in [6] and [7], and unmixing algorithms using
geodesic distances or manifold-related regularization terms
were proposed. Moreover, algorithms operating in reproducing
kernel Hilbert spaces were considered to process hyperspectral
data. In [8], a fuzzy-input fuzzy-output support vector machine
was designed for subpixel image classification. Kernel-based
nonlinear unmixing approaches were investigated in [9] and
[10]. These algorithms were mainly obtained by replacing each
inner product between endmember spectra, in the cost functions
to be optimized, by a kernel function. This can be viewed as
a nonlinear distortion map applied to the spectral signature of
each material, which is of little physical interest in solving the
unmixing problem because the nonlinear nature of mixing may
also be characterized by nonlinear interactions of the materials.
Physically inspired kernel-based models were introduced in
[11] to circumvent this drawback, where we modeled each
mixed pixel by a linear mixture of endmember spectra coupled
with an additive nonlinear interaction term. The latter was
used to model nonlinear effects of photon interactions and was
defined in a reproducing kernel Hilbert space. In [12]–[14], a
more complete and sophisticated theory and new methods were
derived to automatically adjust the balance between linear and
nonlinear components. A postnonlinear mixing model was also
introduced in [15].

Although several linear and nonlinear state-of-the-art un-
mixing techniques have shown interesting performance for
this problem, they have been mostly focused on exploiting
spectral information available in the hyperspectral space. These
approaches consist of considering pixel vectors as if they were
independent from their neighboring pixels. However, one of
the distinguishing properties of remotely sensed data is that
they convey multivariate information into a 2-D pictorial rep-
resentation [16]. Subsequently, instead of disregarding spa-
tial contextual information, hyperspectral analysis techniques
should benefit from the inherent spatial–spectral duality in

0196-2892/$31.00 © 2013 IEEE

mailto: jie.chen@unice.fr
mailto: jie.chen@unice.fr
mailto: paul.honeine@utt.fr


IE
EE

Pr
oo

f

2 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

hyperspectral scenes. Following this idea, researchers have
attempted to exploit spatial information in hyperspectral image
analysis. Spatial preprocessing techniques were investigated for
endmember determination in [17]–[19]. Spatial correlation was
incorporated into hyperspectral image classification algorithms
in [20] and [21]. Concerning the unmixing problem, a nonneg-
ative matrix factorization-type problem regularized by the �1-
norm of differences between neighboring pixels was proposed
in [22]. A projected subgradient method was used to solve this
problem. In [23], a Markov random field was proposed to model
the spatial dependence of the pixels within classes. Bayesian
inference was then used to estimate the model parameters. In
[24], total variation was employed for spatial regularization to
enhance the unmixing performance. The alternating direction
method of multipliers was used to solve the regularized prob-
lem. Some other works also showed that incorporating spatial
information can have a positive impact on the hyperspectral
unmixing process [25], [26].

To the best of our knowledge, spatial regularization has not
yet been extensively studied in a nonlinear unmixing process.
As nonlinear unmixing is itself an important but challenging
issue, it appears difficult to address these two problems simul-
taneously. A new nonlinear model was proposed in our work
[12], where we assumed that a nonlinear mixture can be decom-
posed into a linear trend and an additive nonlinear fluctuation
term in a reproducing kernel Hilbert space to model nonlinear
effects. Based on this promising advance within the area of
nonlinear unmixing, in this paper, we take spatial information
into account in the unmixing process using �1-norm spatial
regularization. An optimization method based on split-Bregman
iterations is proposed to deal with this problem that suffers from
the nonlinearity of the model and the nonsmoothness of the
regularization term. Experiments with both synthetic and real
data are conducted to validate the proposed method.

II. FORMULATION OF THE PROBLEM

A. Notations

Suppose that the hyperspectral image under study has
w pixels in each row and h pixels in each column. Each pixel
consists of a reflectance vector in L contiguous spectral bands.
In order to facilitate the presentation, we transform this 3-D
image into a L×N matrix, with N = w × h the total number
of pixels. Then, let

• n ∈ {1, . . . , N} be the sequential index of pixels in the
image.

• rn = [rn1, rn2, . . . , rnL]
� be the (L× 1) observed re-

flectance vector for the pixel n, which consists of a mixture
of R endmember spectra.

• M = [m1,m2, . . . ,mR] be the (L×R) endmember tar-
get matrix, where each column mi is an endmember
spectral signature. For expository convenience, we denote
by m�

λ�
the �-th row of M , namely, the vector of the R

endmember signatures at the �-th wavelength band.
• αn = [αn1, αn2, . . . , αnR]

� be the (R× 1) abundance
vector associated to the pixel n.

• A = [α1, . . . ,αN ] be the matrix composed of all the
abundance vectors.

• 1N be the (N × 1) all-one vector and IN be the (N ×N)
identity matrix.

Other symbols will be defined in the context where they
are used.

B. Formulation of the Nonlinear Unmixing Problem
With Spatial Regularization

Suppose that the materials in a scene have been determined
by some endmember extraction algorithm. The unmixing prob-
lem boils down to estimating the abundance vector associated to
each pixel. One way to exploit spatial information is to define an
appropriate criterion to be optimized, e.g., by considering extra
penalty terms to promote the similarity of fractional abundances
between neighboring pixels. The rationale is that homogeneous
regions within which correlation among neighboring pixels is
high potentially exist in real images. This suggests that increas-
ing spatial homogeneity should tend to increase the accuracy
of the representation of spectral objects and to suppress high-
spatial-frequency artifacts [27], although there are risks to
remove small features.

Taking the spatial relationship among pixels into considera-
tion, the unmixing problem can then be solved by minimizing a
general cost function with respect to the matrix A

J(A) = Jerr(A) + ηJsp(A) (1)

subject to the nonnegativity constraint imposed on each entry
of A and the sum-to-one constraint imposed on each column of
A, namely, on each αn. For ease of notation, these two physical
constraints will be expressed by

A � 0

A�1R = 1N .

Recent works have raised the question of relaxing the sum-
to-one constraint. Indeed, poor estimates of the endmember
signatures may affect the performance of the unmixing process.
This constraint is maintained in the following as a baseline for
comparison with existing approaches. However, in Appendix,
we also briefly consider the case where the sum-to-one con-
straint is removed from the model. In the general expression
(1), the function Jerr represents the modeling error, and Jsp
is a regularization term to promote the similarity of the frac-
tional abundances within neighboring pixels. The nonnegative
parameter η controls the tradeoff between data fidelity and pixel
similarity. In [22] for instance, the �1-norm of the differences of
abundance vectors in the neighborhood of each pixel was used
as the spatial regularizer. In [24], anisotropic total variation
norm was considered for linear sparse unmixing. In [26], a so-
called fuzzy local information proportion was used for incorpo-
rating spatial information. In [21] and [23], a Markov random
field was proposed to model spatial dependence. All these
approaches have shown a substantial advantage of using spatial
information for hyperspectral data unmixing, although there are
risks to remove small and significant features. Preprocessing
can be conducted to alleviate such hazards by separating these
features in advance [28].
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Rarely, if ever, have nonlinear mixing models incorporating
spatial information been considered in the literature. In this
paper, we intend to formulate Jerr as in our recent work [12]
because this approach has shown excellent performance and
low computational cost. For self-containedness, let us briefly re-
view part of this work. Consider the general unmixing process,
acting between the entries rn,� of the reflectance vector and the
spectral signatures mλ�

of the endmembers at each wavelength
band λ�, defined as

rn,� = ψαn
(mλ�

) + en,�

with ψαn
being an unknown nonlinear function to be estimated

that defines the interaction between the endmember spectra, in
the proportion αn, and with en being the estimation error. This
requires us to consider a general problem

ψ∗
αn

= argmin
ψαn

1

2
‖ψαn

‖2H +
1

2μ

L∑
�=1

(rn,� − ψαn
(mλ�

))2

(2)

with μ being a positive parameter that controls the tradeoff
between structural error and misadjustment error. Clearly, this
basic strategy may fail if the functionals ψαn

cannot be ad-
equately and finitely parameterized. In [12], we defined them
by a linear trend parameterized by the abundance vector αn,
combined with a nonlinear fluctuation function ψn, namely

ψαn
(mλ�

) = α�
nmλ�

+ ψn(mλ�
) (3)

where ψn can be any real-valued function of a reproducing
kernel Hilbert space H, endowed with the reproducing kernel
κ such that ψn(mλ�

) = 〈ψn, κ(·,mλ�
)〉. Indeed, kernel-based

methods lead to the efficient and accurate resolution of inverse
problems of form (2) by exploiting the central idea of this
research area, known as the kernel trick [29]. This trick has been
widely used for solving nonlinear regression and classification
problems [30], [31]. We proposed in [12] to conduct data
unmixing (2) and (3) by solving the following least square
support vector regression (LS-SVR) problem:

α∗
n, ψ

∗
n = argmin

αn,ψn

1

2

(
‖αn‖2 + ‖ψn‖2H +

1

μ
‖en‖2

)

subject to αn � 0 and 1�αn = 1 (4)

where en is the (L× 1) misadjustment error vector with the
�-th entry en,� = rn,� − (α�

nmλ�
+ ψn(mλ�

)) as defined in
(2). It can be shown that problem (4) is convex so that it
can be solved exactly by the duality theory. This so-called
K-Hype method was introduced in [12]. A very efficient ex-
tension, called SK-Hype, consisting of relaxing the sum-to-
one constraint and automatically adjusting the balance between
α�

nmλ�
and ψn(mλ�

) via an appropriate parameterization was
also presented in this paper. In the following, we restrict our
attention to K-Hype, and we maintain the sum-to-one con-
straint as a baseline for comparison with existing approaches.
However, in Appendix, we also briefly address the case where
the sum-to-one constraint is removed from the model. Finally,

considering all the pixels of the image to process, the modeling
error to be optimized writes

Jerr(A,ψ) =
1

2

N∑
n=1

(
‖αn‖2 + ‖ψn‖2H +

1

μ
‖en‖2

)

subject to the nonnegativity and sum-to-one constraints over the
abundance vectors. In this expression, A = [α1, . . . ,αN ] and
ψ = {ψn ∈ H : n = 1, . . . , N}.

In order to take into account the spatial correlation between
pixels, we shall use �1-type regularizers of the form [22],
[24] to promote piecewise constant transitions in the fractional
abundance of each endmember among neighboring pixels. The
regularization function is expressed as

Jsp(A) =

N∑
n=1

∑
m∈N (n)

‖αn −αm‖1 (5)

where ‖ ‖1 denotes the vector �1-norm and N (n) denotes the
set of neighbors of the pixel n. Without any loss of generality, in
this paper, we define the neighborhood of the pixel n by taking
the four nearest pixels n− 1 and n+ 1 (row adjacency) and
n− w and n+ w (column adjacency). In this case, let us define
the (N ×N) matrices H← and H→ as the two linear operators
that compute the difference between any abundance vector and
its left- and right-hand neighbors, respectively. Similarly, let
H↑ and H↓ be the linear operators that compute that difference
with the top neighbor and the down neighbor, respectively. With
these notations, the regularization function (5) can be rewritten
in matrix form as

Jsp(A) = ‖AH‖1,1

with H being the (N × 4N) matrix (H← H→ H↑ H↓) and
‖ ‖1,1 being the sum of the �1-norms of the columns of a matrix.
Obviously, other boundaries for the neighborhood N (n) may
be used by simply defining the appropriate matrix H . Finally,
note that this regularization function is convex but nonsmooth.

Now considering both the modeling error Jerr and the regu-
larization term Jsp, the optimization problem becomes

A∗,ψ∗ = argmin
A,ψ

N∑
n=1

1

2

(
‖αn‖2 + ‖ψn‖2H +

1

μ
‖en‖2

)

+ η‖AH‖1,1
subject to A � 0 and A�1R = 1N (6)

where η controls the tradeoff between model fitting in each
pixel and similarity among neighboring pixels. The constraints
over A define a convex set SA. For ease of exposition, in the
formulation of optimization problems, we will write A ∈ SA.

III. SOLVING THE PROBLEM

Although the optimization problem (6) is convex, it cannot
be solved easily because it combines an LS-SVR problem with
a huge-dimensional nonsmooth regularization term. In order
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to overcome this drawback, we rewrite (6) in the following
equivalent form:

min
A∈SA,ψ

N∑
n=1

1

2

(
‖αn‖2 + ‖ψn‖2H +

1

μ
‖en‖2

)
+ η‖U‖1,1

subject to V = A and U = V H (7)

where two new matrices U and V , and two additional con-
straints, have been introduced. This variable-splitting approach
was initially introduced in [32]. Matrix U will allow us to de-
couple the nonsmooth �1-norm regularization functional from
the constrained LS-SVR problem. Matrix V will make the
LS-SVR problem tractable by relaxing connections between
pixels.

As studied in [32], the split-Bregman iteration algorithm is
an efficient method to deal with a broad class of �1-regularized
problems. By applying this framework to (6), the following
formulation is obtained:

A(k+1),ψ(k+1),V (k+1),U (k+1)

= argmin
A∈SA,ψ,V ,U

N∑
n=1

1

2

(
‖αn‖2 + ‖ψn‖2H +

1

μ
‖en‖2

)

+ η‖U‖1,1 +
ζ

2

∥∥∥A− V −D
(k)
1

∥∥∥2
F

+
ζ

2

∥∥∥U − V H −D
(k)
2

∥∥∥2
F

(8)

with

D
(k+1)
1 =D

(k)
1 +

(
V (k+1) −A(k+1)

)

D
(k+1)
2 =D

(k)
2 +

(
V (k+1)H −U (k+1)

)
(9)

where ‖ ‖2F denotes the matrix Frobenius norm and ζ is a
positive parameter. Because of the way that we have split the
components of the cost function, we can now perform the above
minimization efficiently by iteratively minimizing with respect
to (A,ψ), V , and U separately. The three steps that we have
to perform are as follows.

1) Step 1—Optimization With Respect to A and ψ: The
optimization problem (8) reduces to

A(k+1),ψ(k+1) = argmin
A∈SA,ψ

N∑
n=1

1

2

×
(
‖αn‖2 + ‖ψn‖2H +

1

μ
‖en‖2 + ζ

∥∥∥αn − ξ(k)n

∥∥∥2)

where ξ(k)n = V (k)
n +D

(k)
1,n. Here, V n and D1,n denote the

n-th column of V and D1, respectively. It can be observed that
this problem can be decomposed into subproblems, each one

involving an abundance vector αn. This results from the use of
the matrix V in the split iteration algorithm (8).

Let us now solve the local optimization problem

α(k+1)
n , ψ(k+1)

n = argmin
αn,ψn,en

1

2

(
‖αn‖2 + ‖ψn‖2H +

1

μ

L∑
�=1

e2n,�

+ζ
∥∥∥αn−ξ(k)n

∥∥∥2
)

subject to en,� = rn,� −
(
α�

nmλ�
+ ψn(mλ�

)
)

αn � 0

α�
n1R = 1. (10)

By introducing the Lagrange multipliers βn,�, γn,�, and λn,
where the superscript (k) of these variables has been omitted
for simplicity of notation, the Lagrange function associated to
(10) is written as

Ln =
1

2

(
‖αn‖2 + ‖ψn‖2H +

1

μ

L∑
�=1

e2n,� + ζ
∥∥∥αn − ξ(k)n

∥∥∥2
)

−
L∑

�=1

β�

(
en,� − rn,� +α�

nmλ�
+ ψn(mλ�

)
)

−
R∑

r=1

γrαn,r + λn

(
α�

n1R − 1
)

(11)

with γn,r ≥ 0. The conditions for the optimality of Ln with
respect to the primal variables lead us to⎧⎪⎨
⎪⎩

α∗
n = 1

ζ+1

(∑L
�=1 β

∗
n,�mλ�

+ γ∗
n − λ∗

n1+ ζξ(k)n

)
ψ∗
n =

∑L
�=1 β

∗
n,�κ(·,mλ�

)
e∗n,� = μβ∗

n,�

(12)

where κ is the reproducing kernel of H. By substituting (12)
into (11), we get the dual problem

max
βn,γn,λn

L′
n(βn,γn, λn)

= − ρ

2ζ

⎛
⎝βn

γn

λn

⎞
⎠

�
⎛
⎜⎝

Kψ M −M1R

M� I −1R

−1�
RM

� −1�
R R

⎞
⎟⎠

×

⎛
⎝βn

γn

λn

⎞
⎠+

⎛
⎜⎝

rn − ρMξ(k)n

−ρξ(k)n

ρξ(k)�n 1R − 1

⎞
⎟⎠

� ⎛
⎝βn

γn

λn

⎞
⎠

subject to γn � 0

with Kψ =
1

ζ
(K + μI) +MM� and ρ =

ζ

1 + ζ

(13)

where K is the Gram matrix defined as [K]�p =
κ(mλ�

,mλp
). The problem (13) is a convex quadratic

programming problem with respect to the dual variables.
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TABLE I
NONLINEAR UNMIXING WITH SPATIAL REGULARIZATION ALGORITHM

Finally, provided that the optimal dual variables β∗
n, γ∗

n, and
λ∗
n have been determined, the vector of fractional abundances

α
(k+1)
n is estimated by

α∗
n =

1

ζ + 1

(
M�β∗

n + γ∗
n − λ∗

n1+ ζξ(k)n

)
.

This process has to be repeated for n = 1, . . . , N in order to
get A(k+1). Matrices A(k+1) and V (k+1), whose calculation is
presented hereafter, allow to evaluate D

(k+1)
1 using (9).

2) Step 2—Optimization With Respect to V : The optimiza-
tion problem (8) now reduces to

V (k+1) = argmin
V

∥∥∥A(k+1) − V −D
(k)
1

∥∥∥2
F

+
∥∥∥U (k) − V H −D

(k)
2

∥∥∥2
F
. (14)

Equating to zero the derivative of the above expression with
respect to V leads to(

A(k+1) − V −D
(k)
1

)
−
(
U (k) − V H −D

(k)
2

)
H� = 0

whose solution is then given by

V (k+1)=
(
A(k+1)−D

(k)
1 +

(
U (k)−D

(k)
2

)
H�

)
(I+HH�)−1.

(15)

3) Step 3—Optimization With Respect to U : Finally, the
optimization problem that we have to consider is as follows:

U (k+1) = argmin
U

η‖U‖1,1 +
ζ

2

∥∥∥U − V (k+1)H −D
(k)
2

∥∥∥2
F
.

(16)

Its solution can be expressed via the well-known soft threshold
function

U (k+1) = Thresh

(
V (k+1)H +D

(k)
2 ,

η

ζ

)
(17)

where Thresh(·, τ) denotes the componentwise application of
the soft threshold function defined as [33]

Thresh(x, τ) = sign(x)max (|x| − τ, 0) .

4) Discussion: To conclude, problem (7) is solved by it-
eratively applying (8) and (9) until some stopping criterion
is satisfied. It can be shown that, if the problem (8) has a

solution A∗ given any ζ > 0, then the generated sequence A(k)

converges to the optimum A∗ [34].
Problem (8) is addressed by solving three subproblems with

respect to A [see (10)], with respect to V [see (14)], and
with respect to U [see (16)], repeatedly. The first subprob-
lem with respect to A is solved by considering the standard
quadratic programming problem defined by (13), of size L+
R+ 1, subject to R inequality constraints and one equality
constraint, for each pixel. It is equivalent to the K-Hype algo-
rithm described in [12]. Its computational complexity does not
depend on the nature of the nonlinearity in the mixture model
as it is formulated in a reproducing kernel Hilbert space. The
second subproblem with respect to V has an explicit solution
(15) that involves the inverse of the matrix (I +HH�). The
latter can be calculated once the neighborhood relationship is
defined. The third subproblem with respect to U has also an
explicit solution (17). The computational time required by the
two latter stages is almost negligible compared to the resources
required by the first stage. Finally, the overall running time of
the algorithm is mainly dictated by the number of iterations
on A, U , and V . It can be adjusted to compromise between
computational time and convergence accuracy. The algorithm
is provided in pseudocode form in Table I.

IV. EXPERIMENT RESULTS

In this section, experiments on spatially correlated images
are reported to validate the proposed algorithm.

A. Experiments With Synthetic Images

1) Simulation Scenario Settings: Two spatially correlated
abundance maps were generated for the following experiments.
The endmembers were randomly selected from the spectral
library advanced spaceborne thermal emission and reflection
radiometer (ASTER) [35]. Each signature of this library has
reflectance values measured over 224 spectral bands, uniformly
distributed in the interval of 3–12 μm. Two synthetic images
identical to that in [24] were used.

The first data cube, denoted by IM1 and containing
75 × 75 pixels, was generated by using five signatures ran-
domly selected from the ASTER library. Pure regions and
mixed regions involving between two and five endmembers,
distributed spatially in the form of square regions, were
generated. The background pixels were defined as mixtures
of the same five endmembers with the abundance vector
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Fig. 1. Estimated abundance maps for IM1 image. For each row, from top to bottom: True abundance maps, FCLS, spatially regularized FCLS, K-Hype, proposed
algorithm with four neighbors, and proposed algorithm with eight neighbors.

[0.1149, 0.0741, 0.2003, 0.2055, 0.4051]�. The first row in
Fig. 1 shows the true fractional abundances for each end-
member. The reflectance samples were generated with the two
nonlinear mixture models defined hereafter, based on the five
endmembers, and corrupted by a zero-mean white Gaussian
noise vn with an SNR of 20 dB. The first nonlinear mixture
model is the bilinear one defined as

rn = Mαn +

R∑
i=1

R∑
j=i+1

αn,iαn,jmi ⊗mj + vn (18)

with ⊗ being the Hadamard product. The second one is a
postnonlinear model (PNMM) given by

rn = (Mαn)
γ + vn (19)

with an exponential value γ = 0.7 applied to the linear mixing
model. At the end of this series of experiments with synthetic

images, note that we will also consider a signal-dependent noise
vn to conform with conditions that may be experienced with
new-generation sensors.

The second data cube, denoted by IM2 and containing
100 × 100 mixed pixels, was generated using nine endmember
signatures. The abundance maps of the endmembers are the
same as that for the image DC2 in [24]. Among these nine
materials, only the 1st, 3rd, 5th, 8th, and 9th abundances
are considered for pictorial illustration in Fig. 2. The first
row of this figure depicts the true distribution of these five
materials. Spatially homogeneous areas with sharp transitions
can be clearly observed. Based on these abundance maps, a
hyperspectral data cube was generated with the bilinear model
(18) and with the postnonlinear model (19) applied to the
nine endmember spectral signatures. The scene was also cor-
rupted by a zero-mean white Gaussian noise vn with an SNR
of 20 dB.
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Fig. 2. Estimated abundance maps for IM2 image. For each row, from top to bottom: True abundance maps, FCLS, spatially regularized with four neighbors,
FCLS, K-Hype, proposed algorithm with four neighbors, and proposed algorithm with eight neighbors.

2) Comparative Simulations: Several algorithms were
tested in order to compare their unmixing performance on
these two images. Their tuning parameters were set during
preliminary experiments on independent data, via a simple
search over the grids defined hereafter.

1) The linear unmixing methods [36]: The fully constrained
least square method (FCLS) was run with the sum-to-
one constraint strictly satisfied for comparability among
algorithms. By relaxing the sum-to-one constraint, the
nonnegative constrained least square method (NCLS) was
also considered.

2) The spatially regularized FCLS/NCLS: In order to com-
pare linear and nonlinear algorithms, we added the spatial
regularization term (5) to the FCLS/NCLS algorithms.
We conducted the split-Bregman iterations to solve these
problems. We varied the spatial regularization param-
eter η from 0.0025 to 0.01 with an increment of 0.0025.

3) The nonlinear unmixing algorithm K-Hype [12]: Unmix-
ing was performed in this case by solving problem (4). Its
nonnegative counterpart obtained by relaxing the sum-to-
one constraint (NK-Hype) was also tested. As in [12], the
polynomial kernel defined by

κ(mλ�
,mλ�

) =

(
1 +

1

R2
(mλ�

− 1/2)�(mλ�
− 1/2)

)2

(20)

was used. The parameter μ that controls the tradeoff
between the misadjustment error and the regularization
error was varied in the set {0.001, 0.005, 0.01, 0.05, 0.1}.

4) The proposed nonlinear algorithms incorporating spatial
regularization: K-Hype and its nonnegative counterpart
NK-Hype were both considered with spatial regular-
ization. The polynomial kernel (20) was used, and the
regularization parameter μ was varied in the same set
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TABLE II
PARAMETER SETTINGS FOR THE COMPARATIVE SIMULATIONS ON IM1 AND IM2

TABLE III
RMSE COMPARISON (SIGNAL-INDEPENDENT NOISE): SEE EXPERIMENTS IN SECTION IV-A2

TABLE IV
RMSE OF THE PROPOSED METHOD AS FUNCTION OF η: SEE EXPERIMENTS IN SECTION IV-A3

as above. The parameter ζ was adjusted in an adaptive
way based on primal and dual residual norms at each
iteration (see [37]). We varied the spatial regularization
parameter η from 0.25 to 1 with increments of 0.25.
Finally, the optimization algorithm was stopped when
both (‖V −A‖F /N ×R) and (‖U − V H‖F /4N ×
R) became smaller than 10−5 or the number of iterations
exceeded 10.

The above tests were performed on training images IM1 and
IM2 to estimate the best parameter values in the sense that they
minimize the estimation error (rmse) defined as

E =

√√√√ 1

NR

N∑
n=1

‖αn −α∗
n‖2.

These preliminary experiments led to the parameter settings
shown in Table II. The performance, with standard devia-
tion, on independent test images IM1 and IM2 is reported in
Table III, and the estimated fractional abundances are repre-
sented in Figs. 1 and 2. For both images and both nonlinear
mixture models, it can be observed that, when applied to
nonlinearly mixed data, the linear method FCLS has large
estimation errors. The abundance maps appear quite correct
visually, but they are severely biased due to the nonlinearity
of the mixing model. Relaxing the sum-to-one constraint with
the NCLS algorithm allowed to improved the performance in
some cases, particularly for IM2 with the bilinear model. The
spatially regularized FCLS and NCLS algorithms offer limited
performance improvement. Nonlinear methods notably reduce
this error in the mean sense, except for IM2 with the bilinear
model. In this case, note that most of the areas in the image are

characterized by a dominant element with fractional abundance
almost equal to one. Mixing phenomena with the bilinear model
are thus limited, and the nonlinearity of the unmixing model
supported by K-Hype-based algorithms suffers from this situ-
ation. They, however, provide high-resolution maps elsewhere.
Finally, the proposed spatially regularized methods have lower
reconstruction errors than the other proposed algorithms and
clearer abundance maps.

3) Influence of the Parameter η: The penalty term η controls
the tradeoff between data fitting and similarity among neigh-
boring pixels. In the case of η = 0, the algorithm reduces to
the original K-Hype that only considers spectral information at
each pixel. The larger the η, the flatter the image is. In order
to illustrate this intuition, we varied parameter η from 0.25
to 1 for IM1 and IM2 generated via the bilinear model, with
μ = 0.005. Note that, according to Table IV, the optimal value
of η is 0.5 in both cases. To illustrate this experiment, the results
are represented for IM1 in Fig. 3.

4) Influence of the Neighborhood: In the above experi-
ments, we have used the four nearest neighbors to construct
the difference matrix H4, with the subscript (4) to specify the
size of the neighborhood. Any other neighborhood could be
considered, provided that the matrix H is properly defined.
For illustration purpose, we also considered the larger matrix
of the eight nearest neighbors of each pixel defined as H8 =
(H↖ H↗ H4 H↙ H↘), with H↖, H↗, H↙, H↘ being
the four diagonal adjacency matrices. The estimation errors of
the abundance fractions are reported in Table V. The spatial
regularization parameters were set to half of the values in
Table II, as twice the number of neighboring pixels is used.
Abundance maps for the bilinear scenario provided by the
proposed algorithm are shown in the last row of Figs. 1 and 2.
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Fig. 3. Influence of spatial regularization parameter η. From left to right: True, η = 0.25, η = 0.5 (optimum), η = 0.75, and η = 1.

TABLE V
RMSE WITH EIGHT NEIGHBORING PIXELS (SIGNAL-INDEPENDENT NOISE): SEE EXPERIMENTS IN SECTION IV-A4

TABLE VI
RMSE COMPARISON (SIGNAL-DEPENDENT NOISE): SEE EXPERIMENTS IN SECTION IV-A5

No significant improvement can be observed in these two
cases, but obviously, the proper definition of a neighborhood
is closely related to the structure of the images and must be
driven by application needs. Fine spatial resolution can greatly
improve scene understanding by magnifying subtle details in
some cases but may lead to misleading interpretation in some
other situations [38].

5) Test With a Signal-Dependent Noise: Unmixing algo-
rithms proposed in the literature have usually been tested on
images corrupted by an independent and identical distributed
(i.i.d.) additive Gaussian noise. Due to the improved sensi-
tivity of electronic components, this assumption may not be
appropriate for data collected with new-generation sensors.
Noise modeling and estimation in hyperspectral images has
recently become an active subject of research. It is admitted that
cameras provide images corrupted by two independent sources
of noise, a signal-dependent noise and a signal-independent
one [39]–[42]. The former results from the stochastic nature
of the photon arrival/detection process. The latter results from
sensor electronics and quantization process. We compared the
unmixing algorithms on images IM1 and IM2 corrupted by the
signal-dependent noise defined as

vn,� = r̃γn,�v
(1)
n,� + v

(2)
n,�

where r̃n,� is the �-th wavelength band of the noise-free

reflectance, v
(1)
n,� and v

(2)
n,� are two i.i.d. zero-mean Gaussian

noises, and 0 ≤ γ ≤ 1. Parameter γ was set to (1/2), and
the noise variances were set so that σ2

v(1) = σ2
v(2) and the

resulting SNR is 20 dB. Table VI gives the performance of
the algorithms. Note that they were not notably affected by
this noise setting. The proposed algorithm still exhibits the best
performance.

TABLE VII
CLASSIFICATION ACCURACIES AFTER APPLYING SVM TO THREE

DIFFERENT TYPES OF FEATURES (FCLS, K-HYPE,
AND PROPOSED ALGORITHM)

B. Experiments With AVIRIS Data

This part provides unmixing results for the proposed
algorithm when applied on real hyperspectral data. The major
difficulty in evaluating the performance of unmixing algorithms
is that there are few existing ground-truth references for this
purpose. However, in this section, we shall adopt an indirect
strategy to circumvent this problem via the unmixing-based
classification.

Supervised classification of hyperspectral images is a
very challenging but important goal because it generally
involves a limited number of training data with unusually high-
dimensional patterns. Several feature extraction techniques
have been recommended throughout the literature, including
principal component analysis (PCA) and independent
component analysis (ICA). In [43], the authors explored
an alternative strategy consisting of using spectral unmixing
for feature extraction, prior to classification. They considered
different unmixing-based processes to evaluate the feasibility
of this strategy and to perceive the necessity of extracting pure
spectral endmembers for classification purposes. The so-called
unmixing chain #4 in [43] was found to be the most efficient
one. It simply consists of averaging the training samples in
each labeled class and uses these spectral signatures to unmix
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Fig. 4. Indian Pines classification map. From left to right: Ground truth, FCLS (61.36%), K-Hype (71.39%), and proposed algorithm (96.80%).

the original image. The features resulting from the unmixing
of training samples are used to train an support vector machine
(SVM) classifier. The latter is tested using the remaining
labeled samples.

The scene used in our experiment is the well-known
data set captured on the Indian Pines region by Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS). The scene
comprises 145 × 145 samples, consisting of 220 contigu-
ous spectral bands that cover wavelengths ranging from 0.40
to 2.5 μm, with spectral resolution approximately equal to
0.01 μm. Prior to analysis, noisy and water absorption bands
were removed, yielding a total of 202 available spectral bands.
The ground-truth data contains 16 mutually exclusive classes.
The number of pixels in the smallest class is 20, while it is
equal to 2468 pixels in the largest class. This widely used
benchmark data set is known to be dominated by mixed pixels,
even if ground-truth information assigns each pixel a unique
class. In this experiment, we used FCLS, K-Hype, and the
proposed algorithm with four nearest neighbors for unmixing-
based feature extraction. A one-against-all multiclass SVM
with Gaussian kernel was applied to these data. We constructed
five training sets by randomly selecting 5%, 10%, and 15% of
the ground-truth pixels. All the required parameters were opti-
mized by a grid search procedure and fivefold cross-validation.
The regularization parameter μ was set to 0.05 for K-Hype and
for the proposed algorithm. In addition, for the latter, the spatial
regularization parameter η was set to 0.5.

Table VII summarizes the classification accuracies of SVM
operating on features extracted with FCLS, K-Hype, and the
proposed algorithm. Fig. 4 presents these results in the case
of SVM trained with 10% of the available samples per class.
It appears that the two nonlinear unmixing algorithms are
more effective than the linear one for feature extraction. This
clearly means that our nonlinear unmixing model provides less
confusing features between the heavily mixed-pixel classes that
characterize the Indian Pines benchmark. Finally, we observe
that spatial regularization allows to greatly improve the clas-
sification accuracy. Spatial homogeneity is a significant prior
information for this problem, which allows to substantially
improve the quality of the unmixing process.

V. CONCLUSION

Hyperspectral image unmixing can benefit from both spec-
tral information and spatial information. In this paper, we

presented a nonlinear abundance estimation algorithm for the
hyperspectral unmixing task. The proposed algorithm integrates
the spatial information using �1-norm regularization into a
constrained LS-SVR problem. Split-Bregman iterations were
used to solve this optimization problem. Experiments showed
the advantage of introducing this spatial regularization into
the nonlinear unmixing problem. Spatial correlation within the
context of our nonlinear unmixing framework may take various
forms. One can promote the similarity of abundance vectors
between neighboring pixels, as considered in this paper, or
the similarity of the nonlinear fluctuation functions in future
works. We may also promote the similarity of the nonlinearity
degrees as defined in [12] and derive more localized or adaptive
solution strategies to reduce the computational complexity of
unmixing algorithms that jointly consider spatial and spectral
information.

APPENDIX

Recent works have raised the question of relaxing the sum-
to-one constraint because poor estimates of the endmember
signatures or misadjustment of the model may affect the per-
formance of the unmixing process. The interested reader is
addressed to [12] for a more detailed discussion on the subject.
In this paper, we maintained this constraint for comparison
purpose with existing approaches. We shall now provide the
main result in the case where this constraint over αn is relaxed
in problem (7). For clarity, let us denote by hn the nonnor-
malized vector of abundances. The Lagrange function (11)
becomes

Ln =
1

2

(
‖hn‖2 + ‖ψn‖2H +

1

μ

L∑
�=1

e2n,� + ζ
∥∥∥hn − ξ(k)n

∥∥∥2
)

−
L∑

�=1

β�

(
en,� − rn,� + h�

nmλ�
+ ψn(mλ�

)
)
−

R∑
r=1

γrhn,r

with γn,r ≥ 0. The conditions for the optimality of Ln with
respect to the primal variables lead us to

⎧⎪⎨
⎪⎩

h∗
n = 1

ζ+1

(∑L
�=1 β

∗
n,�mλ�

+ γ∗
n + ζξ(k)n

)
ψ∗
n =

∑L
�=1 β

∗
n,�κ(·,mλ�

)
e∗n,� = μβ∗

n,�.
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By substituting these conditions into the primal problem, we
get the dual problem (21)

max
βn,γn,λn

L′
n(βn,γn, λn)

= − ρ

2ζ

(
βn

γn

)� (
Kψ M

M� I

)(
βn

γn

)

+

(
rn − ρMξ(k)n

−ρξ(k)n

)� (
βn

γn

)
subject to γn � 0

with Kψ =
1

ζ
(K + μI) +MM� and ρ =

ζ

1 + ζ
.

(21)

Provided that the optimal dual variables β∗
n and γ∗

n have
been determined, the solution h∗

n is given by

h∗
n =

1

ζ + 1

(
M�β∗

n + γ∗
n + ζξ(k)n

)
.

If necessary, note that h∗
n can be normalized afterward by

writing h∗
n = θ∗n α

∗
n, with α∗

n being the vector of what would
correspond to fractional abundances and θ∗n = 1�h∗

n being the
scaling factor. Following [12], i.e., using equivalence between
optimization problems as explained in [44, p. 130], it can be
shown that θ∗n and α∗

n are the solutions of

α∗
n, θ

∗
n, ψ

∗
n = argmin

αn,θn,ψn,en

1

2

(
‖θnαn‖2+‖ψn‖2H+

1

μ

L∑
�=1

e2n,�

+ ζ
∥∥∥θnαn − ξ(k)n

∥∥∥2
)

subject to en,� = rn,� −
(
θnα

�
nmλ�

+ ψn(mλ�
)
)

αn � 0 α�
n1R = 1 θn > 0.
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Nonlinear Estimation of Material Abundances in
Hyperspectral Images With �1-Norm

Spatial Regularization
Jie Chen, Student Member, IEEE, Cédric Richard, Senior Member, IEEE, and Paul Honeine, Member, IEEE

Abstract—Integrating spatial information into hyperspectral
unmixing procedures has been shown to have a positive effect
on the estimation of fractional abundances due to the inherent
spatial–spectral duality in hyperspectral scenes. However, current
research works that take spatial information into account are
mainly focused on the linear mixing model. In this paper, we
investigate how to incorporate spatial correlation into a nonlinear
abundance estimation process. A nonlinear unmixing algorithm
operating in reproducing kernel Hilbert spaces, coupled with
a �1-type spatial regularization, is derived. Experiment results,
with both synthetic and real hyperspectral images, illustrate the
effectiveness of the proposed scheme.

Index Terms—Hyperspectral imaging, �1-norm regularization,
nonlinear spectral unmixing, spatial regularization.

I. INTRODUCTION

HYPERSPECTRAL imaging provides 2-D spatial images
over many contiguous bands. The high spectral resolution

allows to identify and quantify distinct materials from remotely
observed data. This area has received considerable attention in
the last decade. Applications include land use analysis, mineral
detection, environment monitoring, field surveillance, etc. Typi-
cally, the observed reflectance at each pixel is a spectral mixture
of several material signatures, termed endmembers, due to the
limited spatial resolution of certain observation devices and
diversity of materials. For this reason, spectral unmixing is an
important issue for hyperspectral data processing to investigate
information in each pixel [1].

There have been significant efforts during the past decade to
solve linear unmixing problems, and several methods have been
successfully derived within the context of hyperspectral imag-
ing. Nevertheless, linear models can only accurately capture
simple interactions between elements, e.g., in situations where
the mixing of materials is not intimate and multiple scattering
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is negligible [1]. Recently, several researchers have started
aggressively exploring nonlinear unmixing techniques. In [2]
and [3], the authors extended the collection of endmembers
by explicitly adding nonlinear artificial cross-terms of pure
spectral signatures and used a conventional linear unmixing
algorithm over this new dictionary. In [4], a Bayesian infer-
ence algorithm dedicated to the generalized bilinear mixture
model was proposed. In [5], the same strategy was applied
to estimate the fractional abundances of a polynomial post
nonlinear mixing model. Manifold learning techniques were
investigated in [6] and [7], and unmixing algorithms using
geodesic distances or manifold-related regularization terms
were proposed. Moreover, algorithms operating in reproducing
kernel Hilbert spaces were considered to process hyperspectral
data. In [8], a fuzzy-input fuzzy-output support vector machine
was designed for subpixel image classification. Kernel-based
nonlinear unmixing approaches were investigated in [9] and
[10]. These algorithms were mainly obtained by replacing each
inner product between endmember spectra, in the cost functions
to be optimized, by a kernel function. This can be viewed as
a nonlinear distortion map applied to the spectral signature of
each material, which is of little physical interest in solving the
unmixing problem because the nonlinear nature of mixing may
also be characterized by nonlinear interactions of the materials.
Physically inspired kernel-based models were introduced in
[11] to circumvent this drawback, where we modeled each
mixed pixel by a linear mixture of endmember spectra coupled
with an additive nonlinear interaction term. The latter was
used to model nonlinear effects of photon interactions and was
defined in a reproducing kernel Hilbert space. In [12]–[14], a
more complete and sophisticated theory and new methods were
derived to automatically adjust the balance between linear and
nonlinear components. A postnonlinear mixing model was also
introduced in [15].

Although several linear and nonlinear state-of-the-art un-
mixing techniques have shown interesting performance for
this problem, they have been mostly focused on exploiting
spectral information available in the hyperspectral space. These
approaches consist of considering pixel vectors as if they were
independent from their neighboring pixels. However, one of
the distinguishing properties of remotely sensed data is that
they convey multivariate information into a 2-D pictorial rep-
resentation [16]. Subsequently, instead of disregarding spa-
tial contextual information, hyperspectral analysis techniques
should benefit from the inherent spatial–spectral duality in

0196-2892/$31.00 © 2013 IEEE
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hyperspectral scenes. Following this idea, researchers have
attempted to exploit spatial information in hyperspectral image
analysis. Spatial preprocessing techniques were investigated for
endmember determination in [17]–[19]. Spatial correlation was
incorporated into hyperspectral image classification algorithms
in [20] and [21]. Concerning the unmixing problem, a nonneg-
ative matrix factorization-type problem regularized by the �1-
norm of differences between neighboring pixels was proposed
in [22]. A projected subgradient method was used to solve this
problem. In [23], a Markov random field was proposed to model
the spatial dependence of the pixels within classes. Bayesian
inference was then used to estimate the model parameters. In
[24], total variation was employed for spatial regularization to
enhance the unmixing performance. The alternating direction
method of multipliers was used to solve the regularized prob-
lem. Some other works also showed that incorporating spatial
information can have a positive impact on the hyperspectral
unmixing process [25], [26].

To the best of our knowledge, spatial regularization has not
yet been extensively studied in a nonlinear unmixing process.
As nonlinear unmixing is itself an important but challenging
issue, it appears difficult to address these two problems simul-
taneously. A new nonlinear model was proposed in our work
[12], where we assumed that a nonlinear mixture can be decom-
posed into a linear trend and an additive nonlinear fluctuation
term in a reproducing kernel Hilbert space to model nonlinear
effects. Based on this promising advance within the area of
nonlinear unmixing, in this paper, we take spatial information
into account in the unmixing process using �1-norm spatial
regularization. An optimization method based on split-Bregman
iterations is proposed to deal with this problem that suffers from
the nonlinearity of the model and the nonsmoothness of the
regularization term. Experiments with both synthetic and real
data are conducted to validate the proposed method.

II. FORMULATION OF THE PROBLEM

A. Notations

Suppose that the hyperspectral image under study has
w pixels in each row and h pixels in each column. Each pixel
consists of a reflectance vector in L contiguous spectral bands.
In order to facilitate the presentation, we transform this 3-D
image into a L×N matrix, with N = w × h the total number
of pixels. Then, let

• n ∈ {1, . . . , N} be the sequential index of pixels in the
image.

• rn = [rn1, rn2, . . . , rnL]
� be the (L× 1) observed re-

flectance vector for the pixel n, which consists of a mixture
of R endmember spectra.

• M = [m1,m2, . . . ,mR] be the (L×R) endmember tar-
get matrix, where each column mi is an endmember
spectral signature. For expository convenience, we denote
by m�

λ�
the �-th row of M , namely, the vector of the R

endmember signatures at the �-th wavelength band.
• αn = [αn1, αn2, . . . , αnR]

� be the (R× 1) abundance
vector associated to the pixel n.

• A = [α1, . . . ,αN ] be the matrix composed of all the
abundance vectors.

• 1N be the (N × 1) all-one vector and IN be the (N ×N)
identity matrix.

Other symbols will be defined in the context where they
are used.

B. Formulation of the Nonlinear Unmixing Problem
With Spatial Regularization

Suppose that the materials in a scene have been determined
by some endmember extraction algorithm. The unmixing prob-
lem boils down to estimating the abundance vector associated to
each pixel. One way to exploit spatial information is to define an
appropriate criterion to be optimized, e.g., by considering extra
penalty terms to promote the similarity of fractional abundances
between neighboring pixels. The rationale is that homogeneous
regions within which correlation among neighboring pixels is
high potentially exist in real images. This suggests that increas-
ing spatial homogeneity should tend to increase the accuracy
of the representation of spectral objects and to suppress high-
spatial-frequency artifacts [27], although there are risks to
remove small features.

Taking the spatial relationship among pixels into considera-
tion, the unmixing problem can then be solved by minimizing a
general cost function with respect to the matrix A

J(A) = Jerr(A) + ηJsp(A) (1)

subject to the nonnegativity constraint imposed on each entry
of A and the sum-to-one constraint imposed on each column of
A, namely, on each αn. For ease of notation, these two physical
constraints will be expressed by

A � 0

A�1R = 1N .

Recent works have raised the question of relaxing the sum-
to-one constraint. Indeed, poor estimates of the endmember
signatures may affect the performance of the unmixing process.
This constraint is maintained in the following as a baseline for
comparison with existing approaches. However, in Appendix,
we also briefly consider the case where the sum-to-one con-
straint is removed from the model. In the general expression
(1), the function Jerr represents the modeling error, and Jsp
is a regularization term to promote the similarity of the frac-
tional abundances within neighboring pixels. The nonnegative
parameter η controls the tradeoff between data fidelity and pixel
similarity. In [22] for instance, the �1-norm of the differences of
abundance vectors in the neighborhood of each pixel was used
as the spatial regularizer. In [24], anisotropic total variation
norm was considered for linear sparse unmixing. In [26], a so-
called fuzzy local information proportion was used for incorpo-
rating spatial information. In [21] and [23], a Markov random
field was proposed to model spatial dependence. All these
approaches have shown a substantial advantage of using spatial
information for hyperspectral data unmixing, although there are
risks to remove small and significant features. Preprocessing
can be conducted to alleviate such hazards by separating these
features in advance [28].



IE
EE

Pr
oo

f

CHEN et al.: NONLINEAR ESTIMATION OF MATERIAL ABUNDANCES IN HYPERSPECTRAL IMAGES 3

Rarely, if ever, have nonlinear mixing models incorporating
spatial information been considered in the literature. In this
paper, we intend to formulate Jerr as in our recent work [12]
because this approach has shown excellent performance and
low computational cost. For self-containedness, let us briefly re-
view part of this work. Consider the general unmixing process,
acting between the entries rn,� of the reflectance vector and the
spectral signatures mλ�

of the endmembers at each wavelength
band λ�, defined as

rn,� = ψαn
(mλ�

) + en,�

with ψαn
being an unknown nonlinear function to be estimated

that defines the interaction between the endmember spectra, in
the proportion αn, and with en being the estimation error. This
requires us to consider a general problem

ψ∗
αn

= argmin
ψαn

1

2
‖ψαn

‖2H +
1

2μ

L∑
�=1

(rn,� − ψαn
(mλ�

))2

(2)

with μ being a positive parameter that controls the tradeoff
between structural error and misadjustment error. Clearly, this
basic strategy may fail if the functionals ψαn

cannot be ad-
equately and finitely parameterized. In [12], we defined them
by a linear trend parameterized by the abundance vector αn,
combined with a nonlinear fluctuation function ψn, namely

ψαn
(mλ�

) = α�
nmλ�

+ ψn(mλ�
) (3)

where ψn can be any real-valued function of a reproducing
kernel Hilbert space H, endowed with the reproducing kernel
κ such that ψn(mλ�

) = 〈ψn, κ(·,mλ�
)〉. Indeed, kernel-based

methods lead to the efficient and accurate resolution of inverse
problems of form (2) by exploiting the central idea of this
research area, known as the kernel trick [29]. This trick has been
widely used for solving nonlinear regression and classification
problems [30], [31]. We proposed in [12] to conduct data
unmixing (2) and (3) by solving the following least square
support vector regression (LS-SVR) problem:

α∗
n, ψ

∗
n = argmin

αn,ψn

1

2

(
‖αn‖2 + ‖ψn‖2H +

1

μ
‖en‖2

)

subject to αn � 0 and 1�αn = 1 (4)

where en is the (L× 1) misadjustment error vector with the
�-th entry en,� = rn,� − (α�

nmλ�
+ ψn(mλ�

)) as defined in
(2). It can be shown that problem (4) is convex so that it
can be solved exactly by the duality theory. This so-called
K-Hype method was introduced in [12]. A very efficient ex-
tension, called SK-Hype, consisting of relaxing the sum-to-
one constraint and automatically adjusting the balance between
α�

nmλ�
and ψn(mλ�

) via an appropriate parameterization was
also presented in this paper. In the following, we restrict our
attention to K-Hype, and we maintain the sum-to-one con-
straint as a baseline for comparison with existing approaches.
However, in Appendix, we also briefly address the case where
the sum-to-one constraint is removed from the model. Finally,

considering all the pixels of the image to process, the modeling
error to be optimized writes

Jerr(A,ψ) =
1

2

N∑
n=1

(
‖αn‖2 + ‖ψn‖2H +

1

μ
‖en‖2

)

subject to the nonnegativity and sum-to-one constraints over the
abundance vectors. In this expression, A = [α1, . . . ,αN ] and
ψ = {ψn ∈ H : n = 1, . . . , N}.

In order to take into account the spatial correlation between
pixels, we shall use �1-type regularizers of the form [22],
[24] to promote piecewise constant transitions in the fractional
abundance of each endmember among neighboring pixels. The
regularization function is expressed as

Jsp(A) =

N∑
n=1

∑
m∈N (n)

‖αn −αm‖1 (5)

where ‖ ‖1 denotes the vector �1-norm and N (n) denotes the
set of neighbors of the pixel n. Without any loss of generality, in
this paper, we define the neighborhood of the pixel n by taking
the four nearest pixels n− 1 and n+ 1 (row adjacency) and
n− w and n+ w (column adjacency). In this case, let us define
the (N ×N) matrices H← and H→ as the two linear operators
that compute the difference between any abundance vector and
its left- and right-hand neighbors, respectively. Similarly, let
H↑ and H↓ be the linear operators that compute that difference
with the top neighbor and the down neighbor, respectively. With
these notations, the regularization function (5) can be rewritten
in matrix form as

Jsp(A) = ‖AH‖1,1

with H being the (N × 4N) matrix (H← H→ H↑ H↓) and
‖ ‖1,1 being the sum of the �1-norms of the columns of a matrix.
Obviously, other boundaries for the neighborhood N (n) may
be used by simply defining the appropriate matrix H . Finally,
note that this regularization function is convex but nonsmooth.

Now considering both the modeling error Jerr and the regu-
larization term Jsp, the optimization problem becomes

A∗,ψ∗ = argmin
A,ψ

N∑
n=1

1

2

(
‖αn‖2 + ‖ψn‖2H +

1

μ
‖en‖2

)

+ η‖AH‖1,1
subject to A � 0 and A�1R = 1N (6)

where η controls the tradeoff between model fitting in each
pixel and similarity among neighboring pixels. The constraints
over A define a convex set SA. For ease of exposition, in the
formulation of optimization problems, we will write A ∈ SA.

III. SOLVING THE PROBLEM

Although the optimization problem (6) is convex, it cannot
be solved easily because it combines an LS-SVR problem with
a huge-dimensional nonsmooth regularization term. In order
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to overcome this drawback, we rewrite (6) in the following
equivalent form:

min
A∈SA,ψ

N∑
n=1

1

2

(
‖αn‖2 + ‖ψn‖2H +

1

μ
‖en‖2

)
+ η‖U‖1,1

subject to V = A and U = V H (7)

where two new matrices U and V , and two additional con-
straints, have been introduced. This variable-splitting approach
was initially introduced in [32]. Matrix U will allow us to de-
couple the nonsmooth �1-norm regularization functional from
the constrained LS-SVR problem. Matrix V will make the
LS-SVR problem tractable by relaxing connections between
pixels.

As studied in [32], the split-Bregman iteration algorithm is
an efficient method to deal with a broad class of �1-regularized
problems. By applying this framework to (6), the following
formulation is obtained:

A(k+1),ψ(k+1),V (k+1),U (k+1)

= argmin
A∈SA,ψ,V ,U

N∑
n=1

1

2

(
‖αn‖2 + ‖ψn‖2H +

1

μ
‖en‖2

)

+ η‖U‖1,1 +
ζ

2

∥∥∥A− V −D
(k)
1

∥∥∥2
F

+
ζ

2

∥∥∥U − V H −D
(k)
2

∥∥∥2
F

(8)

with

D
(k+1)
1 =D

(k)
1 +

(
V (k+1) −A(k+1)

)

D
(k+1)
2 =D

(k)
2 +

(
V (k+1)H −U (k+1)

)
(9)

where ‖ ‖2F denotes the matrix Frobenius norm and ζ is a
positive parameter. Because of the way that we have split the
components of the cost function, we can now perform the above
minimization efficiently by iteratively minimizing with respect
to (A,ψ), V , and U separately. The three steps that we have
to perform are as follows.

1) Step 1—Optimization With Respect to A and ψ: The
optimization problem (8) reduces to

A(k+1),ψ(k+1) = argmin
A∈SA,ψ

N∑
n=1

1

2

×
(
‖αn‖2 + ‖ψn‖2H +

1

μ
‖en‖2 + ζ

∥∥∥αn − ξ(k)n

∥∥∥2)

where ξ(k)n = V (k)
n +D

(k)
1,n. Here, V n and D1,n denote the

n-th column of V and D1, respectively. It can be observed that
this problem can be decomposed into subproblems, each one

involving an abundance vector αn. This results from the use of
the matrix V in the split iteration algorithm (8).

Let us now solve the local optimization problem

α(k+1)
n , ψ(k+1)

n = argmin
αn,ψn,en

1

2

(
‖αn‖2 + ‖ψn‖2H +

1

μ

L∑
�=1

e2n,�

+ζ
∥∥∥αn−ξ(k)n

∥∥∥2
)

subject to en,� = rn,� −
(
α�

nmλ�
+ ψn(mλ�

)
)

αn � 0

α�
n1R = 1. (10)

By introducing the Lagrange multipliers βn,�, γn,�, and λn,
where the superscript (k) of these variables has been omitted
for simplicity of notation, the Lagrange function associated to
(10) is written as

Ln =
1

2

(
‖αn‖2 + ‖ψn‖2H +

1

μ

L∑
�=1

e2n,� + ζ
∥∥∥αn − ξ(k)n

∥∥∥2
)

−
L∑

�=1

β�

(
en,� − rn,� +α�

nmλ�
+ ψn(mλ�

)
)

−
R∑

r=1

γrαn,r + λn

(
α�

n1R − 1
)

(11)

with γn,r ≥ 0. The conditions for the optimality of Ln with
respect to the primal variables lead us to⎧⎪⎨
⎪⎩

α∗
n = 1

ζ+1

(∑L
�=1 β

∗
n,�mλ�

+ γ∗
n − λ∗

n1+ ζξ(k)n

)
ψ∗
n =

∑L
�=1 β

∗
n,�κ(·,mλ�

)
e∗n,� = μβ∗

n,�

(12)

where κ is the reproducing kernel of H. By substituting (12)
into (11), we get the dual problem

max
βn,γn,λn

L′
n(βn,γn, λn)

= − ρ

2ζ

⎛
⎝βn

γn

λn

⎞
⎠

�
⎛
⎜⎝

Kψ M −M1R

M� I −1R

−1�
RM

� −1�
R R

⎞
⎟⎠

×

⎛
⎝βn

γn

λn

⎞
⎠+

⎛
⎜⎝

rn − ρMξ(k)n

−ρξ(k)n

ρξ(k)�n 1R − 1

⎞
⎟⎠

� ⎛
⎝βn

γn

λn

⎞
⎠

subject to γn � 0

with Kψ =
1

ζ
(K + μI) +MM� and ρ =

ζ

1 + ζ

(13)

where K is the Gram matrix defined as [K]�p =
κ(mλ�

,mλp
). The problem (13) is a convex quadratic

programming problem with respect to the dual variables.
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TABLE I
NONLINEAR UNMIXING WITH SPATIAL REGULARIZATION ALGORITHM

Finally, provided that the optimal dual variables β∗
n, γ∗

n, and
λ∗
n have been determined, the vector of fractional abundances

α
(k+1)
n is estimated by

α∗
n =

1

ζ + 1

(
M�β∗

n + γ∗
n − λ∗

n1+ ζξ(k)n

)
.

This process has to be repeated for n = 1, . . . , N in order to
get A(k+1). Matrices A(k+1) and V (k+1), whose calculation is
presented hereafter, allow to evaluate D

(k+1)
1 using (9).

2) Step 2—Optimization With Respect to V : The optimiza-
tion problem (8) now reduces to

V (k+1) = argmin
V

∥∥∥A(k+1) − V −D
(k)
1

∥∥∥2
F

+
∥∥∥U (k) − V H −D

(k)
2

∥∥∥2
F
. (14)

Equating to zero the derivative of the above expression with
respect to V leads to(

A(k+1) − V −D
(k)
1

)
−
(
U (k) − V H −D

(k)
2

)
H� = 0

whose solution is then given by

V (k+1)=
(
A(k+1)−D

(k)
1 +

(
U (k)−D

(k)
2

)
H�

)
(I+HH�)−1.

(15)

3) Step 3—Optimization With Respect to U : Finally, the
optimization problem that we have to consider is as follows:

U (k+1) = argmin
U

η‖U‖1,1 +
ζ

2

∥∥∥U − V (k+1)H −D
(k)
2

∥∥∥2
F
.

(16)

Its solution can be expressed via the well-known soft threshold
function

U (k+1) = Thresh

(
V (k+1)H +D

(k)
2 ,

η

ζ

)
(17)

where Thresh(·, τ) denotes the componentwise application of
the soft threshold function defined as [33]

Thresh(x, τ) = sign(x)max (|x| − τ, 0) .

4) Discussion: To conclude, problem (7) is solved by it-
eratively applying (8) and (9) until some stopping criterion
is satisfied. It can be shown that, if the problem (8) has a

solution A∗ given any ζ > 0, then the generated sequence A(k)

converges to the optimum A∗ [34].
Problem (8) is addressed by solving three subproblems with

respect to A [see (10)], with respect to V [see (14)], and
with respect to U [see (16)], repeatedly. The first subprob-
lem with respect to A is solved by considering the standard
quadratic programming problem defined by (13), of size L+
R+ 1, subject to R inequality constraints and one equality
constraint, for each pixel. It is equivalent to the K-Hype algo-
rithm described in [12]. Its computational complexity does not
depend on the nature of the nonlinearity in the mixture model
as it is formulated in a reproducing kernel Hilbert space. The
second subproblem with respect to V has an explicit solution
(15) that involves the inverse of the matrix (I +HH�). The
latter can be calculated once the neighborhood relationship is
defined. The third subproblem with respect to U has also an
explicit solution (17). The computational time required by the
two latter stages is almost negligible compared to the resources
required by the first stage. Finally, the overall running time of
the algorithm is mainly dictated by the number of iterations
on A, U , and V . It can be adjusted to compromise between
computational time and convergence accuracy. The algorithm
is provided in pseudocode form in Table I.

IV. EXPERIMENT RESULTS

In this section, experiments on spatially correlated images
are reported to validate the proposed algorithm.

A. Experiments With Synthetic Images

1) Simulation Scenario Settings: Two spatially correlated
abundance maps were generated for the following experiments.
The endmembers were randomly selected from the spectral
library advanced spaceborne thermal emission and reflection
radiometer (ASTER) [35]. Each signature of this library has
reflectance values measured over 224 spectral bands, uniformly
distributed in the interval of 3–12 μm. Two synthetic images
identical to that in [24] were used.

The first data cube, denoted by IM1 and containing
75 × 75 pixels, was generated by using five signatures ran-
domly selected from the ASTER library. Pure regions and
mixed regions involving between two and five endmembers,
distributed spatially in the form of square regions, were
generated. The background pixels were defined as mixtures
of the same five endmembers with the abundance vector
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Fig. 1. Estimated abundance maps for IM1 image. For each row, from top to bottom: True abundance maps, FCLS, spatially regularized FCLS, K-Hype, proposed
algorithm with four neighbors, and proposed algorithm with eight neighbors.

[0.1149, 0.0741, 0.2003, 0.2055, 0.4051]�. The first row in
Fig. 1 shows the true fractional abundances for each end-
member. The reflectance samples were generated with the two
nonlinear mixture models defined hereafter, based on the five
endmembers, and corrupted by a zero-mean white Gaussian
noise vn with an SNR of 20 dB. The first nonlinear mixture
model is the bilinear one defined as

rn = Mαn +

R∑
i=1

R∑
j=i+1

αn,iαn,jmi ⊗mj + vn (18)

with ⊗ being the Hadamard product. The second one is a
postnonlinear model (PNMM) given by

rn = (Mαn)
γ + vn (19)

with an exponential value γ = 0.7 applied to the linear mixing
model. At the end of this series of experiments with synthetic

images, note that we will also consider a signal-dependent noise
vn to conform with conditions that may be experienced with
new-generation sensors.

The second data cube, denoted by IM2 and containing
100 × 100 mixed pixels, was generated using nine endmember
signatures. The abundance maps of the endmembers are the
same as that for the image DC2 in [24]. Among these nine
materials, only the 1st, 3rd, 5th, 8th, and 9th abundances
are considered for pictorial illustration in Fig. 2. The first
row of this figure depicts the true distribution of these five
materials. Spatially homogeneous areas with sharp transitions
can be clearly observed. Based on these abundance maps, a
hyperspectral data cube was generated with the bilinear model
(18) and with the postnonlinear model (19) applied to the
nine endmember spectral signatures. The scene was also cor-
rupted by a zero-mean white Gaussian noise vn with an SNR
of 20 dB.
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Fig. 2. Estimated abundance maps for IM2 image. For each row, from top to bottom: True abundance maps, FCLS, spatially regularized with four neighbors,
FCLS, K-Hype, proposed algorithm with four neighbors, and proposed algorithm with eight neighbors.

2) Comparative Simulations: Several algorithms were
tested in order to compare their unmixing performance on
these two images. Their tuning parameters were set during
preliminary experiments on independent data, via a simple
search over the grids defined hereafter.

1) The linear unmixing methods [36]: The fully constrained
least square method (FCLS) was run with the sum-to-
one constraint strictly satisfied for comparability among
algorithms. By relaxing the sum-to-one constraint, the
nonnegative constrained least square method (NCLS) was
also considered.

2) The spatially regularized FCLS/NCLS: In order to com-
pare linear and nonlinear algorithms, we added the spatial
regularization term (5) to the FCLS/NCLS algorithms.
We conducted the split-Bregman iterations to solve these
problems. We varied the spatial regularization param-
eter η from 0.0025 to 0.01 with an increment of 0.0025.

3) The nonlinear unmixing algorithm K-Hype [12]: Unmix-
ing was performed in this case by solving problem (4). Its
nonnegative counterpart obtained by relaxing the sum-to-
one constraint (NK-Hype) was also tested. As in [12], the
polynomial kernel defined by

κ(mλ�
,mλ�

) =

(
1 +

1

R2
(mλ�

− 1/2)�(mλ�
− 1/2)

)2

(20)

was used. The parameter μ that controls the tradeoff
between the misadjustment error and the regularization
error was varied in the set {0.001, 0.005, 0.01, 0.05, 0.1}.

4) The proposed nonlinear algorithms incorporating spatial
regularization: K-Hype and its nonnegative counterpart
NK-Hype were both considered with spatial regular-
ization. The polynomial kernel (20) was used, and the
regularization parameter μ was varied in the same set
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TABLE II
PARAMETER SETTINGS FOR THE COMPARATIVE SIMULATIONS ON IM1 AND IM2

TABLE III
RMSE COMPARISON (SIGNAL-INDEPENDENT NOISE): SEE EXPERIMENTS IN SECTION IV-A2

TABLE IV
RMSE OF THE PROPOSED METHOD AS FUNCTION OF η: SEE EXPERIMENTS IN SECTION IV-A3

as above. The parameter ζ was adjusted in an adaptive
way based on primal and dual residual norms at each
iteration (see [37]). We varied the spatial regularization
parameter η from 0.25 to 1 with increments of 0.25.
Finally, the optimization algorithm was stopped when
both (‖V −A‖F /N ×R) and (‖U − V H‖F /4N ×
R) became smaller than 10−5 or the number of iterations
exceeded 10.

The above tests were performed on training images IM1 and
IM2 to estimate the best parameter values in the sense that they
minimize the estimation error (rmse) defined as

E =

√√√√ 1

NR

N∑
n=1

‖αn −α∗
n‖2.

These preliminary experiments led to the parameter settings
shown in Table II. The performance, with standard devia-
tion, on independent test images IM1 and IM2 is reported in
Table III, and the estimated fractional abundances are repre-
sented in Figs. 1 and 2. For both images and both nonlinear
mixture models, it can be observed that, when applied to
nonlinearly mixed data, the linear method FCLS has large
estimation errors. The abundance maps appear quite correct
visually, but they are severely biased due to the nonlinearity
of the mixing model. Relaxing the sum-to-one constraint with
the NCLS algorithm allowed to improved the performance in
some cases, particularly for IM2 with the bilinear model. The
spatially regularized FCLS and NCLS algorithms offer limited
performance improvement. Nonlinear methods notably reduce
this error in the mean sense, except for IM2 with the bilinear
model. In this case, note that most of the areas in the image are

characterized by a dominant element with fractional abundance
almost equal to one. Mixing phenomena with the bilinear model
are thus limited, and the nonlinearity of the unmixing model
supported by K-Hype-based algorithms suffers from this situ-
ation. They, however, provide high-resolution maps elsewhere.
Finally, the proposed spatially regularized methods have lower
reconstruction errors than the other proposed algorithms and
clearer abundance maps.

3) Influence of the Parameter η: The penalty term η controls
the tradeoff between data fitting and similarity among neigh-
boring pixels. In the case of η = 0, the algorithm reduces to
the original K-Hype that only considers spectral information at
each pixel. The larger the η, the flatter the image is. In order
to illustrate this intuition, we varied parameter η from 0.25
to 1 for IM1 and IM2 generated via the bilinear model, with
μ = 0.005. Note that, according to Table IV, the optimal value
of η is 0.5 in both cases. To illustrate this experiment, the results
are represented for IM1 in Fig. 3.

4) Influence of the Neighborhood: In the above experi-
ments, we have used the four nearest neighbors to construct
the difference matrix H4, with the subscript (4) to specify the
size of the neighborhood. Any other neighborhood could be
considered, provided that the matrix H is properly defined.
For illustration purpose, we also considered the larger matrix
of the eight nearest neighbors of each pixel defined as H8 =
(H↖ H↗ H4 H↙ H↘), with H↖, H↗, H↙, H↘ being
the four diagonal adjacency matrices. The estimation errors of
the abundance fractions are reported in Table V. The spatial
regularization parameters were set to half of the values in
Table II, as twice the number of neighboring pixels is used.
Abundance maps for the bilinear scenario provided by the
proposed algorithm are shown in the last row of Figs. 1 and 2.
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Fig. 3. Influence of spatial regularization parameter η. From left to right: True, η = 0.25, η = 0.5 (optimum), η = 0.75, and η = 1.

TABLE V
RMSE WITH EIGHT NEIGHBORING PIXELS (SIGNAL-INDEPENDENT NOISE): SEE EXPERIMENTS IN SECTION IV-A4

TABLE VI
RMSE COMPARISON (SIGNAL-DEPENDENT NOISE): SEE EXPERIMENTS IN SECTION IV-A5

No significant improvement can be observed in these two
cases, but obviously, the proper definition of a neighborhood
is closely related to the structure of the images and must be
driven by application needs. Fine spatial resolution can greatly
improve scene understanding by magnifying subtle details in
some cases but may lead to misleading interpretation in some
other situations [38].

5) Test With a Signal-Dependent Noise: Unmixing algo-
rithms proposed in the literature have usually been tested on
images corrupted by an independent and identical distributed
(i.i.d.) additive Gaussian noise. Due to the improved sensi-
tivity of electronic components, this assumption may not be
appropriate for data collected with new-generation sensors.
Noise modeling and estimation in hyperspectral images has
recently become an active subject of research. It is admitted that
cameras provide images corrupted by two independent sources
of noise, a signal-dependent noise and a signal-independent
one [39]–[42]. The former results from the stochastic nature
of the photon arrival/detection process. The latter results from
sensor electronics and quantization process. We compared the
unmixing algorithms on images IM1 and IM2 corrupted by the
signal-dependent noise defined as

vn,� = r̃γn,�v
(1)
n,� + v

(2)
n,�

where r̃n,� is the �-th wavelength band of the noise-free

reflectance, v
(1)
n,� and v

(2)
n,� are two i.i.d. zero-mean Gaussian

noises, and 0 ≤ γ ≤ 1. Parameter γ was set to (1/2), and
the noise variances were set so that σ2

v(1) = σ2
v(2) and the

resulting SNR is 20 dB. Table VI gives the performance of
the algorithms. Note that they were not notably affected by
this noise setting. The proposed algorithm still exhibits the best
performance.

TABLE VII
CLASSIFICATION ACCURACIES AFTER APPLYING SVM TO THREE

DIFFERENT TYPES OF FEATURES (FCLS, K-HYPE,
AND PROPOSED ALGORITHM)

B. Experiments With AVIRIS Data

This part provides unmixing results for the proposed
algorithm when applied on real hyperspectral data. The major
difficulty in evaluating the performance of unmixing algorithms
is that there are few existing ground-truth references for this
purpose. However, in this section, we shall adopt an indirect
strategy to circumvent this problem via the unmixing-based
classification.

Supervised classification of hyperspectral images is a
very challenging but important goal because it generally
involves a limited number of training data with unusually high-
dimensional patterns. Several feature extraction techniques
have been recommended throughout the literature, including
principal component analysis (PCA) and independent
component analysis (ICA). In [43], the authors explored
an alternative strategy consisting of using spectral unmixing
for feature extraction, prior to classification. They considered
different unmixing-based processes to evaluate the feasibility
of this strategy and to perceive the necessity of extracting pure
spectral endmembers for classification purposes. The so-called
unmixing chain #4 in [43] was found to be the most efficient
one. It simply consists of averaging the training samples in
each labeled class and uses these spectral signatures to unmix
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Fig. 4. Indian Pines classification map. From left to right: Ground truth, FCLS (61.36%), K-Hype (71.39%), and proposed algorithm (96.80%).

the original image. The features resulting from the unmixing
of training samples are used to train an support vector machine
(SVM) classifier. The latter is tested using the remaining
labeled samples.

The scene used in our experiment is the well-known
data set captured on the Indian Pines region by Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS). The scene
comprises 145 × 145 samples, consisting of 220 contigu-
ous spectral bands that cover wavelengths ranging from 0.40
to 2.5 μm, with spectral resolution approximately equal to
0.01 μm. Prior to analysis, noisy and water absorption bands
were removed, yielding a total of 202 available spectral bands.
The ground-truth data contains 16 mutually exclusive classes.
The number of pixels in the smallest class is 20, while it is
equal to 2468 pixels in the largest class. This widely used
benchmark data set is known to be dominated by mixed pixels,
even if ground-truth information assigns each pixel a unique
class. In this experiment, we used FCLS, K-Hype, and the
proposed algorithm with four nearest neighbors for unmixing-
based feature extraction. A one-against-all multiclass SVM
with Gaussian kernel was applied to these data. We constructed
five training sets by randomly selecting 5%, 10%, and 15% of
the ground-truth pixels. All the required parameters were opti-
mized by a grid search procedure and fivefold cross-validation.
The regularization parameter μ was set to 0.05 for K-Hype and
for the proposed algorithm. In addition, for the latter, the spatial
regularization parameter η was set to 0.5.

Table VII summarizes the classification accuracies of SVM
operating on features extracted with FCLS, K-Hype, and the
proposed algorithm. Fig. 4 presents these results in the case
of SVM trained with 10% of the available samples per class.
It appears that the two nonlinear unmixing algorithms are
more effective than the linear one for feature extraction. This
clearly means that our nonlinear unmixing model provides less
confusing features between the heavily mixed-pixel classes that
characterize the Indian Pines benchmark. Finally, we observe
that spatial regularization allows to greatly improve the clas-
sification accuracy. Spatial homogeneity is a significant prior
information for this problem, which allows to substantially
improve the quality of the unmixing process.

V. CONCLUSION

Hyperspectral image unmixing can benefit from both spec-
tral information and spatial information. In this paper, we

presented a nonlinear abundance estimation algorithm for the
hyperspectral unmixing task. The proposed algorithm integrates
the spatial information using �1-norm regularization into a
constrained LS-SVR problem. Split-Bregman iterations were
used to solve this optimization problem. Experiments showed
the advantage of introducing this spatial regularization into
the nonlinear unmixing problem. Spatial correlation within the
context of our nonlinear unmixing framework may take various
forms. One can promote the similarity of abundance vectors
between neighboring pixels, as considered in this paper, or
the similarity of the nonlinear fluctuation functions in future
works. We may also promote the similarity of the nonlinearity
degrees as defined in [12] and derive more localized or adaptive
solution strategies to reduce the computational complexity of
unmixing algorithms that jointly consider spatial and spectral
information.

APPENDIX

Recent works have raised the question of relaxing the sum-
to-one constraint because poor estimates of the endmember
signatures or misadjustment of the model may affect the per-
formance of the unmixing process. The interested reader is
addressed to [12] for a more detailed discussion on the subject.
In this paper, we maintained this constraint for comparison
purpose with existing approaches. We shall now provide the
main result in the case where this constraint over αn is relaxed
in problem (7). For clarity, let us denote by hn the nonnor-
malized vector of abundances. The Lagrange function (11)
becomes

Ln =
1

2

(
‖hn‖2 + ‖ψn‖2H +

1

μ

L∑
�=1

e2n,� + ζ
∥∥∥hn − ξ(k)n

∥∥∥2
)

−
L∑

�=1

β�

(
en,� − rn,� + h�

nmλ�
+ ψn(mλ�

)
)
−

R∑
r=1

γrhn,r

with γn,r ≥ 0. The conditions for the optimality of Ln with
respect to the primal variables lead us to

⎧⎪⎨
⎪⎩

h∗
n = 1

ζ+1

(∑L
�=1 β

∗
n,�mλ�

+ γ∗
n + ζξ(k)n

)
ψ∗
n =

∑L
�=1 β

∗
n,�κ(·,mλ�

)
e∗n,� = μβ∗

n,�.
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By substituting these conditions into the primal problem, we
get the dual problem (21)

max
βn,γn,λn

L′
n(βn,γn, λn)

= − ρ

2ζ

(
βn

γn

)� (
Kψ M

M� I

)(
βn

γn

)

+

(
rn − ρMξ(k)n

−ρξ(k)n

)� (
βn

γn

)
subject to γn � 0

with Kψ =
1

ζ
(K + μI) +MM� and ρ =

ζ

1 + ζ
.

(21)

Provided that the optimal dual variables β∗
n and γ∗

n have
been determined, the solution h∗

n is given by

h∗
n =

1

ζ + 1

(
M�β∗

n + γ∗
n + ζξ(k)n

)
.

If necessary, note that h∗
n can be normalized afterward by

writing h∗
n = θ∗n α

∗
n, with α∗

n being the vector of what would
correspond to fractional abundances and θ∗n = 1�h∗

n being the
scaling factor. Following [12], i.e., using equivalence between
optimization problems as explained in [44, p. 130], it can be
shown that θ∗n and α∗

n are the solutions of

α∗
n, θ

∗
n, ψ

∗
n = argmin

αn,θn,ψn,en

1

2

(
‖θnαn‖2+‖ψn‖2H+

1

μ

L∑
�=1

e2n,�

+ ζ
∥∥∥θnαn − ξ(k)n

∥∥∥2
)

subject to en,� = rn,� −
(
θnα

�
nmλ�

+ ψn(mλ�
)
)

αn � 0 α�
n1R = 1 θn > 0.
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