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Laboratoire Lagrange, Université de Nice Sophia-Antipolis, France
{jie.chen, cedric.richard}@unice.fr

Abstract—Diffusion LMS algorithm has been extensively studied dur-
ing the last few years. This efficient approach allows to address distributed
optimization problems over sensor networks in the case where the nodes
have to collaboratively estimate a single parameter vector. Nevertheless,
real-life problems are often multitask-oriented in the sense that the
optimum parameter vector may not be the same for every node. In
this paper, we conduct a theoretical analysis on the stochastic behavior
of diffusion LMS when applied to multitask problems, that is, in a
situation where the founding hypothesis of this algorithm is violated.
Simulation results validate our theoretical model. Surprisingly, when
applied to multitask problems in the presence of poor signal-to-noise
ratio, we observe that diffusion LMS may exhibit better performance
than non-cooperative LMS. This work provides a theoretical justification
for the need to derive new cooperative algorithms specifically dedicated
to multitask problems.

I. INTRODUCTION

Distributed adaptive estimation has become an attractive and
challenging problem with the rapid expansion of sensor networks.
The interconnected nodes are supposed to conduct parameter estima-
tion from collected observations in a collaborative and autonomous
manner, with consideration of robustness and resource limitation.
Research works have mainly focused on scenarios where the entire
network is required to collectively estimate a same parameter vector.
Two distributed strategies, the incremental strategy [1] and the
diffusion strategy [2], [3] have been the subject of most discussions
in recent years. Clearly, research efforts are now directed toward the
latter because the former needs a cyclic covering of all the nodes,
which is a severe constraint and a potential cause of failure. The
diffusion strategy only requires that each node shares information
with its neighbors. The use of local information makes such algo-
rithms robust and adaptive to dynamic variations of the environment.
Diffusion-based algorithms have been widely studied, including the
pioneering work [2], diffusion LMS [3], diffusion RLS [4], sparsity-
inducing diffusion [5], [6], performance analysis with imperfect in-
formation exchange and non-stationarity [7]. See [8] for an overview.
Several interesting works have also explored distributed estimation of
nonlinear input-output relationships defined in a reproducing kernel
Hilbert space, e.g., for distributed field estimation problems [9]–[13].

An overview of the existing algorithms clearly shows that works
have mostly focused on the case where all the sensor nodes have
to collaboratively estimate a single parameter vector for the whole
network. In the following, we shall refer to them as single-task prob-
lems. Unfortunately, real-life problems are often multitask-oriented
in the sense that the optimum parameter vector may not be the same
for every node. Diffusion LMS algorithm is a single-task algorithm.
Running diffusion LMS to solve a multitask problem will lead to
a biased result, which may be unacceptable. However, cooperative
strategy may lead to better performance than uncooperative strategies
provided that the optimums are close. The aim of this paper is to
conduct an analysis on the stochastic behavior of diffusion LMS
when applied to multitask problems, that is, in a situation where
the founding hypothesis of diffusion LMS is violated.
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Fig. 1. Single-task network (left) and multitask network (right)

II. DIFFUSION LMS AND PARETO SOLUTION

Consider a network composed of N nodes with some intercon-
nection relations. Each node k has access to temporal measurement
sequences {dk(n),xk(n)} dominated by the linear model

dk(n) = x>k (n)w∗k + zk(n). (1)

where the xk(n) are (L×1) regressors with covariance matrix Rx,k,
w∗k are (L × 1) weight vectors, and zk(n) is an additive noise at
node k and time instant n. Let Jk(w) be the mean-square-error cost
function associated with node k, that is,

Jk(w) = E{|dk(n)− x>k (n)w|2} (2)

The global cost function for the network can be written as

Jglob(w) =

N∑
k=1

Jk(w) (3)

For single-task networks, we consider that w∗k = w∗` for all (k, `),
as shown in the left of Figure 1. The adapt-then-combine (ATC)
diffusion LMS algorithm has been proposed to solve problem (3)
in an adaptive and distributed way [8]. It is characterized by the
following two stages at each instant n, for each sensor k,

ψk(n)=wk(n)+µk
∑
`∈Nk

c`kxk(n)
(
d`(n)−x>k (n)wk(n)

)
wk(n+ 1) =

∑
`∈Nk

a`kψ`(n)
(4)

with Nk the neighbors of node k, including k itself. In the above
expressions, non-negative coefficients a`k and c`k are the (`, k)-th
entries of matricesA andC, respectively. They are required to satisfy

A>1N = 1N , C1N = 1N

a`k = 0, c`k = 0 if ` /∈ Nk
(5)

where 1N is an (N × 1) all-one vector. For multitask problems, we
can have w∗k 6= w∗` as illustrated in the right of Figure 1. As each
cost function Jk(w) may not has the same optimum vector w∗k, the
solution of problem (3) is a Pareto optimum for [14]

(J1(w), . . . , JN (w)) ∈ RN (6)



When applying the diffusion LMS (4) to the global cost (3) with
sufficiently small step sizes, the network converges to the associated
Pareto optimum with a bias at the level O(max(µk)2) [15].

In this paper, rather than studying the problem of seeking a Pareto
solution that is optimal in some sense for the entire network, we shall
analytically study how the algorithm (4) behaves with respect to the
optimum parameter vectors w∗k.

III. PERFORMANCE ANALYSIS OF ATC DIFFUSION LMS
FOR MULTITASK NETWORKS

In order to analyze the stochastic behavior of the diffusion strat-
egy (4), we collect information into block vectors and matrices. In
particular, we collect the weight vectors at instant n and the optimum
weight vector w∗k into (LN × 1) vectors defined as

w(n) = (w>1 (n), . . . ,w>N (n))> (7)

w∗ = (w∗>1 , . . . ,w∗>N )> (8)

Let us define the weight-error vector as follows

vk(n) = wk(n)−w∗k. (9)

We also stack the weight-error vectors into an (LN × 1) vector

v(n) = (v>1 (n), . . . ,v>N (n))> (10)

To derive the theoretical analysis, we need to introduce the
following independence assumption.

Independence assumption The inputs xk(n) are temporally station-
ary, white and spatially independent with Rx,k = E{xk(n)x>k (n)}.

It directly follows from this assumption that xk(n) is independent
of v`(m) for all `, k, and m ≤ n. Although not true in general,
this assumption is commonly used for adaptive filter analysis since
it helps simplify the derivations. Usually, the results are not sensitive
to this approximation.

A. Mean weight behavior analysis

With the definition of vk(n), the estimation error that appears in
the first step of (4) can be rewritten as follows

d`(n)− x>` (n)wk(n) = x>` (n)w∗` + z`(n)− x>` (n)wk(n)

= z`(n)− x>` (n) (wk(n)−w∗` )
(11)

Note that the term wk(n)−w∗` appears in the above expression. In
usual analysis of diffusion LMS for single-task networks, this term
is simply vk(n) since w∗k = w∗` . However, in this multitask context,
we have

wk(n)−w∗` = (wk(n)−w∗k) + (w∗k −w∗` )
= vk(n) + u∗k`

(12)

where u∗k` is the difference between the optimum weight vectors w∗k
and w∗` . This relation enables us to express the error relation (11) as

d`(n)− x>` (n)wk(n) = z`(n)− x>` (n)vk(n)− x>` (n)u∗k` (13)

Subtracting w∗k from both sides of the first step in (4), we have

ψk(n)−w∗k = vk(n)− µk
∑
`∈Nk

c`kx`(n)x>` (n)vk(n)

+ µk
∑
`∈Nk

c`kx`(n)z`(n)− µk
∑
`∈Nk

c`kx`(n)x>` (n)u∗k`
(14)

Let us define the following (N × N) block diagonal matrices with
blocks of size (L× L)

U = diag{µ1IL, . . . , µNIL} (15)

H(n) = diag
{ ∑
`∈N1

c`1x`(n)x>` (n), . . . ,∑
`∈NN

c`Nx`(n)x>` (n)
}

(16)

hu(n) =
( ∑
`∈N1

c`1x`(n)x>` (n)u∗k`, . . . ,∑
`∈NN

c`Nx`(n)x>` (n)u∗k`
)> (17)

Let us also define the (LN × 1) vector pzx(n)

pzx(n)=
( ∑
`∈N1

c`1x
>
` (n)z`(n), . . . ,

∑
`∈NN

c`Nx
>
` (n)z`(n)

)>
.

(18)
With these matrices and vectors, the update relation for the stacked
weight error vector of ψ(n) can be expressed as

ψ(n)−w∗ = v(n)−UH(n)v(n) +Upzx(n)−Uhu(n) (19)

Let the matrix AI = A ⊗ IL. The combination step in (4) can be
written as follows

w(n+ 1) = A>I ψ(n) (20)

Subtracting w∗ from both sides of the above expression, the weight
error relation is given by

v(n+ 1) = A>I (ψ(n)−w∗) + (A>I − INL)w∗ (21)

Combining (19) and (21), the update relation for v(n) can be written
in a single expression

v(n+ 1) = A>I (INL −UH(n))v(n) +A>I Upzx(n)

−A>I Uhu(n) + (A>I − INL)w∗.
(22)

Taking the expectation of (22), the independence assumption yields

E{v(n+ 1)} = A>I (INL −UH) E{v(n)}
−A>I Uhu + (A>I − INL)w∗

(23)

where H is the expected value of H(n) given by

H = diag {R1, . . . , RN} , (24)

with Rk =
∑
`∈Nk

c`kRx,` for simplicity. The matrix hu is the
expected value of E{hu(n)}

hu =
( ∑
`∈N1

c`1Rx,`u
∗
1`, . . . ,

∑
`∈NN

c`NRx,`u
∗
N`

)>
(25)

Theorem 1: (Convergence in the mean) Assume data model (1)
and Assumption 1 hold. Then for any initial condition, the ATC dif-
fusion LMS applied to multitask networks asymptotically converges
in the mean if the step size is chosen to satisfy

0 < µk <
2

λmax(Rk)
(26)

where λmax(·) denotes the maximum eigenvalue of the matrix. The
estimation bias in the steady state tends to1

E{v(∞)} =
(
INL −A>I (INL −UH)

)−1

×
(
−A>I Uhu + (A>I − INL)w∗

)
.

(27)

1Due to space limitations, proofs are omitted in this article.



B. Second-order behavior analysis

For clearance, we denote several terms in the weight error expres-
sion (22) as follows

B(n) = A>I (INL −UH(n)) (28)

g(n) = A>I Upzx(n) (29)

r(n) = A>I Uhu(n)− (A>I − INL)w∗ (30)

Following the independence assumption, the mean-square of the
weight vector v(n+ 1) weighted by the metric Σ satisfies

E{‖v(n+ 1)‖2Σ}=E{‖v(n)‖2Σ′}+trace
{

ΣE{g(n)g>(n)}
}

+E{‖r(n)‖2Σ} − E{r>(n)ΣA>I (INL −UH(n))v(n)}
(31)

with Σ any nonnegative-definite matrix that allows to derive several
performance metrics, and Σ′ = E{B>(n)ΣB(n)}. Let G denote
the expected value in the second term on the right hand side of (31).
It is expressed as

G = E{g(n)g>(n)}
= A>I UC

>
I diag{σ2

z,1Rx,1, . . . , σ
2
z,NRx,N}CIUAI

(32)

with the matrix CI = C ⊗ IL. For clearance, we also define

f(r(n),Σ,v(n))

=‖r(n)‖2Σ − r>(n)ΣA>I (INL −UH(n))v(n)
(33)

The relation (31) is then written by

E{‖v(n+ 1)‖2Σ}
=E{‖v(n)‖2Σ′}+ trace {ΣG}+ E{f(r(n),Σ,v(n))}

(34)

Let vec(·) denote the operator that stacks the columns of a matrix
on top of each other. Vectorizing the matrix Σ and Σ′ by σ = vec(Σ)
and σ′ = vec(Σ′), the relation between them can be expressed by
the linear transformation

σ′ = Kσ (35)

with the (LN)2 × (LN)2 matrix

K = AI ⊗AI −HUAI ⊗AI −AI ⊗HUAI

+ E{H(n)>UAI ⊗H(n)>UAI}
(36)

If step sizes are sufficiently small, K can be approximated by

K ≈ B> ⊗B> (37)

with B = E{B(n)}, and

E{f(r(n),Σ,v(n))}
≈ ‖r‖2Σ − r>ΣA>I (INL −UH)E{v(n)}
= f(r,Σ, E{v(n)})

(38)

with r = E{r(n)}. The relation (34) can then be expressed as
follows

E{‖v(n+ 1)‖2σ} = E{‖v(n)‖2Kσ}+ vec(G>)>σ

+ f(r,Σ, E{v(n)})
(39)

where we consider the notations ‖·‖Σ and ‖·‖σ are interchangeable.
Theorem 2: (Mean-square stability) Assume data model (1) and

Assumption 1 hold. If the step sizes {µk} are sufficiently small such
that (26) is satisfied, the diffusion LMS algorithm applied in multitask
networks is mean-square stable if the matrix K is stable. Moreover,
if terms that depend on second-order power of step sizes are ignored,
the stability of K depends on that of E{B(n)} guaranteed by (26).

Theorem 3: (Transient MSD) Considering small step sizes that
satisfy Theorem 1 and Theorem 2, and the metric σI = vec(INL),
the MSD learning curve of the diffusion LMS applied over multitask
networks is described by the following recursions over n ≥ 0

ζ(n+ 1) = ζ(n) +
1

N

(
vec(G>)>KnσI

− ‖v(0)‖2(I
(NL)2

−K)KnσI
+ ‖r‖2KnσI

− 2 (Υ(n) + (BE{v(n)})> ⊗ r>)σI
) (40)

Υ(n+ 1) = Υ(n)K + ((BE{v(n)})> ⊗ r>)(K − I(NL)2)
(41)

with the initial condition ζ(0) = 1
N
‖v(0)‖2 and Υ(0) = 0(NL)2 .

Theorem 4: (Steady state MSD) Considering sufficiently small
step sizes that satisfy Theorem 1 and Theorem 2, the steady-state
MSD for the diffusion LMS algorithm applied over multitask net-
works is determined by the following expression

ζ∗ =
1

N
vec(G>)> (I(NL)2 −K)−1vec(INL)

+ f(r,
1

N
(I(NL)2−K)−1vec(INL),E{v(∞)})

(42)

with E{v(∞)} determined by (27).
It can be seen that whether diffusion LMS is able to outperform

non-cooperative LMS in a network depends on the sign of the term
f(r, 1

N
(I(NL)2−K)−1vec(INL), E{v(∞)}).

IV. SIMULATIONS

In this section we provide simulations to validate the derived
analytical results and discuss the behavior of ATC diffusion LMS in
multitask networks. We considered a network consisting of 10 nodes
with connections shown in Figure 2 (left). The coefficient vectors
were 2-dimensional with w∗k = wo+ ∆wk and wo = [0.5,−0.4]>.
The regression inputs xk(n) were zero-mean (L × 1) Gaussian
random vectors with covariance matrices Rx,k = σ2

x,kIL, with
σ2
x,k shown in the top right of Figure 2. Noises zk(n) were i.i.d.

zero-mean Gaussian random variables that were independent of
any other signals. We considered the diffusion algorithm (4) with
the measurement exchange using a uniform matrix C such that
c`k = |N`|−1, and a combination matrix A simply averaging the
estimates from neighbors, i.e., a`k = |Nk|−1.
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Fig. 2. Network topology and settings. Left: topology. Right: input variance
σ2
x,k (top), realization of ε (middle), realization of ξ (bottom).

Let εj be a uniform random variable drawn from U(0.18, 0.22),
and ξk be a value drawn from the normal distribution N (0, 1). The
realizations of ε and ξ used in simulations are shown in the middle
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and bottom of Figure 2 (right). The following network configurations
were considered

• S1 : {σ2
z,k = 0.1εk,∆wj = 0.01ξj}

• S2 : {σ3
z,k = 0.1εk,∆wj = 0.03ξj}

• S3 : {σ2
z,k = εk,∆wj = 0.01ξj}

• S4 : {σ2
z,k = εk,∆wj = 0.03ξj}

The ATC diffusion LMS (4) was conducted over this network with
a unique step size µk = 0.01 for all node k. Simulated results
were obtained by averaging over 100 Monte-Carlo runs. Theoretical
evolution curves of weight errors were obtained by (23). The left of
Figure 3 shows the weight error behavior of the algorithm with the
configuration S4. It can be observed that vk(n) did not converge
to zero, i.e., the weights were clearly biased, due to significant
difference between optimum w∗k. The model (23) accurately matched
the simulated curves. The middle of Figure 3 shows the transient
MSD behavior and steady-state MSD for all these four configurations.
The theoretical learning curves were obtained by (40) and (41).
The theoretical steady state MSD was calculated using (42). Again,
the derived models accurately predicted the MSD behavior of the
algorithm in such a network.

After validating the models, we compared the performance be-
tween ATC diffusion LMS and non-cooperative LMS. As theoretical
models have been proved accurate enough, we only used theoretical
curves in this comparison for clearance of the illustration, shown in
the right of Figure 3. Firstly, note that for the case S2, diffusion LMS
has significantly lower performance compared with non-cooperative
LMS, as optimums of nodes were significantly different and noise
variances were minor. It can be considered in this case that diffusion
LMS was improperly used and estimation bias dominated the error.
Situation S3 is on the contrary to that of S2, as with this setting
the effect of noise dominated the effect of bias. Nodes benefitted
from cooperation of diffusion LMS that provided better estimation by
smoothing away noise, even thought the estimate was biased. In cases
S1 and S4, the effect of noise rivaled that of bias so that diffusion
LMS and non-cooperative LMS had similar performance. Moreover,
the performance of non-cooperative LMS with the same noise level
was almost the same with different optimums (S1 vs. S2, S3 vs. S4),
as its estimates were unbiased.

V. CONCLUSION AND PERSPECTIVES

In this paper we examined the performance of ATC diffusion
LMS applied to multitask networks, where its design assumption is

violated. Accurate theoretical analysis of algorithm weight behavior
and MSD behavior was provided. Further work may include studies
of connection or re-weighting strategies to make the cooperation more
adaptive to multitask problems.
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