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Abstract—Spectral unmixing is an important issue to analyze
remotely sensed hyperspectral data. Although the linear mixture
model has obvious practical advantages, there are many situations
in which it may not be appropriate and could be advantageously
replaced by a nonlinear one. In this paper, we formulate a new
kernel-based paradigm that relies on the assumption that the
mixing mechanism can be described by a linear mixture of end-
member spectra, with additive nonlinear fluctuations defined in
a reproducing kernel Hilbert space. This family of models has
clear interpretation, and allows to take complex interactions of
endmembers into account. Extensive experiment results, with
both synthetic and real images, illustrate the generality and effec-
tiveness of this scheme compared with state-of-the-art methods.

Index Terms— Hyperspectral imaging, multi-kernel learning,
nonlinear spectral unmixing, support vector regression.

I. INTRODUCTION

H YPERSPECTRAL imaging is a continuously growing
area of remote sensing, which has received considerable

attention in the last decade. Hyperspectral data provide a wide
spectral range, coupled with a high spectral resolution. These
characteristics are suitable for detection and classification of
surfaces and chemical elements in the observed images. Appli-
cations include land use analysis, pollution monitoring, wide-
area reconnaissance, and field surveillance, to cite a few. Due to
multiple factors, including the possible low spatial resolution of
some hyperspectral-imaging devices, the diversity of materials
in the observed scene, the reflections of photons onto several
objects, etc., mixed-pixel problems can occur and be critical for
proper interpretation of images. Indeed, assigning mixed pixels
to a single pure component, or endmember, inevitably leads to
a loss of information.
Spectral unmixing is an important issue to analyze remotely

sensed hyperspectral data. This involves the decomposition of
each mixed pixel into its pure endmember spectra, and the esti-
mation of the abundance value for each endmember [1]. Sev-
eral approaches have been developed for endmember extrac-
tion [2]. On the one hand, methods with pure pixel assump-
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tion have been proposed to extract the endmembers from pixels
in the scene, such as the pixel purity index algorithm [3], the
vertex component analysis (VCA) [4], and the N-FINDR al-
gorithm [5], among others [6], [7]. On the other hand, some
methods have been proposed to overcome the absence of pure
pixels, by generating virtual endmembers, such as the minimum
volume simplex analysis (MVSA) [8], the minimum volume
enclosing simplex algorithm (MVES) [9], and the minimum
volume constrained nonnegative matrix factorization (MVC-
NMF) [10]. Endmember identification and abundance estima-
tion can be conducted either in a sequential or collaborative
manner. Under the assumption that the endmembers have been
identified, hyperspectral image unmixing then reduces to esti-
mating the fractional abundances. The term unmixing in the
paper represents the abundance estimation step, which is re-
ferred to as the supervised unmixing in some literature.
The linear mixture model is widely used to identify and

quantify pure components in remotely sensed images due to its
simple physical interpretation and trackable estimation process.
To be physically interpretable, the driving abundances are often
required to satisfy two constraints: all abundances must be
nonnegative, and their sum must be equal to one. In addition to
the extremely low-complexity method that has been recently
proposed [7], which is based on geometric considerations,
at least two classes of approaches can be distinguished to
determine abundances. On the one hand, there are estimation
methods that lead to an optimization problem which must be
solved subject to non-negativity and sum-to-one constraints
[11]. On the other hand, following the principles of Bayesian
inference, there are simulation techniques that define prior dis-
tributions for abundances, and estimate unknown parameters
based on the resulting joint posterior distribution [12]–[15].
Some recent works also take sparsity constraints into account
in the unmixing process [2], [15]–[18].
Although the linear mixture model has obvious practical ad-

vantages, there are many situations in which it may not be ap-
propriate (e.g., involving multiple light scattering effects) and
could be advantageously replaced by a nonlinear one. For in-
stance, multiple scattering effects can be observed on complex
vegetated surfaces [19] where it is assumed that incident solar
radiation is scattered by the scene through multiple bounces in-
volving several endmembers. Some nonlinear mixture models,
such as the generalized bilinear model studied in [20], account
for presence of multi-photon interactions by introducing addi-
tional interaction terms in the linear model. Another typical sit-
uation is the case where the components of interest are in an inti-
mate association, and the photons interact with all the materials
simultaneously as they are multiply scattered. A bidirectional
reflectance model based on the fundamental principles of radia-
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tive transfer theory was proposed in [21] to describe these inter-
actions. It is usually referred to as the intimate mixture model.
Obviously, the mixture mechanism in a real scene may be much
more complex than the above models and often relies on scene
parameters that are difficult to obtain.
Nonlinear unmixing has generated considerable interest

among researchers, and different methods have been proposed
to account for nonlinear effects. Using training-based ap-
proaches is a way to bypass difficulties with unknown mixing
mechanism and parameters. In [22], a radial basis function
neural network was used to unmix intimate mixtures. In [23],
the authors designed a multi-layer perceptron neural network
combined with a Hopfield neural network to deal with non-
linear mixtures. In [6], [24], the authors discussed methods for
automatic selection and labeling of training samples. These
methods require the networks to be trained using pixels with
known abundances, and the quality of the training data may
affect the performance notably. Moreover, for a new set of
spectra in a scene, or different embedded parameters, a new
neural network should be trained again before unmixing can
be performed. Approaches that do not require training samples
were also studied in the literature. In [20], a nonlinear unmixing
algorithm for the general bilinear mixture model was proposed.
Based on Bayesian inference, this method however has a high
computational complexity and is dedicated to the bilinear
model. In [25], [26], the authors extended the collection of
endmembers by adding artificial cross-terms of pure signa-
tures to model light scattering effects on different materials.
However, it is not easy to identify which cross-terms should
be selected and added to the endmember dictionary. If all the
possible cross-terms were considered, the set of endmembers
would expand dramatically. In [27], the authors addressed the
nonlinear unmixing problem with an intimate mixture model.
The proposed method first converts observed reflectances into
albedo using a look-up table, then a linear algorithm estimates
the endmember albedos and the mass fractions for each sample.
This method is based on the hypothesis that all the parameters
of the intimate mixture model are known. Nonlinear algorithms
operating in reproducing kernel Hilbert spaces (RKHS) have
been a topic of considerable interest in the machine learning
community, and have proved their efficiency in solving non-
linear problems. Kernel-based methods have already been
considered for detection and classification in hyperspectral im-
ages [28], [29]. Kernel-based nonlinear unmixing approaches
have also been investigated [30]–[32]. These algorithms were
mainly obtained by replacing each inner product between
endmember spectra, in the cost functions to be optimized, by
a kernel function. This can be viewed as a nonlinear distortion
map applied to the spectral signature of each material, indepen-
dently of their interactions. This principle may be extremely
efficient in solving detection and classification problems as a
proper distortion can increase the detectability or separability
of some patterns. It is however of little physical interest in
solving the unmixing problem because the nonlinear nature of
mixing is not only governed by individual spectral distortions,
but also by nonlinear interactions of the materials.
In this paper, we formulate the problem of estimating abun-

dances of a nonlinear mixture of hyperspectral data. This new

kernel-based paradigm allows to take nonlinear interactions of
the endmembers into account. It leads to a more meaningful
interpretation of the unmixing mechanism than existing kernel
based methods. The abundances are determined by solving an
appropriate kernel-based regression problem under constraints.
This paper is organized as follows. Section II introduces
the basic concepts of our modeling approach. Section III
presents a new kernel-based hyperspectral mixture model,
called K-Hype, and the associated identification algorithm
to extract the abundances within this nonlinear context. The
balance between linear and nonlinear contributions is unfortu-
nately fixed in K-Hype. In order to overcome this drawback,
a natural generalization called SuperK-Hype or SK-Hype, is
then largely described. It is based on the concept of Multiple
Kernel Learning, and allows to automatically adapt the balance
between linear spectral interactions and nonlinear ones. Finally,
major differences with some existing works on kernel-based
processing of hyperspectral images are also pointed out. In
Section IV, experiments are conducted using both synthetic
and real images. Performance comparisons with other popular
methods are also provided. Section V concludes this paper and
gives a short outlook onto future work.

II. A KERNEL-BASED NONLINEAR UNMIXING PARADIGM

Let be an observed column pixel, sup-
posed to be a mixture of endmember spectra, with the
number of spectral bands. Assume that
is the target endmember matrix, where each column
is an endmember spectral signature. For the sake of conve-

nience, we shall denote by the -th row of ,
that is, the vector of the endmember signatures at the -th
wavelength band. Let be the abundance
column vector associated with the pixel .
We first consider the linear mixingmodel where any observed

pixel is a linear combination of the endmembers, weighted by
the fractional abundances, that is,

(1)

where is a noise vector. Under the assumption that the end-
member matrix is known, the vector of fractional abun-
dances is usually determined by minimizing a cost function of
the form

(2)

under the non-negativity and sum-to-one constraints1

(3)

where is a regularization function, and is a small posi-
tive parameter that controls the trade-off between regularization

1For ease of notation, these two constraints will be denoted by and
, where is a vector of ones.
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and fitting. The above analysis assumes that the relationship be-
tween and is dominated by a linear function. There are
however many situations, involving multiple scattering effects,
in which model (1) may be inappropriate and could be advanta-
geously replaced by a nonlinear one.
Consider the general mixing mechanism

(4)

with an unknown nonlinear function that defines the interac-
tions between the endmembers in matrix . This requires us to
consider a more general problem of the form

(5)

with a given functional space, and a positive parameter that
controls the trade-off between regularity of the function and
fitting. Clearly, this basic strategy may fail if the functionals
of cannot be adequately and finitely parameterized. Kernel-
based methods rely on mapping data from the original input
space into a feature space by means of a nonlinear function, and
then solving a linear problem in that new space. They lead to
efficient and accurate resolution of the inverse problem (5), as
it has been showed in the literature. See, e.g., [33], [34]. Our
paper exploits the central idea of this research area, known as the
kernel trick, to investigate new nonlinear unmixing algorithms.
We shall now review the main definitions and properties related
to reproducing kernel Hilbert spaces [35] and Mercer kernels
[36].
Let denote a Hilbert space of real-valued functions

on a compact , and let be the inner product in the
space . Suppose that the evaluation functional de-
fined by is linear with respect to and
bounded, for all in . By virtue of the Riesz representa-
tion theorem, there exists a unique positive definite function

in , denoted by and called
representer of evaluation at , which satisfies [35]

(6)

for every fixed . A proof of this may be found in [35].
Replacing by in (6) yields

(7)

for all . Equation (7) is the origin of the
generic term reproducing kernel to refer to . Denoting
by the map that assigns the kernel function
to each input data , (7) immediately implies that

. The kernel thus evalu-
ates the inner product of any pair of elements of mapped
to the space without any explicit knowledge of and .
Within the machine learning area, this key idea is known as the
kernel trick.
The kernel trick has been widely used to transform linear al-

gorithms expressed only in terms of inner products into non-
linear ones. Considering again (5), the optimum function

can be obtained by solving the following least squares support
vector machines (LS-SVM) problem [37]

(8)

We introduce the Lagrange multipliers , and consider the La-
grange function

(9)

The conditions for optimality with respect to the primal vari-
ables are given by

(10)

We then derive the dual optimization problem

(11)

where is the so-called Gram matrix whose -th
entry is defined by . Classic exam-
ples of kernels are the radially Gaussian kernel

, and the Laplacian

kernel , with

the kernel bandwidth. Another example of interest is the -th
degree polynomial kernel ,
with .
The kernel function maps into a very high, even in-

finite, dimensional space without any explicit knowledge of
the associated nonlinear function. The vector and then de-
scribe the relation between the endmembers and the observa-
tion. The goal of the analysis is however to estimate the abun-
dance vector, and there is no direct relation between and
in the general case. In what follows, we shall focus attention on
the design of specific kernels that enable us to determine abun-
dance fractions within this context.

III. KERNEL DESIGN AND UNMIXING ALGORITHMS

The aim of this section is to propose kernel design methods
and the corresponding algorithms to estimate abundances. The
two approaches described hereafter are flexible enough to cap-
ture wide classes of nonlinear relationships, and to reliably in-
terpret a variety of experimental measurements. Both have clear
interpretation.

A. A preliminary Approach for Kernel-Based Hyperspectral
Unmixing: The K-Hype Algorithm

In order to extract the mixing ratios of the endmembers, we
define the function in (5) by a linear trend parameterized by
the abundance vector , combined with a nonlinear fluctuation
term, namely,

(12)
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where can be any real-valued functions on a compact
, of a reproducing kernel Hilbert space denoted by .

Let be its reproducing kernel. It can be shown [38]
that, as the direct sum of the RKHS of kernels

and defined on
, the space of functions of the form (12) is also a RKHS

with kernel function

(13)

The corresponding Gram matrix is given by

(14)

where is the Gram matrix associated with the nonlinear
map , with -th entry .
We propose to conduct hyperspectral data unmixing by

solving the following convex optimization problem

(15)

By the strong duality property, we can derive a dual problem
that has the same solution as the above primal problem. Let us
introduce the Lagrange multipliers , and . The Lagrange
function associated with the problem (15) can be written as

(16)

with . We have used that because
the functional space , parametrized by , contains all the
function of the variable of the form .
It is characterized by the norm

(17)
The conditions for optimality of with respect to the primal
variables are given by

(18)

By substituting (18) into (16), we get the following dual problem
(19) (see equation at bottom of page).
Provided that the coefficient vector has been determined,

the measured pixel can be reconstructed using

(20)

as indicated by (18). Comparing the above expression with (12),
we observe that the first and the second term of the r.h.s. of (20)
correspond to the linear trend and the nonlinear fluctuations,
respectively. Finally, the abundance vector can be estimated
as follows

(21)

Problem (19) is a quadratic program (QP). Numerous candidate
methods exist to solve it, such as interior point, active set and
projected gradient, as presented in [39], [40]. These well known
numerical procedures lie beyond the scope of this paper.

B. Some Remarks on Kernel Selection

Selecting an appropriate kernel is of primary importance as
it captures the nonlinearity of the mixture model. Though an
infinite variety of possible kernels exists, it is always desirable
to select a kernel that is closely related to the application context.
The following example justifies the combination (12), which
associates a linear model with a nonlinear fluctuation term. It
also allows us to define a possible family of appropriate kernels
for data unmixing.
Consider the generalized bilinear mixing model presented in

[20], at first, limited to three endmember spectra for the sake of
clarity

(22)

where , and are attenuation parameters, and
the Hadamard product. It can be observed that the nonlinear
term with respect to , in the r.h.s. of (22), is closely related
to the homogeneous polynomial kernel of degree 2, that is,

. Indeed, with a slight abuse
of notation, the latter can be written in an inner product form
as follows

(23)

(19)
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with

(24)

where is the -th entry of . This means that, in addition
to the linear mixture term , the auto and interaction terms
considered by the kernel-based model are of the form
for all , .
By virtue of the reproducing kernel machinery, endmember

spectra do not need to be explicitly mapped into the feature
space. This allows to consider complex interaction mechanisms
by changing the kernel , without having to modify the opti-
mization algorithm described in the previous subsection. As an
illustration, consider the polynomial kernel

. Making use of the binomial theorem yields

(25)

We observe that each component
of the above expression

can be expanded into a weighted sum of -th degree monomials
of the form

(26)

with . This means that, in addition to the linear
mixture term , the auto and interaction terms considered by
the kernel-based model are of the form
for every set of exponents in the Hadamard sense satisfying

. Note that it would be computationally ex-
pensive to explicitly form these interaction terms. Their number
is indeed very large: there are monomials (26) of degree ,
and then components in the entire -th order representa-
tion. Comparedwith themethods introduced in [25], [26], which
insert products of pure material signatures as new endmembers,
we do not need to extend the endmember matrix by adding
such terms. The kernel trick makes the computation much more
tractable. In the experimentations reported hereafter, the fol-
lowing 2-nd degree polynomial kernel was used

(27)

where the constants and 1/2 serve the purpose of normaliza-
tion.

C. Nonlinear Unmixing by Multiple Kernel Learning: The
SK-Hype Algorithm

The proposed model relies on the assumption that the mixing
mechanism can be described by a linear mixture of endmember
spectra, with additive nonlinear fluctuations defined in
a RKHS. This justifies the use of a Gram matrix of the form

in the algorithm presented previously.
Model (12) however has some limitations in that the balance be-
tween the linear component and the nonlinear compo-

nent cannot be tuned. This should however be made
possible as recommended by physically-inspired models such
as model (22). In addition, kernels with embedded linear
component such as the inhomogeneous polynomial kernel (25)
introduces a bias into the estimation of , unless correctly es-
timated and removed. Another difficulty is that the model (12)
cannot captures the dynamic of the mixture, which requires that
or the ’s be locally normalized. This unlikely situation

occurs, e.g., if a library of reflectance signatures is used for the
unmixing process. To address problems such as the above, it
should be interesting to consider Gram matrices of the form

(28)

with in [0, 1] in order to ensure positiveness of . The in-
tuition for (28) is as follows. The performance of kernel-based
methods, such as SVM, Gaussian Processes, etc., strongly re-
lies on kernel selection. There is a large body of literature ad-
dressing various aspects of this problem, including the use of
training data to select or combine the most suitable kernels out
of a specified family of kernels. The great majority of theoretical
and algorithmic results focus on learning convex combinations
of kernels as originally considered by [41]. Learning both the
parameter and the mixing coefficients in a single optimiza-
tion problem is known as the multiple kernel learning problem.
See [42] and references therein. The rest of this section is de-
voted to the formalization of this intuition, which will lead us to
formulate and solve a convex optimization problem.
1) Primal Problem Formulation: In order to tune the balance

between and , it might seem tempting to substitute
matrix with in the dual problem (19). Unfortunately, a
primal problem must be first formulated in order to identify, in
the spirit of (18), explicit expressions for and . We
propose to conduct hyperspectral data unmixing by solving the
following primal problem

(29)

where allows to adjust the balance between and via
their norms. The spaces and are RKHS of the general
form

(30)

with the convention if , and otherwise. This
implies that, if , then belongs to space if and
only if . By continuity consideration via this convention,
it can be shown that the problem (29) is a convex optimization
problem by virtue of the convexity of the so-called perspective

function over . This has
been shown in [43, Chapter 3] in the finite-dimensional case,
and extended in [42] to the infinite-dimensional case. This al-
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lows to formulate the two-stage optimization procedure, with
respect to and successively, in order to solve problem (29).

(31)

where is defined by (32), shown at the bottom of the page.
The connection between (29) and this problem is as follows.

We have [43, p. 133]

(33)

where , subject to all the constraints over
and defined in (31), (32). In addition, as proven in textbooks

[43, p. 87], because is convex in subject to convex
constraints over , it turns out that is convex in and, as
a consequence, that the constrained optimization problem (31)
is convex.
Compared to the preliminary algorithm described in

Section III-A, it is important to note that the sum-to-one
constraint has been given up. Indeed, relaxing the
-norm of the weight vector acts as an additional degree of

freedom for the minimization of the regularized reconstruction
error . This mechanism operates in conjunction with
parameter setting, which is adjusted to achieve the best bal-
ance between and . The effectiveness of this strategy
has been confirmed by experiments, which have revealed a
significant improvement in performance. Note that the resulting
vector cannot be directly interpreted as a vector of fractional
abundances. It is normalized afterwards by writing ,
with the vector of fractional abundances, and . The
reader would certainly have been more pleased if the scaling
factor had been explicitly included in the optimization process
as follows

(34)

This problem is not convex, and is difficult to solve as formu-
lated. Fortunately, as indicated hereafter, it is equivalent to the
problem (31), (32) in the sense of [43, p. 130]. Consider the
change of variable . The cost function can be directly
reformulated as a function of . The two constraints over be-
come

Eliminating the second constraint, which is trivial because of
the first constraint, leads us to (31) and (32). Because
and , we have with . This result
is consistent with the normalization of proposed above.
2) Dual Problem Formulation and Algorithm: By the strong

duality property, we shall now derive a dual problem that has the
same solution as the primal problem (32). Let
us introduce the Lagrange multipliers and . The Lagrange
function associated with the problem (32) can be written as

(35)

with , where we have used that .
The conditions for optimality of with respect to the primal
variables are given by

(36)

By substituting (36) into (35), we get the dual problem (37),
shown at the bottom of the page.
Pixel reconstruction can be performed using

with defined in equation (36).
Finally, the estimated abundance vector is given by

(38)

(32)

(37)
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TABLE I
NONLINEAR UNMIXING BY MULTIPLE KERNEL LEARNING: THE SK-HYPE ALGORITHM

Let us briefly address the differentiability issue of the
problem (31)–(37). The existence and computation of the
derivatives of supremum functions such as have been
largely discussed in the literature. As pointed out in [42], [44],
the differentiability of at any point is ensured by the unicity
of the corresponding minimizer , and by the differen-
tiability of the cost function in (32). The derivative
of at can be calculated as if the minimizer was
independent of , namely, .
This yields

(39)

Table I summarizes the proposed algorithm. Note that (31)
is a very small-size problem. Indeed, it involves a one-dimen-
sion optimization variable and can thus be solved with an ad-hoc
procedure. Using a gradient projection method, e.g., based on
Armijo rule along the feasible direction, makes practical sense
in this case [39, Chapter 2]. See also [45]. Moreover, both prob-
lems can benefit of warm-starting between successive solutions
to speed-up the optimization procedure. The algorithm can be
stopped based on conditions for optimality in convex optimiza-
tion framework. In particular, the KKT conditions and the du-
ality gap should be equal to zero, within a numerical error tol-
erance specified by the user. The variation of the cost be-
tween two successive iterations should also be considered as a
potential stopping criterion.
Before testing our algorithms, and comparing their perfor-

mance with state-of-the-art approaches, we shall now explain
how they differ from existing kernel-based techniques for hy-
perspectral data processing.

D. Comparison With Existing Kernel-Based Methods in
Hyperspectral Imagery

Some kernel-based methods have already been proposed to
process hyperspectral images, with application to classification,
supervised or unsupervised unmixing, etc. By taking advantage
of capturing nonlinear data dependences, some of them have
been shown to achieve better performance than their linear
counterpart. Let us now briefly discuss the main difference
between our kernel-based model and those presently existing.
The central idea underlying most of state-of-the-art methods
is to nonlinearly transform hyperspectral pixel-vectors prior to
applying a linear algorithm, simply by replacing inner products

with kernels in the cost function. This basic principle is fully
justified in detection/classification problems because a proper
nonlinear distortion of spectral signatures can increase the
detectability/separability of materials. Within the context of
hyperspectral unmixing, this leads to consider mixtures of the
form

(40)

Thismodel is inherent in the KFCLS algorithm [30], [31], which
optimizes the following mean-square error criterion where all
the inner products have been replaced by kernels

(41)

where is the Gram matrix with -th entry ,
and is a vector with -th entry . Unfortunately,
even though model (40) allows distortions of spectral sig-
natures, it does not explicitly include nonlinear interactions
of the endmember spectra. The analysis in Section III-B has
shown strong connections between our kernel-based model
and well-characterized models, e.g., the generalized bilinear
mixture model. The experimental comparison on simulated and
real data reported in the next section confirms this view.

IV. EXPERIMENTAL RESULTS

We shall now conduct some simulations to validate the pro-
posed unmixing algorithms, and to compare them with state-of-
the-art methods, using both synthetic and real images.

A. Experiments on Synthetic Images

Let us first report some experimental results on synthetic
images, generated by linear and nonlinear mixing of several
endmember signatures. The materials we have considered are
alunite, calcite, epidote, kaolinite, buddingtonite, almandine,
jarosite and lepidolite. They were selected from the ENVI
software library. These spectra consist of 420 contiguous
bands, covering wavelengths ranging from 0.3951 to 2.56
micrometers.
In the first scene, only three materials were selected to gen-

erate images: epidote, kaolinite, buddingtonite. In the second
scene, five materials were used: alunite, calcite, epidote, kaoli-
nite, buddingtonite. In the third scene, the eight materials were
used. For each scene, three 50-by-50 hyperspectral images were
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generated with different mixture models, each providing
pixels for evaluating and comparing the performance of

several algorithms. These three models were the linear model
(1), the bilinear mixture model defined as

(42)

and a post-nonlinear mixing model (PNMM) [46] defined by

(43)

where denotes the exponential value applied to each entry
of the input vector. Parameter was set to 0.7. The abundance
vectors , with , were uniformly generated
in the simplex defined by non-negative and sum-to-one con-
straints. Finally, all these images were corrupted with an addi-
tive white Gaussian noise with two levels of SNR, 30 dB and
of 15 dB.
The following algorithms were considered
• The so-called Fully Constrained Least Square method
(FCLS), [11]: This technique was derived based on linear
mixture model. It provides the optimal solution in the
least-mean-square sense, subject to non-negativity and
sum-to-one constraints. A relaxation parameter has to
be tuned to specify a compromise between the residual
error and the sum-to-one constraint.

• The extended endmember-matrixmethod (ExtM), [25]:
This method consists of extending the endmember ma-
trix artificially with cross-spectra of pure materials in
order to model light scatter effects. In the experiments, all
the second-order cross terms were inserted so
that it would correspond to the generalized bilinear model.
This approach also has a relaxation parameter for the
sum-to-one constraint.

• The so-called Kernel Fully Constrained Least Square
method (KFCLS), [30]: This is a kernel method, directly
derived from FCLS, in which all the inner products are
replaced by kernel functions. As for all the other kernel-
based algorithms considered in this paper, the Gaussian
kernel was used for simulations. This algorithm has two
parameters, the bandwidth of the Gaussian kernel, and a
relaxation parameter for the sum-to-one constraint.

• The Bayesian algorithm derived for generalized bi-
linear model (BilBay), [20]: This method is based on
appropriate prior distributions for the unknown parame-
ters, which must satisfy the non-negativity and sum-to-one
constraints, and then derives joint posterior distribution of
these parameters. A Metropolis-within-Gibbs algorithm
is used to estimate the unknown model parameters. The
MMSE estimates of the abundances were computed by
averaging the 2500 generated samples obtained after 500
burn-in iterations.

• The first algorithm proposed in this paper (K-Hype):
This is the preliminary algorithm described in
Section III-A. The Gaussian kernel (G) with bandwidth
, and the polynomial kernel (P) defined by (27) were

considered. The Matlab optimization function Quadprog
was used to solve the QP problem.

• The second algorithm proposed in this paper
(SK-Hype): This is the main algorithm described in
Section III-C and Table I. As for K-Hype, the Gaussian
kernel and the polynomial kernel were considered. The
variable was initially set to 1/2. A gradient projection
method, based on the Armijo rule to compute the optimal
step size along the feasible direction, was used to deter-
mined . The algorithm was stopped when the relative
variation of between two successive iterations became
less than , or the maximum number of itera-
tions was reached. The Matlab optimization
function Quadprog was used to solve the QP problem.

The root mean square error defined by

(44)

was used to compare these six algorithms. In order to tune their
parameters, preliminary runs were performed on 100 indepen-
dent test pixels for each experiment. The bandwidth of the
Gaussian kernel in the algorithms ExtM, K-Hype and SK-Hype
was varied within {1, , 3} with increment of 1/2. The param-
eter of K-Hype and SK-Hype algorithms was varied within

. The parameter in algorithms FCLS,
ExtM,KFCLSwas chosenwithin .
All the parameters used in the experiments are reported in Ta-
bles X–XII.
Results for Scene 1 to Scene 3 unmixing, with three, five and

eight endmember materials, are reported in Table II, Table III
and Table IV respectively. Because the FCLS method was ini-
tially derived for the linear mixing model, it achieves a very
low RMSE for linearly-mixed images, and produces a relatively
large RMSEwith nonlinearly-mixed images.With second-order
cross terms that extend the endmember matrix , the ExtM
algorithm notably reduces the RMSE when dealing with bi-
linearly-mixed images when compared with FCLS. However,
it marginally improves the performance in PNMM image um-
mixing. BilBay algorithm was derived for the bilinear mixing
model, and thus achieves very good performance with bilin-
early-mixed images. Nevertheless, the performance of BilBay
clearly degrades when dealing with a nonlinear mixing model
for which it was not originally designed. KFCLS with Gaussian
kernel performs worse than FCLS, even with nonlinearly-mixed
images as it does not clearly investigate nonlinear interactions
between materials.
For the less noisy scenes (30 dB), our algorithms K-Hype and

SK-Hype exhibit significantly reduced RMSE when dealing
with nonlinearly-mixed images. In the case of the bilinear
model, K-Hype and SK-Hype achieve very good performance
compared to the other algorithms. Indeed, they are the best per-
formers except in a few cases. In the case of the PNMM model,
they outperform all the other algorithms, and it can be observed
that SK-Hype outperforms K-Hype in several scenarios. For the
noisiest scenes (15 dB), although the increase in the noise level
significantly degrades the performance of all the algorithms,
K-Hype and SK-Hype still maintain an advantage. Last but
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TABLE II
SCENE 1 (THREE MATERIALS): RMSE COMPARISON

TABLE III
SCENE 2 (FIVE MATERIALS): RMSE COMPARISON

TABLE IV
SCENE 3 (EIGHT MATERIALS): RMSE COMPARISON

TABLE V
WELSH’S -TESTS FOR SCENE 2 WITH (LINEAR MODEL)

not least, the margin of performance over the other approaches
becomes larger as the number of endmembers increases.
To give a more meaningful comparison of the performance

of these algorithms, one-tailed Welch’s -tests with significance
level 0.05 were used to test the hypothesis

where denotes the RMSE of the K-Hype and
SK-Hype algorithms, with Gaussian and polynomial kernels,
and is the RMSE of the algorithms of the lit-
erature selected in this paper. Due to limited space, only the re-
sults for Scene 2 and the SNR level 30 dB are reported here, in
Table V–VII. The letter means that the hypothesis is ac-
cepted. Without ambiguity, these results confirm the advantage
of our algorithms.

TABLE VI
WELSH’S -TESTS FOR SCENE 2 WITH (BILINEAR MODEL)

TABLE VII
WELSH’S -TESTS FOR SCENE 2 WITH (PNMM)

The computational time of these algorithms mainly depends
on the constrained optimization problem to be solved. FCLS
and KFLCS minimize a quadratic cost function of dimension
, under inequality constraints of the same dimension. ExtM

solves a similar problem but with an increased dimension due to
the cross-spectra that are artificially inserted. In the case where
only the second-order cross spectra are added, the dimension of
the optimization problem is with , 5 and 8 in this
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Fig. 1. Abundances maps of selected materials. From top to bottom: FCLS, BilBay, K-Hype (G), SK-Hype (G). From left to right: chalcedony, alunite, kaolinite,
buddingtonite, sphene, US highway 95.

TABLE VIII
AVERAGED COMPUTATIONAL TIME PER PIXEL (IN SECONDS)

study. BilBay has to generate numerous samples to estimate the
model parameters, and suffers from the large computational cost
of this sampling strategy. K-Hype solves a quadratic program-
ming problem of dimension . It is interesting to note
that the computational cost is independent of the complexity of
the unmixing model. A sparsification strategy as described in
[47] should be advantageously used to greatly reduce the com-
putational complexity with negligible effect on the quality of the
results. SK-Hype has similar advantages as K-Hype except that
the alternating optimization scheme requires more time. The av-
erage computational times per pixel of all these algorithms are
listed in Table VIII.2

B. Experiment With AVIRIS Image

This section illustrates the performance of the proposed algo-
rithms, and several other algorithms, when applied to real hy-
perspectral data. The scene that was used for our experiment

2Using Matlab R2008a on a iMac with 3.06 GHz Intel Core 2 Duo and 4 Go
Memory.

TABLE IX
SPECTRAL ANGLES COMPARISON

is the well-known image captured on the Cuprite mining dis-
trict (NV, USA) by AVIRIS. A sub-image of 250 191 pixels
was chosen to evaluate the algorithms. This area of interest
has spectral bands. The number of endmembers was
first estimated via the virtual dimensionality, and was accord-
ingly set to 12 [4]. VCA algorithm was then used to extract the
endmembers. Both our algorithms were compared with all the
state-of-the-art algorithms considered previously. After prelim-
inary experiments, the regularization parameters of FCLS and
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TABLE X
SIMULATION PARAMETERS CORRESPONDING TO SCENE 1 (CF. TABLE II)

TABLE XI
SIMULATION PARAMETERS CORRESPONDING TO SCENE 2 (CF. TABLE III)

TABLE XII
SIMULATION PARAMETERS CORRESPONDING TO SCENE 3 (CF. TABLE IV)

ExtM algorithms were set to . K-Hype algorithm and
SK-Hype algorithm were run with the polynomial kernel (27),
and the Gaussian kernel. The bandwidth of the Gaussian kernel
was set to . The regularization parameter was fixed
to . To evaluate the performance, the averaged spectral
angle between original and reconstructed pixel vectors was
used

where is the number of processed pixels and

. It is important to note that the quality of re-
construction, estimated by the averaged spectral angle or mean-
square error for instance, is not necessarily in proportion to
the the quality of unmixing, especially for real images where
the nonlinear mixing mechanism can be complex. In particular,
more complicated model may better fit the data. Parameter
is only reported here as complementary information. The aver-
aged spectral angle of each approach is reported in Table IX.
Note that KFCLS was not considered in these tests as there is
no possible direct reconstruction of pixels. Clearly, our algo-
rithms have much lower reconstruction errors than the other ap-

proaches. Six typical estimated abundance maps out of twelve
available are shown in Fig. 1. It can be observed that the esti-
mated locations of the different materials are quite similar for
the four methods, except the US Highway 95 in the last column
which is much more accurately depicted by our methods. Fi-
nally, the distributions of reconstruction errors associ-
ated to these methods are shown in Fig. 2.

V. CONCLUSION

Spectral unmixing is an important issue to analyze remotely
sensed hyperspectral data. This involves the decomposition
of each mixed pixel into its pure endmember spectra, and the
estimation of the abundance value for each endmember. To be
physically interpretable, the abundances are often required to
be nonnegative, and their sum must be equal to one. Although
the linear mixture model has many practical advantages, there
are many situations in which it may not be appropriate. In this
paper, we formulated a new kernel-based paradigm that relies
on the assumption that the mixing mechanism can be described
by a linear mixture of endmember spectra, with additive non-
linear fluctuations defined in a RKHS. This family of models
has a clear physical interpretation, and allows to take complex
interactions of endmembers into account. Two kernel-based
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Fig. 2. Maps of reconstruction error. From left to right: FCLS, BilBay, K-Hype (G), SK-Hype (G).

algorithms for estimating the abundances were proposed. The
second one, based on the concept of multiple kernel learning,
is the natural generalization of the first one as it allows to auto-
matically adapt the balance between linear spectral interactions
and nonlinear ones. Future work will include studying the
feasibility and constraints of designing physically meaningful
kernels, possibly based on manifold learning as in [48], [49].
We will also focus our attention on adaptive kernel-based algo-
rithms, in the spirit of [47], to unmix neighboring pixel-vectors
sequentially and thus speed up processing.
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