
ONLINE SYSTEM IDENTIFICATION UNDER NON-NEGATIVITY
AND ℓ1-NORM CONSTRAINTS

ALGORITHM AND WEIGHT BEHAVIOR ANALYSIS

Jie Chen †‡, Cédric Richard †, Henri Lantéri †, Céline Theys †, Paul Honeine ‡
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ABSTRACT

Information processing with ℓ1-norm constraint has
been a topic of considerable interest during the last five
years since it produces sparse solutions. Non-negativity
constraints are also desired properties that can usu-
ally be imposed due to inherent physical characteristics
of real-life phenomena. In this paper, we investigate
an online method for system identification subject to
these two families of constraints. Our approach differs
from existing techniques such as projected-gradient al-
gorithms in that it does not require any extra projection
onto the feasible region. The mean weight-error behav-
ior is analyzed analytically. Experimental results show
the advantage of our approach over some existing algo-
rithms. Finally, an application to hyperspectral data
processing is considered.

1. INTRODUCTION

Information processing with ℓ1-norm constraint has
been a topic of considerable interest during the last five
years. Many methods in statistical learning, compres-
sive sensing and related fields have been formulated as
convex optimization problems subject to ℓ1-norm con-
straint on the set of parameters to estimate. One mo-
tivation for using ℓ1-norm constraint is that it produces
sparse solutions [1]. Non-negativity constraints are also
desired properties that can usually be imposed due to
inherent physical characteristics of real-life phenomena.
For instance, in the study of a concentration field or a
thermal radiation field, non-negativity of observations is
a property that can be advantageously exploited by sen-
sor networks [2]. Combining non-negativity and ℓ1-norm
constraints has been addressed within various contexts
including, e.g., image deblurring in astrophysics [3] and
hyperspectral data analysis [4].

In this paper, we consider the problem of minimiz-
ing a convex cost function subject to non-negativity
constraint and constant ℓ1-norm constraint, called here-
after full-additivity constraint, within the context of on-
line system identification. Popular approaches are the
projected-gradient type methods and the regularization-
based methods. The former project the results onto
the feasible region at each iteration [5, 6]. The latter
minimize the objective function with additional penalty
terms that are related to the constraints [7]. This pa-
per is an extension of our previous work [2, 8] in the
sense that, in addition to the non-negativity constraint,

we also consider now the full-additivity constraint. We
propose a strategy that differs from projected-gradient
methods and regularization methods in the sense that
it integrates the constraints into the coefficient update
process. No extra projection procedure or penalty term
is required, and constraints are strictly satisfied at each
iteration. In order to deal with non-stationary systems,
and to reduce computational requirements, we also de-
velop a stochastic gradient algorithm that updates the
parameters in an online way. Its mean-weight conver-
gence behavior is analyzed analytically. Simulations
show the advantage of the proposed algorithm over some
existing methods, and the accuracy of the analysis.

2. PROBLEM FORMULATION

Consider an unknown system, characterized by a set of
real valued discrete-time responses to known stationary
inputs. In this paper, we address the problem of deriving
a filter ŷ = x⊤(n)α(n), subject to constraints (2)-(3),
that best models the desired output y(n) corrupted by
noise z(n). See Figure 1. Input signal x(n) is zero-mean,
and z(n) is a zero-mean additive noise uncorrelated with
any other signal. The system identification problem can
be formulated as

αo = argmin
α

J(α) (1)

subject to αi ≥ 0, i = 1, . . . , L (2)

L∑
i=1

αi = c0 (3)

with J(α) a convex cost function, L the order of the
filter, and c0 a given positive constant.

3. WEIGHT UPDATE ALGORITHM

3.1 Learning with non-negativity constraints

In [2, 8], we have studied an algorithm for system iden-
tification involving only the constraint (2), without the
full-additivity constraint (3). For this problem, using
Lagrange multiplier method, the Karush-Kuhn-Tucker
conditions at the optimum were combined into the fol-
lowing expression [2, 3]

αo
i [−∇αJ(α

o)]i = 0 (4)

where the minus sign is just used to make a gradient
descent of the criterion J(α) apparent. Equations of
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y(n) = x
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Figure 1: Adaptive system identification under constraints

the form g(u) = 0 can be solved with a fixed-point al-
gorithm, under some conditions on function g, by con-
sidering the problem u = u + g(u). Implementing this
fixed-point strategy with equation (4) leads us to the
component-wise gradient descent algorithm

αi(k + 1) = αi(k) + µi(k)αi(k)[−∇αJ(α(k))]i (5)

where µi(k) > 0 is a positive step-size that allows us
to control convergence. Suppose that αi(k) > 0. The
non-negativity of αi(k + 1) is guaranteed if, and only if,

1 + µi(k) [−∇αJ(α(k))]i > 0. (6)

If [∇αJ(α(k))]i < 0, condition (6) is satisfied and the
non-negativity constraint does not impose any restric-
tion on the step-size. Conversely, if [∇αJ(α(k))]i > 0,
non-negativity of αi(k + 1) holds if

0 < µi(k) ≤
1

[∇αJ(α)]i
. (7)

In [8], we have shown that condition (6) is not necessary
for convergence of the algorithm (5) to the solution of
problem (1)-(2).

3.2 Algorithm for fully constrained problem

If non-negativity of α(n) is guaranteed at each iteration,
we can make the following variable change to ensure that
the full-additivity constraint (3) is satisfied

αj =
wj∑L
ℓ=1 wℓ

c0. (8)

With wi ≥ 0, the problem becomes unconstrained with
respect to constraint (3). The partial derivative of the
cost function J with respect to the new variables wi can
be expressed as follows

∂J

∂wi
=

L∑
j=1

∂J

∂αj
× ∂αj

∂wi
(9)

with
∂αj

∂wi
=

c0δij − αj∑L
ℓ=1 wℓ

(10)

and δij the Kronecker symbol. Replacing (10) into (9),
the partial derivative of J with respect to wi can now

be written as

∂J

∂wi
=

−1∑L
ℓ=1 wℓ

−c0
∂J

∂αi
+

L∑
j=1

αj

(
∂J

∂αj

) . (11)

Let us now use the same rule as (5) for updating the
non-negative entries wi(k). The component-wise update
equation is given by

wi(k + 1) = wi(k) + . . .

+ µ
wi(k)∑L
ℓ=1 wℓ(k)

−c0
∂J

∂αi(k)
+

L∑
j=1

αj(k)

(
∂J

∂αj(k)

)
It can be verified that

∑L
i=1 wi(k+1) =

∑L
i=1 wi(k) for

all µ by summing both sides from i = 1 to L. This yields

wi(k + 1) = wi(k) + . . .

+ µwi(k)

−c0
∂J

∂αi(k)
+

L∑
j=1

αj(k)

(
∂J

∂αj(k)

) .

where 1/
∑L

ℓ=1 wℓ(k) has been absorbed into µ since it
is constant across iterations.

Dividing by
∑L

i=1 wi(k+ 1) and
∑L

i=1 wi(k) the left
and right hand sides of the above equation, respectively,
and considering the variable change defined by (8), we
finally obtain

αi(k + 1) = αi(k) + . . .

+ µαi(k)

−c0
∂J

∂αi(k)
+

L∑
j=1

αj(k)

(
∂J

∂αj(k)

) .
(12)

We can verify that
∑L

i=1 αi(k+1) =
∑L

i=1 αi(k), which
means that the algorithm satisfies the full-additivity
constraint as long as the weight vector is initialized by
any non-negative vector α(0) whose sum of its compo-
nents equals c0.

3.3 Application to mean square error criterion

A general update rule was derived in (12) for any con-
vex cost function J(α). We shall now consider the usual
situation where the mean square error is considered,
namely

J(α) = E[(α⊤ x(n)− y(n))2]. (13)

Using criterion (13) in (12) requires that the correla-
tion matrix Rx and the intercorrelation vector rxy be
estimated. In order to enable online computation, we
shall now present a LMS-style algorithm based on the
stochastic gradient

−∇J(α) ≈ x(n) e(n)

with e(n) = y(n) − x⊤(n)α(n). Substituting this ex-
pression into equation (12) yields the following update
rule, written in vectorial form,

α(n+ 1) = α(n) + . . .

+ µdiag{α(n)}
(
c0x(n)e(n)− 1α⊤(n)x(n)e(n)

) (14)

where 1 is the all-one vector, and diag{·} is a diagonal
matrix.
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4. MEAN WEIGHT CONVERGENCE
BEHAVIOR

We shall now propose a model to characterize the
stochastic behavior of the online algorithm (14). As it
is rather challenging to study the performance of such
iterative systems, several simplifying assumptions will
be made. However, experiments will show that the sim-
ulated results and the model outputs match almost per-
fectly. We define the weight-error vector

v(n) = α(n)−α∗ (15)

where α∗ is the solution of the unconstrained problem.
See Figure 1. Replacing α(n) by v(n) + α∗ in (14),
and writing e(n) = z(n) − v⊤(n)x(n), leads us to the
following expression

v(n+ 1) = v(n) + . . .

+µ
(
c0 z(n) diag{x(n)}v(n)︸ ︷︷ ︸

u1

+ c0 z(n) diag{x(n)}α∗︸ ︷︷ ︸
u2

− c0 diag{x(n)}v(n)v⊤(n)x(n)︸ ︷︷ ︸
u3

− c0 diag{x(n)}α∗ x⊤(n)v(n)︸ ︷︷ ︸
u4

−α∗ α∗⊤x(n) z(n)︸ ︷︷ ︸
u5

−α∗ v⊤(n)x(n) z(n)︸ ︷︷ ︸
u6

−v(n)α∗⊤ x(n) z(n)︸ ︷︷ ︸
u7

−v(n)v⊤(n)x(n) z(n)︸ ︷︷ ︸
u8

+v⊤(n)x(n)α∗ α∗⊤ x(n)︸ ︷︷ ︸
u9

+v⊤(n)x(n)α∗ v⊤(n)x(n)︸ ︷︷ ︸
u10

+v⊤(n)x(n)v(n)α∗⊤ x(n)︸ ︷︷ ︸
u11

+v⊤(n)x(n)v(n)v(n)⊤ x(n)︸ ︷︷ ︸
u12

)
Let us now analyze v(n) in terms of its expected value.
Considering that z(n) is a zero-mean white noise, and
using the independence of v(n) and z(n), yields

E[u1] = E[u2] = E[u5] = E[u6] = E[u7] = E[u8] = 0.

After careful calculation, the expected values of the
other terms are given by

E[u3] = c0 diag{Rx K(n)}
E[u4] = c0 diag{α∗}Rx E[v(n)]

E[u9] = α∗ α∗⊤ Rx E[v(n)]

E[u10] = 1⊤ [Rx ⊗ K(n)]1α∗

E[u11] = K(n)Rx α
∗

E[u12] = K(n)Rx E[v(n)]

where K(n) = E[v(n)v⊤(n)] is the covariance matrix
of the weight-error vector, and ⊗ denotes the Hadamard
product. It can be noticed that some of the above ex-
pected values require second-moments defined by K(n)

in order to update the first-order one E[v(n)]. To sim-
plify the analysis, we use the following separation ap-
proximation

K(n) ≈ E[v(n)]E[v⊤(n)].

This simplification allows us to study, in an analytical
way, the mean-weight behavior of the algorithm. See [9]
for a thorough discussion on this approximation. Ex-
tensive simulation results have shown us that this ap-
proximation provides sufficient accuracy in modeling the
mean behavior of the weights. We obtain

E[v(n+ 1)] = E[v(n)] + . . .

+ µ
(
− c0 diag{Rx K(n)}

− c0 diag{α∗}Rx E[v(n)]

+α∗ α∗⊤ Rx E[v(n)] + 1⊤ [Rx ⊗ K(n)]1α∗

+K(n)Rx α
∗ +K(n)Rx E[v(n)]

)
(16)

The mean-weight behavior E[α(n)] is then obtained by

E[α(n)] = α∗ + E[v(n)]. (17)

Simulations will be used to evaluate the performance of
this model.

5. EXPERIMENTAL RESULTS

This section presents simulation examples to illustrate
the performance of the proposed algorithm, and to verify
the validity of the above analysis. An application to
the supervised linear unmixing problem of hyperspectral
images is described.

5.1 Algorithm behavior illustration

Consider the identification problem in Figure 1, using
the least-mean-square criterion. To illustrate the be-
havior of the proposed algorithm, the impulse response
of the system of reference α∗, i.e., the solution of the
unconstrained problem (1), was set to

α∗ = [0.4 −0.1 0.3 0.05 0 0.01 0.2 −0.01 0.03 0.1]⊤

Note that α∗ has two negative entries used to activate
the non-negativity constraints, and ∥α∗∥1 = 1.2. In
all the experiments, the same initial vector α(0) > 0
was used, normalized so that the sum of its entries is
equal to 1. In the first experiment, the inputs x(n)
and the noise z(n) were chosen i.i.d. and drawn from a
zero-mean Gaussian distribution with variance σ2

x = 1
and σ2

z = 0.01. The non-negativity of the weight coef-
ficients was imposed, and their sum to be equal to 1.
The update rule (14) was tested with the step-size val-
ues µ = 0.05 and µ = 0.15. The results were averaged
over 200 Monte-Carlo runs. Figure 2, first row, shows
the learning curves and the mean-weight behavior of the
algorithm. One can observe that the algorithm exhibits
the very usual behavior of LMS-style approaches, for
which small step-size usually means slower convergence
but better asymptotic performance. One can also notice
that the simulated and theoretical curves representing
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Figure 2: First and second row: results for uncorrelated and correlated input signals, respectively. Left: learning curves;
middle and right: Estimated coefficients αi(n) for µ = 0.05 and µ = 0.15, respectively. The red curves represent the model
output (17), and the blue curves are averaged Monte-Carlo runs.

the evolution of E{α(n)} are perfectly superimposed.
Finally, one can check that the non-negativity and the
full-additivity constraints are satisfied.

In the second experiment, our algorithm was tested
with correlated inputs x(n). We considered an AR
model given by x(n) = ax(n− 1) + w(n), with a = 0.5.
The noise w(n) was chosen i.i.d and zero-mean Gaussian
with variance σ2

w = 1− 0.52, so that σ2
x = 1 as the first

example. The other parameters remained unchanged.
As shown in Figure 2, second row, the same conclusions
as above can be repeated.

5.2 Comparison with another method

The performance of the proposed algorithm was also
analyzed in the case where α∗ is sparse, and compared
with the popular projected-gradient scheme. The same
experimental setup as above was considered, except that

α∗ = [0.4 − 0.1 O20 0.3 0.05 0 O30 0.01 0.2 . . .

. . . − 0.01 O40 0.03 0.1]⊤

where OM is an all-zero vector of length M . Vector α∗

was thus containing 100 entries, among which 90 were
null. The projected-gradient method described in [5]
was considered for comparison purposes. The authors
solve the problem (1)-(3) using the update rule

α(n+ 1) = Π(α(n)− η∇J(α(n)))

where Π is the Euclidean projection onto the non-
negative ℓ1 ball. Figure 3(a) compares the learning
curves of these two online methods for uncorrelated in-
puts. Clearly, the proposed method outperformed the
projected-gradient method, both in convergence speed
and steady-state error. Figures 3(b)-(c) represent the

coefficient vector α(n) estimated by the two methods.
One can notice that the zeros in α∗ were more accu-
rately recovered by our algorithm, because zero is a
fixed-point for the update equation (14), at consider-
ably lower computational complexity. Similar results
were obtained with correlated inputs.

5.3 Application to hyperspectral data

Our algorithm was used for supervised hyperspectral
data unmixing. A key aspect in this problem is to deter-
mine abundances (fractions) of different materials under
non-negativity and sum-to-one constraints. The stud-
ied image is the scene over Moffett Field (CA, USA),
captured by the airborne visible infrared imaging spec-
trometer (AVIRIS). A sub-image of size 50 × 50 pixels
was chosen to evaluate the proposed algorithm. This
scene is mainly composed of water, vegetation and soil.
The spectral signatures of constituent materials were
extracted by the VCA algorithm. The linear unmixing
problem can be formulated as

αo = argmin
α

(r −Mα)⊤(r −Mα)

subject to αi ≥ 0, i = 1, . . . , L

L∑
i=1

αi = 1

where α is the vector of abundances, M the (P × L)
matrix of column-wise spectral signatures of constituent
materials, and r the observed spectral signature to be
unmixed. For this problem, using algorithm (12), we
obtained the estimated abundance maps presented in
Figure 4. Note that several areas with dominant con-
stituent materials were clearly recovered. These maps
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Figure 3: Comparison between the proposed method and the projected-gradient method. (a) Learning curves. (b) Estimated
coefficients αi(n) by the proposed method. (c) Estimated coefficients by the projected-gradient method.

Figure 4: Abundance maps estimated by the proposed algorithm (vegetation, soil and water, respectively)

are very close to those that would be obtained with ac-
tive set techniques [10] or Bayesian methods [4], which
are of a higher level complexity.

6. CONCLUSION

In this paper, we proposed a method for system iden-
tification subject to non-negativity and full-additivity
constraints. It reaches an optimal solution by travers-
ing the interior of the feasible region, without any ex-
tra projection. It achieved faster convergence and lower
steady-state error than a projected-gradient based ap-
proach, with significantly less computational complex-
ity. We also studied the mean-weight convergence be-
havior. Future work will focus on analyzing the conver-
gence of the algorithm in the least-squares sense, and
obtaining conditions for convergence.
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