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ABSTRACT

Change-points can be defined as the time instants at which the under-
lying properties of a time series change. Detecting such points can
be very challenging, especially when no prior information is avail-
able on the data distribution and the nature of the change. This paper
introduces an online nonparametric kernel-based change-point de-
tection method built upon the direct density ratio estimation of two
consecutive segments of the time series. Algorithms operating in re-
producing kernel Hilbert spaces have demonstrated superiority over
their linear counterparts, mainly because of their ability to deal with
nonlinear problems with few prior information. However their major
drawback lies in the linear growth of the models order with the num-
ber of input data, which dramatically increases computational cost
and memory requirement. In addition to selecting a reproducing ker-
nel and estimating the model parameters, designing a kernel-based
model requires to determine a dictionary in order to get a finite-order
model. This dictionary has a significant impact on performance, and
requires careful consideration. As each new data point arrives, our
algorithm updates the dictionary used to approximate the density ra-
tio based on the coherence criterion. Then it updates the param-
eters of the model using the kernel least mean squares algorithm.
Conditions for mean stability and asymptotic unbiasedness of our
method are obtained under the null hypothesis for Gaussian input
data. Mean-squared error is also studied. Finally, detection perfor-
mances are evaluated by computer simulations.

Index Terms— Change-point detection, nonparametric detec-
tion, reproducing kernel Hilbert space, kernel least-mean-square al-
gorithm, online algorithm.

1. INTRODUCTION

Detecting abrupt changes in the intrinsic properties of time-series
can provide valuable informations in a wide range of real world ap-
plications such as fraud, network intrusion and faults in operational
control systems [1, 2, 4, 18, 22]. Part of the literature on change-
point detection (CPD) focuses on parametric approaches, which as-
sume that a model describing the data distributions before and after
the change is available. Most of these algorithms rely on the likeli-
hood ratio at two consecutive intervals of the time series. This is the
case for the cumulative sum type algorithms [1]. In their simplest
form, these algorithms assume not only that the parameters that un-
dergoes the change are known, but also their pre- and post-change
values, e.g., change in the mean or in the variance [8]. In case where
the above mentioned parameters are unknown, the generalized like-
lihood ratio [7], which consists of replacing all the unknown param-
eters by their maximum likelihood estimates, can be used. In addi-
tion to a loss of performance, these approaches do not often allow

online implementations. Another group of methods based on sub-
space identification has been considered. Their main idea is that if,
at a certain time instant, the mechanism generating the time series
changes, the subspace spanned by the signal trajectory also changes
as shown, e.g., in [10]. These geometric approaches implicitly as-
sume the a linear dynamic model describe the time-series data.

In many practical situations, stochastic models that properly
describe the data are not available, and the aforementioned meth-
ods are susceptible to deviations of the signal from the assumed
model. Within this context, nonparametric alternatives have been
devised without parametric assumption and have gained wide in-
terest. In [11] the authors compare three nonparametric CPD algo-
rithms: the KLIEP (Kullback-Leibler Importance Estimation Proce-
dure), the uLSIF (unconstrained Least Squares Importance Fitting)
and the RuLSIF (Relative unconstrained Least Squares Importance
Fitting). These batch algorithms consist of fitting the likelihood
ratio in a Reproducing Kernel Hilbert Space (RKHS), referred to
as relative density ratio estimation. The RuLSIF CPD algorithm
was demonstrated to be more robust than the KLIEP algorithm.
An online implementation of the KLIEP-based CPD algorithm was
introduced in [9] but, to our knowledge, an online version of the
RuLSIF has not been derived and analyzed yet. This paper proposes
an online version of a RuLSIF-based CPD algorithm. It consists
of approximating the density ratio on two consecutive intervals of
the time series, by a weighted sum of Gaussian kernel functions in
a RKHS, and estimating the weights with the Kernel Least Mean
Squares algorithm (KLMS) [12, 16]. The major drawback of this
method is the linear growth of the model order with the number of
input data, which dramatically increases the computational cost and
memory requirement, and prevents its online implementation. The
coherence sparsification rule was introduced in [16] to address this
issue. It consists of discarding the kernel functions whose removal
is expected to have a negligible effect on the quality of the model.

This paper is organized as follows. Section 2 formulates the
problem and presents the batch CPD algorithm based on relative
density ratio estimation. Section 3 describes our online CPD algo-
rithm. Section 4 analyzes the performance of the algorithm.

2. DENSITY RATIO ESTIMATION

2.1. Problem formulation

The CPD problem addressed in this paper is formulated as follows.
Let {yt}t∈N be the time series in which we aim at detecting whether
a change occurred and, if affirmative, where it occurred. Let:

yt = (yt, yt+1, . . . , yt+k−1)
> ∈ Rk (1)

be a subsequence of {yt}t∈N. Successive values of time-series are
generally not independent over time. To take this dependence into



account, nonparametric algorithms generally seek a change-point in
the vectors yt, called the samples in the sequel. Let Y ref ∈ Rk×nref

be the following Hankel matrix of nref consecutive samples repre-
senting what will be considered as the reference interval:

Y ref
t = (yt−nref

,yt−nref+1, . . . ,yt−1)

To address the CDP problem, the adjacent interval Y test
t ∈ Rk×ntest

is also considered:

Y test
t = (yt,yt+1, . . . ,yt+ntest−1)

referred to as the test interval. We assume that the samples yi in the
reference and test intervals are i.i.d. and distributed respectively as:

{yi}
t−1
i=t−nref

∼ p(y) and {yi}
t+ntest−1
i=t ∼ p′(y)

2.2. Change point detection via direct density ratio estimation

Comparing the probability distributions of time series over past and
present intervals was proved to be a suitable strategy for abrupt CPD
in [1]. A possible approach is to estimate each probability distribu-
tion separately from {yi}

t−1
i=t−nref

and {yi}
t+ntest−1
i=t by any standard

density estimation method [20]. However, only their ratio:

r(y) =
p(y)

p′(y)
(2)

is required to address the CPD problem. The aim of density ratio
estimation approaches is to estimate r(y) using {yi}

t+ntest−1
i=t−nref

.
In this paper, we focus on the nonparametric strategy introduced

in [11, 20], referred to as RuLSIF, that consists of estimating (2) in
a RKHS from the reference and test data. Note that [11] introduces
a robust estimation of r(y) as it is unbounded outside the support of
p′(y). Basically, it consists of substituting the denominator of r(y)
by αp(y) + (1 − α)p′(y) with 0 ≤ α ≤ 1, resulting in a ratio
upper bounded by 1/α. In the sequel, without loss of generality, we
shall restrict ourselves to the RuLSIF algorithm (α = 0) in order to
simplify the presentation.

2.3. Density ratio approximation

Following [23], approximating r(y) by any function g(y) to be de-
fined later can be performed by minimizing the mean square loss:

C(g) = 1

2
Ep′(y){(r(y)− g(y))2} (3)

Expanding (3) and using r(y)p′(y) = p(y) leads to:

C(g) = 1

2
Ep′(y){g2(y)} − Ep(y){g(y)}+ Const. (4)

Approximating the expected values of g2(y) and g(y) in (4) by em-
pirical averages over {yi}

t−1
i=t−nref

and {yi}
t+ntest−1
i=t , respectively,

leads to the following optimization problem with empirical costs:

min
g∈G

 1

2nref

t−1∑
i=t−nref

g2(yi)−
1

ntest

t+ntest−1∑
i=t

g(yi) +
λ

2
‖g‖2G

 (5)

where G denotes an arbitrary Hilbert space of real-valued functions
on R, and λ

2
‖g‖2G a regularization term with λ ≥ 0 to promote

smoothness of g. Let G be a reproducing kernel Hilbert space, and

let κ(· , ·) be the reproducing kernel of G. By virtue of the Repre-
senter Theorem in [17], the function g(·) of G minimizing (5) can be
expressed as a kernel expansion in terms of available data, namely,

g(·,θ) =
t+ntest−1∑
i=t−nref

θiκ(· ,yi) (6)

where the θi are parameters to estimate from data {yi}
t+ntest−1
i=t−nref

. A
common strategy to reduce the computational cost consists of using
a reduced fixed dictionary ω = {yωi}

L
i=1 designed from available

training data. This leads to:

g(·,θ) =
L∑
i=1

θiκ(· ,yωi) (7)

where L is the cardinality of the dictionary and the model order. De-
signing the dictionary ω is a critical point. As an example, in [21]
the authors propose to choose randomly the yωi among the samples
of the test interval. In order to capitalize on all the information avail-
able since the initial time instant t = 0, we recommend to design the
dictionary based on L data in {yi}

t+ntest−1
i=0 . An extensive literature

addressing this issue in batch and online modes exists, see, e.g. [19]
and references therein. The coherence-based sparsification rule in-
troduced in the sequel has demonstrated its efficiency and is widely
used for online selection of kernel-based dictionaries.

Substituting (6) into (5), and minimizing (5) w.r.t. θ, we find
that θ̂t is the solution of the strictly convex optimization problem:

θ̂t = arg min
θ∈RL

Jt(θ)

with Jt(θ) =
1

2
θ>Htθ − h>t θ +

λ

2
‖θ‖2

(8)

where ht is the L× 1 vector, andHt is the L×L matrix, given by:

ht =
1

ntest

t+ntest−1∑
i=t

κ(yi,yω) (9)

Ht =
1

nref

t−1∑
i=t−nref

κ(yi,yω)κ(yi,yω)
> (10)

with κ(yi,yω) =
[
κ(yi,yω1

), . . . , κ(yi,yωL)
]>.

2.4. The test statistic

Let g(y; θ̂t) be the density-ratio estimator at time t, with θ̂t the so-
lution of the optimization problem (8). In [11] the authors suggest to
detect the change point using the divergence between the two den-
sities p(y) and p′(y). The Kullback-Leibler and the Pearson diver-
gences can be expressed as the expectation of functions of g(y;θ)
w.r.t. p(y) or p′(y). A test statistic can then be obtained by approxi-
mating, as in Sec. 2.3, these expectations by empirical averages over
data {yi}

t−1
i=t−nref

and {yi}
t+ntest−1
i=t .

In this paper, we propose an alternative test statistic consisting
of the approximate log-likelihood ratio for the samples of the test
interval, namely,

dt = −
t+ntest−1∑
i=t

ln
p(yi)

p′(yi)
≈ −

t+ntest−1∑
i=t

ln g(yi; θ̂t) (11)



3. ONLINE CHANGE POINT DETECTION

3.1. Update strategy

Let θt be an estimate of the parameters of the density ratio model
obtained at instant t. When t → t + 1, [11] updates θt by solving
the new optimization problem (8) at t+ 1. We propose in this paper
to use the KLMS algorithm to update the estimation of θt. The
convergence behavior of the KLMS algorithm was studied in [3],
and an extended analysis of the stochastic behavior of the KLMS
algorithm with Gaussian kernel was proposed in [15]. It is important
to note that, at each instant t, updating g(y,θt) is a two-step process
that consists of updating the dictionary ω (and the model order L)
and the parameter vector θt. We will adopt the following two-step
strategy inspired by [6].

Dictionnary update

Various strategies have been introduced in the online kernel filter-
ing literature to update the dictionary ω. For example, Approxi-
mate Linear Dependency (ALD) [5] checks whether, in the feature
space G, the new candidate κ(· ,yt+1) can be well approximated by
a linear combination of the current dictionary elements κ(· ,yωi). If
not, it is added to the dictionary. The coherence rule was introduced
to avoid the computational complexity inherent to ALD. It is now
widely used and considered as a state-of-the-art strategy. Coherence,
defined by [16]:

η = max
i 6=j
|κ(yωi ,yωj )|, (12)

reflects the largest correlation in the dictionary between dictionary
elements. The coherence rule [16] for kernel-based dictionary selec-
tion consists of inserting yt+1 in the current dictionary ω provided
that its coherence remains below a given threshold η0 in [0, 1[:

max
yωi
∈ω
|κ(yt+1,yωi)| ≤ η0 (13)

It was proven in [16], that the dimension of dictionaries determined
with rule (13) is finite due to the compactness of the input space.

Parameters update

Depending if the new sample yt+1 has been inserted into the dictio-
nary, the parameter vector θt is updated according to [16]:

• If maxyωi∈ω |κ(yt+1,yωi)| > η0, the dictionary is un-
changed and θt is updated using a single step of the KLMS
algorithm:

θt+1 = θt − µ∇̂Jt+1(θt)

= θt − µ
[
(Ht+1 + λI)θt − ht+1

]
(14)

where ∇̂Jt+1(θt) denotes an instantaneous estimate of the
gradient of Jt+1(·) evaluated at θt.

• If maxyωi∈ω |κ(yt+1,yωi)| ≤ η0, yt+1 is added to the dic-
tionary (and L← L+ 1), and θt is updated according to:

θt+1 =

(
θt
0

)
−µ
[
(Ht+1+λI)

(
θt
0

)
−ht+1

]
(15)

The pseudo-code of the corresponding algorithm is given in Alg.1.
The recursive computation of ht+1 and Ht+1 from ht and Ht

whether the new sample yt+1 is inserted in the dictionary or not
is not detailed due to lack of space.

Algorithm 1: Pseudo code for online update of the dictionary
and the parameter vector θt.

Require: yt+ntest
, θt

if maxyωi∈ω |κ(yt+1,yωi)| > η0 then
ht+1 = 1

ntest

∑t+ntest
i=t+1 κ(yi,yω)

Ht+1 = 1
nref

∑t
i=t−nref+1 κ(yi,yω)κ(yi,yω)

>

θt+1 = θt − µ
[
(Ht+1 + λI)θt − ht+1

]
else
ω = {ω,yt+1}
ht+1 = 1

ntest

∑t+ntest
i=t+1 κ(yi,yω)

Ht+1 = 1
nref

∑t
i=t−nref+1 κ(yi,yω)κ(yi,yω)

>

θt+1 = (θ>t , 0)
> − µ

[
(Ht+1 + λI)(θ>t , 0)

> − ht+1

]
end if
dt+1 =

∑t+ntest
i=t+1 ln

(∑
yωi
∈ω[θ̂t+1]iκ(.,yωi)

)
Test: dt+1

H0

≶
H1

ξ

4. PERFORMANCE ANALYSIS

4.1. Convergence of the parameters
The performance of the algorithm depends on the model order, the
kernel used, and the properties of the signal operating environment.
In this section, we analyse the convergence of θt under the null hy-
pothesis, i.e., no change-point is present, and for a predefined dic-
tionary ω. We assume that, under the null hypothesis, y is Gaussian
distributed, namely, y ∼ Nk(m,R). The analysis below is con-
ducted with the Gaussian reproducing kernel defined as follows:

κ(y,y′) = e
− ‖y−y′‖2

2σ2 (16)

where σ denotes the kernel bandwidth.
The first step consists of evaluating the optimal (“true”) parame-

ter vector θ∗. Replacing r(y) in (3) by 1, and g(y) by (7), we obtain
the minimizer θ∗ of Jt(θ) by substituting Ht and ht, respectively,
byH and h, defined as:

h = Ep′(y){κ(y,yω)}

H = Ep′(y){κ(y,yω)κ(y,yω)
>}

Considering the kernel κ in (16), it can be shown that the entries of
h andH are given by:

[h]` = e
−
‖yω`‖

2

2σ2 Ep′

{
e
−
‖y‖2−2y>ω`

y

2σ2

}
(17)

[H]`,q = e
−
‖yω`‖

2+‖yωq ‖
2

2σ2 Ep′

{
e
−
‖y‖2−(yω`

+yωq )>y

σ2

}
(18)

with `, q ∈ {1, . . . , L}. By considering that y is Gaussian dis-
tributed, closed-form expressions can be obtained for both expec-
tations in (17), (18) by using the moment generating function of a
quadratic form of a Gaussian vector. See, e.g., [14]. We denote the
error at time instant t by et = θt − θ∗. With (14) we have:

et+1 =
[
I − µ(Ht+1 + λI)

]
et

+ µ
[
ht+1 − h− (Ht+1 −H)θ∗

] (19)

Assuming that κ(y,yω)κ(y,yω)
> and et are independent,

which is a usual hypothesis in the analysis of adaptive filters [13],
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taking the expectation of (19), and using that Ht and ht are unbi-
ased estimates of h and H , yields the following recursion for the
bias b(θt) = E{et}:

b(θt+1) =
[
I − µ(H + λI)

]
b(θt) (20)

This proves that under the null hypothesis, for a given dictionary ω
and under the Gaussian assumption, the online Alg. 1 is mean stable
and asymptotically unbiased if the matrix I − µ(H + λI) is stable,
that is,

µ <
2

ζmax{H + λI} . (21)

where ζmax{·} is the maximal eigenvalue of its matrix argument.
To test the model (20) accuracy, we assumed that yt is a second-

order autoregressive process (a1 = −2 cos(0.44π), a2 = 0.952)
with Gaussian input. We set the algorithm parameters as follows:
k = 5, nref = ntest = 22, L = 5, and σ = 1. The 5 elements of
the dictionaryω were selected among the yi without considering the
coherence rule in this experiment. We ran algorithm (14) for two dif-
ferent values of µ. The results were averaged over 200 Monte-Carlo
runs. Figure 1 illustrates the behavior of the first entry of b(θt).
We observe that the theoretical curves provided by (20) match well
the actual performance provided by Monte-Carlo simulations. Fig-
ure 2 shows the behavior of the mean-squared error E{‖θt − θ∗‖2}
as a function of t. The theoretical analysis of the MSE is beyond
the scope of this communication due to lack of space. The results
in Figure 2 are presented for different values of µ and ntest. We
observe the classical behavior w.r.t µ of stochastic gradient descent
algorithms: a large value for µ accelerates the convergence but in-
creases the steady-state error, and vice versa. It is also interesting to
note the effect of nref and ntest. It can be noticed from (9)–(10), that
under mild assumptions (Ht,ht) converge to (H,h) for nref →∞
and ntest → ∞. Hence, a larger value for ntest reduces the steady
state error.

4.2. Detection performance
This section experimentally evaluates the detection performance of
Alg. 1. We considered a noisy sinusoid yt of 300 samples with an
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Fig. 3. Signal realization and associated test statistic computed for
nref = ntest = 22 and k = 5.
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abrupt change of its frequency at t = 150. The SNR was set to
3dB. The parameters of the algorithm were set to: k = 5, nref =
ntest = 22, σ = 0.7, µ = 0.5 and λ = 0.01. The threshold η0 of the
coherence rule used to update the dictionary was set to η0 = 0.01.
Figure 3 illustrates a realization of the signal yt and the associated
test statistic dt. This figure shows the ability of the proposed algo-
rithm to detect the abrupt change in this case. Figure 4 provides the
ROC curves associated to the test statistic dt obtained using both the
Rulsif algorithm and our online algorithm, computed for 5.104 runs
of yt with different random seeds. The probabilities of detection and
false alarm were estimated by thresholding dt on the whole interval,
e.g., Pdetec = P (∃t ∈ (0, 300), dt > ξ). This curve can be used to
calibrate the threshold ξ for the online detection. We should mention
that, besides the difference between the two methods in updating the
model parameters θi, our methods uses a reduced, well chosen dic-
tionary, whereas the Rulsif with a sliding window uses the entire set
of test samples as dictionary elements. This may explain why our
online method performed better than the batch Rulsif.

5. CONCLUSION

Our contribution in this paper was to extend the existing RuLSIF
change-point detection method to an online method where, in order
to optimize the computational cost and the performance, we used
the coherence-based sparsification rule to update the dictionary, and
the kernel least mean square algorithm to update the weights of
the density ratio model as new data arrives. The proposed method
showed promising results. It was tested with different types of
changes —change in the mean, in the frequency, in the amplitude.
Conditions of stability and unbiasedness under the null hypothesis
were also studied.
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