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ABSTRACT

This communication proposes an unsupervised neighbor de-
pendent nonlinear unmixing algorithm for hyperspectral data.
The proposed mixing scheme models the reflectance vector
of a pixel as the sum of a linear combination of the endmem-
bers plus a nonlinear function acting on neighboring spec-
tra. The nonlinear function belongs to a reproducing kernel
Hilbert space. The observations themselves are considered
as the endmember candidates, and the group lasso regulariza-
tion is used to enable selecting the purest pixels among the
candidates. Experiments on synthetic data demonstrate the
effectiveness of the proposed approach.

Index Terms— Hyperspectral imaging, nonlinear unmix-
ing, nonlinear endmember extraction, sparse regularization.

1. INTRODUCTION

Each pixel in an hyperspectral image is characterized by a re-
flectance vector (spectrum), estimated over hundreds of con-
tiguous spectral bands. Due to the relatively low spatial reso-
lution of hyperspectral sensors, the surface imaged by a pixel
usually contains more than one constituent material [1,2]. As
a result, the pixel’s spectrum is a mixture of the constituent
materials spectra, also known as endmembers. The linear
mixing model (LMM) [3] is the most prevalent model that
represents this mixture. It is given by:

slin
n =

∑M
i=1 ai,nri + en, ∀n = 1, . . . N, (1)

where slin
n is the L-dimensional spectrum of a linearly mixed

pixel indexed by n, L is the number of frequency bands, M
denotes the number of endmembers, ai,n is the abundance of
the i-th endmember in the n-th pixel, ri is the L-dimensional
spectrum of the i-th endmember, en is a vector of Gaussian
white noise, and N is the number of observations. Note that
all vectors are column vectors. According to the LMM, the
spectrum of the observed pixel is equal to a weighted sum of
the endmembers’ spectra. The weights multiplying the end-
members, also known as abundances, are positive and usually
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sum to one [4]. The LMM is used in the overwhelming ma-
jority of hyperspectral imaging applications. However, there
exists certain scenarios where the spectral mixture exhibits
strong nonlinear effects [5, 6]. In this case, the LMM is no
longer a sufficiently representative model. Several nonlinear
mixing models (NLMM’s) were proposed to take into account
nonlinearity. They usually take the form of a linear mixture of
the endmembers plus a nonlinear one. For example, in bilin-
ear models [7–10] the nonlinear term is a weighted sum over
the pairwise products of endmembers. Recently, the authors
of [11] proposed a generalization of bilinear models. Finally,
non parametric approaches to NLMM’s estimation based on
reproducing kernel Hilbert spaces (RKHS’s) [12], and geom-
etry have been proposed [13, 14]. We consider the following
new kernel-based NLMM:

sn =
∑M
i=1 ai,nri + f(vn) + en, ∀n = 1, . . . N, (2)

where sn represents the L-dimensional spectrum of a nonlin-
early mixed pixel, f is a nonlinear and non parametric func-
tion in a vector-valued RKHS [15], vn = vec({si}i∈Nn

),
and Nn contains c neighboring pixels indices, in other terms
vn contains the column-wise concatenation of the spectra of
c neighbors of the n-th pixel. Compared to (1), the addi-
tional term f(vn) takes into account the nonlinear fluctuation
present in sn. Unlike NLMM’s in the literature, the nonlinear
term involves the neighbors spectra rather than the endmem-
bers. The choice to act on neighboring spectra is motivated
by the adjacency effect [16, 17] which states that the neigh-
boring surfaces of the target pixel also contribute to its spec-
trum. Even after atmospheric correction aiming at removing
adjacent contributions, errors occurred in the estimated spec-
trum sn can damage the quality of the extracted information
if not taken into account [18]. Similarly to [12], the use of
functions in RKHS’s allows to model the nonlinearity in a
rather general and non parametric way. This is especially in-
teresting when dealing with nonlinearities due to atmospheric
correction where it is difficult if not impossible to have an ex-
plicit expression. In addition to this, f being a vector-valued
function distinguishes the proposed model from the NLMM’s
in the literature. The nonlinear contribution at each spectral
band, i.e. each element of f(vn), is a function of vn con-
taining reflectances at all bands. Therefore, it is possible to
incorporate inter-band nonlinear interactions.



Naturally, a NLMM requires a nonlinear endmember ex-
traction algorithm (EEA). The authors of [13, 14] propose
geometry-based nonlinear EEA’s. They express linear algo-
rithms in terms of Euclidean distances rather than spectral co-
ordinates and then replace them by non-Euclidean ones. The
authors of [19] use non negative matrix factorization to jointly
estimate the endmembers and abundances for the Fan model
[8]. The authors of [20] propose a Bayesian framework to es-
timate the endmembers and abundances for the post-nonlinear
mixing model (PPNM) [10]. The algorithm proposed in this
work also enables the extraction of the endmembers and the
estimation of the abundances and the nonlinear contributions
according to model (2). This is possible through the use of
collaborative sparse regression [21] to identify the endmem-
bers within the observations [22]. The optimization problem
is convex and solved using the alternating direction method
of multipliers (ADMM) [23].

The paper is organized as follows. Section 2 describes the
NLMM, section 3 developps the estimation algorithm, and
section 4 validates the proposed model using simulated data.

2. NONLINEAR FUNCTION

The nonlinear function f used in (2) is a vector-valued func-
tion, f(vn) is a vector with L components representing the
nonlinear spectral contribution at each band:

f : Rc L → RL
vn → f(vn).

(3)

Ideally, f should be a function of the noiseless linear mixtures
present in neighboring pixels. However, this information is
unknown a priori, and would lead to a non convex optimiza-
tion problem. A possible solution, is to approximate the linear
mixtures by the pixels spectra themselves through the use of
vn. The function f belongs to a RKHS Hk of vector-valued
functions [15] associated to the kernel function:

k : Rc L × Rc L → RL×L
(vn,vm) → k(vn,vm).

(4)

Unlike a scalar-valued RKHS, k(vn,vm) ∈ RL×L rather
than R. K = {k(vn,vm)}Nn,m=1 is the Gram matrix re-
sulting from the evaluation of the kernel function at all obser-
vation couples. It is a N ×N block matrix where each block
has L×L components. As a result,K is a LN×LN scalar-
valued matrix. The authors of [15] provide several examples
for defining k(vn,vm) based on scalar-valued kernels such
as the Gaussian kernel. According to the representer theo-
rem [15], the evaluation of f at a point can be expressed as
an expansion of the kernel function over all training points:

f(vn) =
∑N
i=1 k(vn,vi)αi, (5)

where αi ∈ RL are the kernel coeficients. Estimating the
nonlinear function reduces to estimating these coefficients.

The definition of k(vn,vm) allows to incorporate or ig-
nore inter-band interactions. For example, letting the (i, j)-th
component in k(vn,vm) be a function of the elements in vn
at band i and those in vm at band j incorporates inter-band
interactions. Whereas setting the off-diagonal components to
zero, and letting the diagonal components be functions of vn
and vm at the same band ignores inter-band interactions. The
same nonlinear function f is defined for all pixels rather than
having a different one per-pixel. As a result, the estimation
algorithm is coupled w.r.t. all the pixels. On the one hand,
this coupling increases the complexity of the algorithm. On
the other hand, it allows to examine and possibly interpret the
nonlinear interactions between the pixels.

3. ESTIMATION ALGORITHM

3.1. Optimization problem

The optimization problem associated with model (2) is ob-
tained by minimizing a data fidelity error, and incorporating a
priori information through regularizations and constraints:

min
f∈Hk,A

1
2

N∑
n=1
‖sn −Ran − f(vn)‖2 + λJ1(f)

+µJ2(A)
subject to ai,n � 0 ∀ i = 1, · · ·M ,n = 1, · · ·N,∑M

i=1 ai,n = 1 ∀n = 1, · · · , N,
(6)

where an = [a1,n, . . . , aM,n]>, R = [r1, . . . , rM ], and
A = [a1, . . . ,aN ], λ and µ are tuning parameters. A is
constrained to be positive, and each column of A has to sum
to one. J1(f) is set to the squared `2-norm of f inHk:

J1(f) =
1

2
‖f‖2Hk

. (7)

The `2-norm of f inHk constrains the regularity and smooth-
ness of f [24]. As for J2(A), the choice of this regularisation
is adapted to the unsupervised and supervised cases, i.e. when
the endmembers are unknown and known respectively.

With a slight abuse of notations, we assume in the unsu-
pervised case thatR is a matrix containing a large number of
candidate endmembers, among which are the actual endmem-
bers. R can be a dictionary of measured spectra [25] or a set
of potential endmembers spectra selected from the available
observations themselves [22, 26]. As a result, the abundance
matrix is row sparse. In accordance with this a priori informa-
tion, the group lasso regularization promotes zero rows. Let
aλi denote the i-th row inA, this regularization is given by:

J2(A) =

M∑
i=1

‖aλi
‖2, (8)

In the supervised case, R is considered to contain the ac-
tual endmembers, and the Tikhonov regularization that pro-
motes smoothness is used:

J2(A) = ‖A‖2F . (9)



3.2. Iterative algorithm

In this section, we develop the steps in the alternating direc-
tion method of multipliers (ADMM) [23] used to solve prob-
lem (6). The ADMM splits the optimization problem into
simpler sub-problems. First, problem (6) is reformulated as:

min
f∈Hk,X,Z

1
2

∑N
n=1 ‖sn −Rxn − f(vn)‖2 + λJ1(f)

+µJ2(Z) + IR+(Z)
subject to AX +BZ = C,

(10)
with

A =

(
IM
1>

)
, B =

(
−IM
0>

)
, C =

(
0
1>

)
, (11)

where X and Z are the ADMM variables. Compared to the
original problem (6), the data fidelity term and J2(Z) are
functions of two different variables, X and Z respectively.
A consensus constraint betweenX and Z is added. The aug-
mented Lagrangian associated to (10) is given by:

Lρ(f ,X,Z,V ) = 1
2

∑N
n=1 ‖sn −Rxn − f(vn)‖2

+λJ1(f) + µJ2(Z) + tr(V >(AX +BZ −C))
+IR+(Z) + ρ

2 ‖AX +BZ −C‖2F,

where V is the matrix of Lagrange multipliers, and ρ is the
penalty parameter. The ADMM algorithm consists of iterating
3 main steps developed hereafter.

{X,f} minimisation step: This step consists of min-
imizing the augmented Lagrangian with respect to {X,f}.
To handle this problem, we rewrite it in an equivalent form:

min
f∈Hk,X,E

1
2

N∑
n=1
‖en‖2 + λ

2 ‖f‖
2
Hk

+ tr(V >AX)

+ρ
2 ‖AX +BZ −C‖2F

subject to en = sn −Rxn − f(vn).
(12)

The solution of (12) can be found by solving its dual:

maxw̄ − 1
2w̄
>Qw̄ + w̄>p, (13)

with:{
Q = ILN + 1

λK + 1
ρIN ⊗ (R(A>A)−1R>),

p = vec(S + 1
ρR(A>A)−1A>(V + ρ(BZ −C))),

whereW = [w1, · · · ,wN ] is a matrix of Lagrange multipli-
ers, w̄ = vec(W ). After solving (13), the optimal variables
are deduced using the following equations:

E∗ = W ∗,

X∗ = (A>A)−1(R>W ∗

ρ −A>(V
ρ +BZ −C)),

f∗(·) = 1
λ

∑N
i=1 k(·,vi)w∗i .

In order to reduce the computational complexity of this step,
the conjugate gradient (CG) method can be used to solve (13)
as will be done in all the experiments.

Z minimization step: In the case of (8), the optimization
problem in this step is separable for each row in Z:

minz
1
2‖z − v‖

2
2 + α‖z‖2 + IR+(z) (14)

where v = x+ρ−1λ, α = ρ−1µ. The vectors λ, x and z cor-
respond to line in Λ, X and Z, respectively. The minimizer
of (14) has a unique solution given by the proximal operator:{

z∗ = 0 si ‖(v)+‖2 < α

z∗ =
(

1− α
‖(v)+‖2

)
(v)+ sinon (15)

where (·)+ = max(0, ·). In the case of (9), the solution is
given by a simple projection on the positive orthant. The so-
lution in this case is not reported for conciseness.

Update of the Lagrange multipliers: The last step in the
algorithm consists of updating the Lagrange multipliers:

V k+1 = V k + ρ(AX +BZ −C). (16)

Note that each step uses the latest estimate of the variables.

4. EXPERIMENTS

The performance of the proposed approach is evaluated using
synthetic data sets. The number of simulated observations is
N = 102, and the abundances are generated using Dirichlet
distributions with shape parameter 2. The endmembers are
extracted from the USGS library, and have L = 112 spectral
bands. 50% of the observations are linearly mixed (1), and
the remaining 50% are generated according to the PPNM:

sn =

M∑
i=1

ai,nri + u(

M∑
i=1

ai,nri).
2 + en, (17)

where u controls the strength of the nonlinear part, and the dot
before the power of two indicates that the operation is applied
element wise. The same value for u is considered for all non-
linearly mixed pixels. Finally, the endmembers were inserted
among the observations to ensure the pure pixel assumption.

4.1. Unsupervised case

We first examine the endmembers extraction accuracy of
the proposed nonlinear approach denoted as UNDU (un-
supervised and nonlinear neighbor dependent unmixing),
NFINDR [27], and DMaxD [14] in the noiseless case.
NFINDR and DMaxD require knowing the number of end-
members to be extracted. DMaxD also requires defining an
appropriate distance metric. The PPNM distance defined and
proposed in [14] is used. UNDU, does not require knowing
the number of endmembers. It requires tuning λ and µ. A
Gaussian kernel per band is used to define the diagonal ele-
ments of (4), and the off-diagonal elements are set to zero.



The observations themselves serve as the candidate endmem-
bers in R. Table 1 reports the average of the M spectral
angles (SA’s) in radian between the identified and the true
endmembers. The average SA’s are reported for the 3 algo-
rithms for different values of M and u. For UNDU, λ = 0.01
and µ is set to values in the interval [0.1 1]. Table (1) shows
that UNDU had a zero average SA in all cases, meaning that it
correctly identified all the endmembers. DMaxD sometimes
failed in correctly identifying all the endmembers resulting in
nonzero average SA’s. In those cases, it misidentified only 1
out of M endmembers. NFINDR misidentified at least 1 and
at most 2 endmembers in all scenarios.

Figure 1 (a) shows the 3 dimensional scatter obtained us-
ing principal component analysis (PCA) of the data set with
M = 3 and u = 0.2. The 3D scatter shows that the linearly
mixed pixels lie in the triangle formed by the three endmem-
bers, whereas the nonlinearly mixed pixels are shifted away
(down) from the triangle’s surface. Figure 1 (b) shows the 2
dimensional scatter of the same data set in addition to the sim-
plexes formed by the true and identified endmembers for each
algorithm. UNDU correctly identified the true endmembers.
Both NFINDR and DMaxD mistakened one of the endmem-
bers with a candidate that gives a simplex bigger than the true
one. The reason why DMaxD had misidentifications is that
only 50% of the pixels were nonlinearly mixed rather than
100% as tested in [14]. UNDU has a relatively high computa-
tional complexity due to the X-minimization step. The aver-
age execution time for UNDU was 150 sec. whereas DMaxD
and NFINDR required 0.01 and 0.05 sec. respectively.

4.2. Supervised case

Finally, the proposed approach was evaluated in the super-
vised case. To this end, we used the data set created with
M = 4 endmembers and u = 0.1 and added Gaussian noise
to have SNR = 50 dB. The tuning parameters were set to
λ = 0.01 and µ = 0.001. The first row of Figure 2 shows the
true and estimated spectra for the linear and nonlinear parts
in two of the nonlinearly pixels. In particular, the results are
shown for pixels 17 and 14, the pixels with the best and worst
reconstruction errors respectively. The second row of Fig-
ure 2 shows the image of the true (left) and estimated (right)
nonlinear part for all pixels. The proposed approach scored
a root mean square error (RMSE) equal to 0.0196 over the
abundances and 0.0070 over the nonlinear spectra. Whereas
FCLS scored a RMSE of 0.1150 over the abundances.

5. CONCLUSION

This communication proposes a novel unsupervised and non
parametric neighbor dependent nonlinear unmixing algo-
rithm. The performances were validated on synthetic data.
Preliminary and promising results were obtained on real data
but not reported due to lack of space.
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Fig. 1. Results obtained with M = 3 and u = 0.2. Left: 3D
scatter of observations using PCA with 3 bands. Right: 2D
scatter of points and identified endmembers.
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Fig. 2. First row: True and estimated spectra for linear and
nonlinear parts for 2 pixels. Second row: True (left) and esti-
mated (right) nonlinear contribution in all observations.

Table 1. SA averaged over the M estimated endmembers.
M = 3 M = 4 M = 5

u = 0.1
NFINDR 0.0086 0.0274 0.0038
DMaxD 0.0086 0.0000 0.0000
UNDU 0.0000 0.0000 0.0000

u = 0.2
NFINDR 0.0115 0.0203 0.0086
DMaxD 0.0163 0.0000 0.0115
UNDU 0.0000 0.0000 0.0000

u = 0.3
NFINDR 0.0128 0.0595 0.0116
DMaxD 0.0128 0.0233 0.0143
UNDU 0.0000 0.0000 0.0000
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