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ABSTRACT

This paper addresses the problem of blind fully-constrained linear
unmixing of hyperspectral images. The endmembers and their car-
dinality are assumed unknown, but the endmember spectra are sup-
posed to be present in the scene. Group Lasso regularization is used
to extract the endmembers. The estimation problem is convex, and
solved with the Alternating Direction Method of Multipliers. Com-
parisons with state-of-the-art methods on synthetic and real data sets
show the efficiency of our approach.

Index Terms— Hyperspectral data, blind unmixing, linear mix-
ing model, ADMM

1. INTRODUCTION

Hyperspectral imaging consists of capturing a scene over hundreds
of narrow and adjacent spectral bands. The resulting images are
characterized by both a spatial and a spectral dimension, which
means that each pixel is a local spectrum. Unmixing is one of the
most prominent techniques for analyzing hyperspectral data [1]. It
consists of identifying the pure components in a scene, the so-called
endmembers, and then estimating their spatial distribution, also
known as abundance map. Most unmixing methods in the literature
focus on the Linear Mixing (LM) [2], where each pixel is modeled
by a linear combination of the endmember spectra weighted by their
abundances. See [3–7] for extensions to nonlinear mixing models.
With LM, the positivity and sum-to-one constraints are imposed on
the abundances to ensure a physically meaningful model. Identify-
ing the endmembers is a crucial task. It is usually the first unmixing
output, and thus has serious consequences on the accuracy of abun-
dance map estimation. Many algorithms have been developed to
extract endmembers. Geometrical approaches, such as the well-
known NFINDR [8], SGA [9] and those described in [10], search
for the vertices of a simplex that encloses the data. Matching Pursuit
methods [11] such as the recently published Self Dictionary Simul-
taneous Orthogonal Matching Pursuit (SDSOMP) [12] sequentially
identify the indices of the pixels that have the largest contribution
in the data. The algorithms mentioned previously assume that the
number of endmembers is known, and rely on their presence in
the scene. Some algorithms drop off the latter assumption and use
predefined spectral libraries. With these algorithms, unmixing is
formulated as a sparse regression problem [13]. The endmembers
are sought in a library containing a huge number of endmember
samples, and sparsity inducing regularizers are required to extract
the desired endmembers. The main drawback of this trend is that
the endmembers available in libraries were usually measured under
different conditions.
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In this paper, we formulate the problem of endmember extrac-
tion as a sparse unmixing problem. We pay particular attention to
the case where the endmembers are present among the available ob-
servations, using the data itself as the spectral library. We consider
the Group Lasso `2,1-norm regularizer [14] to induce sparsity, and to
impose the positivity and sum-to-one constraints on the abundances.
A similar approach has been introduced in [15], however, the au-
thors use the `∞-norm and drop the sum-to-one constraint. Our op-
timization problem is solved with the Alternating Direction Method
of Multipliers (ADMM) [16]. The rest of the paper is organized as
follows. Section 2 describes the proposed model and the ADMM
steps used to find the solution. Section 3 provides a comparison be-
tween the proposed approach and two algorithms, namely, NFINDR
and SDSOMP. Finally, Section 4 concludes and provides some pos-
sible extensions for future work.

2. GROUP LASSO WITH UNIT SUM AND POSITIVITY
CONSTRAINTS (GLUP)

Let us first introduce the linear mixing model and some useful nota-
tions. In matrix form, this model can be expressed as follows

S = RA+E (1)

withS = (s1, . . . , sN ),R = (r1, . . . , rM ),A = (a1, . . . ,aM )>.
Here, sj is the L-dimensional spectrum of the j-th pixel, L is the
number of frequency bands, ri is L-dimensional spectrum of the
i-th endmember, M denotes the number of endmembers, ai is the
N -dimensional abundance map of the i-th endmember, N is the
number of pixels in the image, and E is the noise. All vectors are
column vectors. Model (1) means that the (i, j)-th entry Aij of A
is the abundance of the endmember ri in pixel sj . Two constraints
on the abundances are considered, the nonnegativity and sum-to-one
constraints: Aij ≥ 0 for all (i, j), and

∑M
i=1Aij = 1 for all j.

As mentioned in the introduction, we shall assume that the end-
members are unknown but present in the scene. Let ω be a subset
of N ′ indexes in {1, . . . , N} that contains at least the column index
of each endmember. Under these assumptions, and without loss of
generality, we observe that model (1) can be reformulated as

S ≈ SωX +E (2)

with X = (x1, . . . ,xN′)> the abundance matrix, N ′ � M , and
Sω = (sω1 , . . . , sωN′ ) the restriction of S to its columns indexed
by ω. Similarly as above, Xij is the abundance of sωi in sj and
should thus obey the sum-to-one and positivity constraints. Equation
(2) is an approximation rather than an exact equality due to the fact
that Sω possibly contains noisy endmembers. However, we assume
that the noise does not dramatically affect the factorization of the
mixing process, which is valid for high SNR. In (2), note that if
sωi is an endmember, xi has non-zero entries and represents the
abundance map of sωi . However, if sωi is not an endmember, xi has



all its elements equal to zero. Consequently,X admitsN ′−M rows
of zeros, the other rows being the rows of A. This means that X
allows to identify the endmembers in S through its non-zero rows.

Within this context, we shall look for a few columns of Sω that
can effectively represent the whole scene. The unmixing problem
requires that SωX matches S, that X only has a few rows differ-
ent from zero, in addition to the non-negativity and sum-to-one con-
straints. This leads to the following convex optimization problem

minX
1
2
‖S − SωX‖2F + µ

∑N
k=1 ‖xk‖2

subject to Xij ≥ 0 ∀ i, j∑N
i=1Xij = 1 ∀ j

(3)

with µ ≥ 0 a regularization parameter. The algorithm has to force
rows of X to be zero vectors in order to identify the endmembers.
To promote this effect, the Group Lasso `2,1-norm regularization is
employed. It induces sparsity in the abundance matrix at the group
level [14], by possibly driving all the entries in several rows xk of
X to zero. The solution of problem (3) can be obtained in a simple
and flexible manner using the ADMM algorithm [16]. We consider
the canonical form

minX,Z
1
2
‖S − SωX‖2F + µ

∑N
k=1 ‖zk‖2 + I(Z)

subject to AX +BZ = C
(4)

with

A =

(
I
1>

)
, B =

(
−I
0>

)
, C =

(
0
1>

)
,

where I is the indicator of the positive orthant guarantying the pos-
itivity constraint, that is, I(Z) = 0 if Z � 0 and +∞ otherwise.
The equality constraint imposes the consensusX = Z and the sum-
to-one constraint. In matrix form, the augmented Lagrangian for
problem (4) is given by [17]

Lρ(X,Z,Λ) =
1

2
‖S − SωX‖2F + µ

N∑
k=1

‖zk‖2 + I(Z)+

trace(Λ>(AX +BZ −C)) +
ρ

2
‖AX +BZ −C‖2F

where Λ is the matrix of Lagrange multipliers, µ and ρ are positive
parameters, respectively. ADMM flexibility lies in the fact that it
splits the initial variableX into two variables,X andZ, and equiv-
alently the initial problem into two subproblems. At iteration k + 1,
the ADMM algorithm consists of three sequential steps:

2.1. Minimization of Lρ(X,Zk,Λk) with respect toX

This step takes into account the previous estimates of Z and Λ. The
augmented Lagrangian is quadratic in terms of X . As a result, the
solution has an analytical expression that is obtained by setting the
gradient of Lρ(X,Zk,Λk) to zero

Xk+1 = (Sω
>Sω+ρA

>A)−1(S>ωS−A>[Λk+ρ (BZk−C)])

2.2. Minimization of Lρ(Xk+1,Z,Λk) with respect to Z

After removing the terms that are independent of Z, the minimiza-
tion of Lρ(Xk+1,Z,Λk) with respect to Z reduces to solving the
following problem

minZ µ
N∑
k=1

‖zk‖2 + trace(Λ>BZ) + ρ
2
‖AX +BZ −C‖2F

subject to Z � 0

This minimization step can be split intoN problems given the struc-
ture of matricesA andB, one for each row of Z, that is,

minz
1
2
‖z − v‖22 + α‖z‖2 + I(z) (5)

where v = x + ρ−1λ, α = ρ−1µ, λ, x and z correspond to a row
in Λ, X and Z respectively. Problem (5) admits a unique solution,
given by the proximity operator [18] of f(z) = α‖z‖2 + I(z){

z∗ = 0 if ‖(v)+‖2 < α

z∗ =
(
1− α

‖(v)+‖2

)
(v)+ otherwise (6)

where (·)+ = max(0, ·).

2.3. Update of the Lagrange multipliers Λ

Lagrange multiplier update is carried out at the end of each iteration.
Λk+1 represents the running sum of residuals. It gives an insight on
the convergence of the algorithm. As k tends to infinity, the primal
residual tends to zero and Λk+1 converges to the dual optimal point.

Λk+1 = Λk + ρ(AXk+1 +BZk+1 −C). (7)

As suggested in [16], a reasonable stopping criteria is that the primal
and dual residuals must be smaller than some tolerance thresholds,
namely,

‖AXk+1 +BZk+1 −C‖2 ≤ εpri (8)

and
‖ρA>B(Zk+1 −Zk)‖2 ≤ εdual (9)

3. EXPERIMENTAL RESULTS

3.1. Synthetic data

The performance of the proposed approach was first evaluated using
synthetic data. To this end, we extracted 8 endmembers with 420
spectral bands from the USGS library. Using these endmembers, we
created a synthetic data set containing 200 pixels. The abundances
for every simulated pixel were generated based on a Dirichlet distri-
bution with unit parameter, as a consequence of which the resulting
abundances obeyed the non-negativity and sum-to-one constraints.
The data set was then corrupted with additive Gaussian noise.

We applied GLUP using ρ = 1, µ = 1, the tolerances being set
to 10−2. In all the experiments we used Sω = S. Figure 1 shows
the estimated abundance matrix for a SNR of 40 dB. White pixel in-
dicates zero entries of X . Eight rows were identified as abundance
maps, and the corresponding columns in S were identified as the
endmembers. The processing time1 of the algorithm was 1.367 sec-
onds. The performance of GLUP obviously depends on parameter
setting. For example, using smaller values of the tolerances results in
increased accuracy at the expense of a longer processing time. The
regularization parameter affects the sparsity of the solution. Smaller
values of µ may result in a less sparse solution than the one in Fig-
ure 1. In other words, rows that do not correspond to endmember
abundance maps might be different from zero. However, the entries
in these rows are usually negligible. Table 1 compares the perfor-
mance of GLUP, NFINDR and SDSOMP with two SNR levels, 40
and 20 dB respectively. We repeated the simulation 100 times using
the same synthetic data set but with a different noise realization each
time. For each realization, we examined the percentage of endmem-
bers correctly identified. In the case of NFINDR and SDSOMP, this

1Machine specifications: 2.2 GHz Intel Core i7 processor and 8 GB RAM



Grayscale image of estimated abundance matrix X , SNR=40dB.
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Fig. 1. Image of GLUP’s estimated abundance matrix.

Table 1. Percentage of correctly identified endmembers and mean
processing time obtained with M = 8 and 100 realizations.

SNR 40 dB SNR 20 dB
SDSOMP 100 % (0.023 sec) 72.37 % (0.023 sec)
NFINDR 100 % (0.069 sec) 89.75% (0.068 sec)

GLUP 100 % (1.490 sec) 94.12% (3.737 sec)

task is straightforward. In the case of GLUP, the algorithm returns
N candidate abundance maps that can be identified by searching for
non-zero rows. As mentioned previously, some rows belonging to
mixed pixels might be different from zero but negligible (especially
with low SNR). For this reason, we kept the 8 rows with the largest
mean value and then evaluated the percentage of correctly identified
endmembers. For a SNR of 40 dB, the three algorithms were able to
perfectly detect the endmembers in the scene. For a SNR of 20 dB,
the performance of SDSOMP deteriorated because it determines the
endmembers in a sequential way, one at each iteration. This prop-
erty makes the algorithm sensitive to noise. Usually, an incorrect
detection drives the subsequent iterations in a wrong direction. In
addition, the algorithm does not take into account neither the posi-
tivity nor the sum-to-one constraints on the abundances. GLUP was
able to outperform NFINDR and SDSOMP.

3.2. Real data

The performances of the three endmember extraction algorithms
were compared using the Pavia Center data set collected by the
ROSIS spectrometer. Pavia Center image has 1096 × 715 pixels,
with 102 bands over the spectral range 430− 860 nm. We used the
left part of the image, composed of 1096× 492 pixels.

We randomly selected 200 pixels from the image, and we ap-
plied GLUP to this subset. We set the regularization and penalty
parameters to 10 and 1 respectively, the primal and dual tolerances
to 10−2. GLUP detected 6 endmembers. The same subset of pixels
was used to extract the endmembers with NFINDR and SDSOMP.
This time, the number of endmembers was preset to 6 for both al-
gorithms. Using the endmembers extracted by the different meth-
ods, we applied the Fully Constrained Least Squares (FCLS) on the

Table 2. RMSE and average spectral angle obtained with Pavia.

RMSE Avg angle (rad)
SDSOMP 0.1103 0.392
NFINDR 0.0290 0.160

GLUP 0.0198 0.094

whole scene. Table 2 shows the Root Mean Square Error (RMSE)
and the average spectral angle (in radian) between the reconstructed
image and the original one. GLUP was able to provide lower re-
construction errors than NFINDR and SDSOMP in terms of RMSE
and average spectral angle. SDSOMP had the largest values for both
metrics, whereas GLUP scored slightly better values than NFINDR.

Figure 2 gives the abundance maps showing the spatial distribu-
tion of the estimated endmembers. The three algorithms describe the
urban features of the scene as a combination of water, two types of
roof tops, meadows, trees, and shadow. Due to the sequential nature
of SDSOMP, the first endmember detected by this algorithm cap-
tured a dense combination of the materials in the scene rather than
highlighting a specific one. NFINDR and GLUP did not encounter
this problem. They were both able to improve the quality of the end-
members extraction in the sense that the endmembers can be easily
discerned via their respective abundance maps.

4. CONCLUSION

In this paper, we provided a new approach for extracting the end-
members in an hyperspectral scene. We compared the proposed ap-
proach with a geometrical and Matching Pursuit approach, namely,
NFINDR and SDSOMP. The proposed model uses the available ob-
servations, which are possibly noisy, in order to find the endmem-
bers. In future work, we intend to account for the noise present in
the observations while extracting the endmembers.
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Fig. 2. Abundance maps for Pavia center image obtained with, from top to bottom: SDSOMP, NFINDR, GLUP.
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