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Abstract—This paper addresses the problem of blind and
fully constrained unmixing of hyperspectral images. Unmixing is
performed without the use of any dictionary, and assumes that the
number of constituent materials in the scene and their spectral
signatures are unknown. The estimated abundances satisfy the
desired sum-to-one and nonnegativity constraints. Two models
with increasing complexity are developed to achieve this chal-
lenging task, depending on how noise interacts with hyperspectral
data. The first one leads to a convex optimization problem, and is
solved with the Alternating Direction Method of Multipliers. The
second one accounts for signal-dependent noise, and is addressed
with a Reweighted Least Squares algorithm. Experiments on
synthetic and real data demonstrate the effectiveness of our
approach.

I. INTRODUCTION

Hyperspectral imaging is a continuously growing area of
remote sensing, which has received considerable attention in
the last decade. Hyperspectral data provide spectral images
over hundreds of narrow and adjacent bands, coupled with
a high spectral resolution. These characteristics are suitable
for detection and classification of surfaces and chemical ele-
ments in the observed images. Applications include land use
analysis, pollution monitoring, wide-area reconnaissance, and
field surveillance, to cite a few. When unmixing hyperspectral
images [1], two types of pixels can be distinguished: the
pure pixels and the mixed ones. Each pure pixel, also called
endmember, contains the spectral signature of a constituent
material in the scene, whereas a mixed pixel consists of a
mixture of the endmembers. The fraction of each endmember
in a mixed pixel is called abundance. Three consecutive tasks
are usually required for unmixing: determining the number of
endmembers, extracting the spectral signature of the endmem-
bers, and estimating their abundances for every pixel in the
scene. Several algorithms have been proposed to perform each
stage separately. Virtual Dimensionality (VD) [2], followed by
N-FINDR [3] and FCLS [4] is among the most widely used
processing pipeline. Alternative methods jointly perform (part
of) these tasks in order to solve the blind source separation
problem [5]–[8].

In order to introduce our approach, we shall now describe
the noise-free case first. Consider the linear mixing model
where a mixed pixel is expressed as a linear combination of

R. Ammanouil, A. Ferrari, C. Richard and D. Mary are with the La-
grange Laboratory, University of Nice Sophia-Antipolis, CNRS, Côte d’Azur
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the endmembers weighted by their fractional abundances. In
matrix form, we simply have

S̃ = RA (1)

where S̃ = (s̃1, . . . , s̃N ), R = (r1, . . . , rM ), A =
(a1, . . . ,aM )>, and s̃j is the L-dimensional spectrum of the
j-th pixel, L is the number of frequency bands, ri is L-
dimensional spectrum of the i-th endmember, M is the number
of endmembers, ai is the N -dimensional abundance map of
the i-th endmember, and N is the number of pixels in the
image. Model (1) means that the (i, j)-th entry Aij of matrix
A represents the abundance of the endmember ri in pixel
s̃j . The abundances obey the nonnegativity and sum-to-one
constraints: Aij ≥ 0 for all i and j, and

∑M
i=1Aij = 1 for

all j. Note that the tilde over symbols refers to noise-free data
and all vectors are column vectors.

In this study, we shall assume that the endmembers are
unknown but present in the scene, possibly corrupted by noise.
Let ω be a subset of N ′ indexes in {1, . . . , N} that contains
at least the column index of each endmember. Under these
assumptions, and without loss of generality, we observe that
the mixing model (1) can be reformulated as follows

S̃ = S̃ωX (2)

where S̃ω = (s̃ω1 , . . . , s̃ωN′ ) denotes the restriction of S̃ to
its columns indexed by ω, and X = (x1, . . . ,xN ′)

> is the
abundance matrix. Similarly as above, Xij is the abundance
of s̃ωi

in s̃j . On the one hand, if s̃ωi
is an endmember, xi has

non-zero entries and represents the corresponding abundance
map. On the other hand, if s̃ωi is a mixed pixel, xi has all its
elements equal to zero. As a consequence, X admits N ′−M
rows of zeros, the other rows being equal to rows of A. This
means that X allows to identify the endmembers in S̃ through
its non-zero rows, which is an interesting property to be
exploited in the case where the endmembers are unknown. Let
us now turn to the more realistic situation where some noise
corrupts the observations. In this case, model (2) becomes

S = S̃ +E = S̃ωX +E (3)

where S denotes the available data, and E is the noise
supposed to be additive.

The aim of this paper is to derive two unmixing approaches
with increasing complexity, depending on how noise is to
be handled. These methods are blind in the sense that the
endmembers and their cardinality are unknown. The first one
considers the approximate model

S ≈ SωX +E (4)
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compared to (3), we thus assume that noise does not dramat-
ically affect the factorization of the mixing process, which
is valid for very high signal-to-noise ratio (SNR). With this
approach, we shall look for a few columns of Sω that can
effectively represent the whole scene. This strategy subserves a
blind and self-dependent framework. It departs from methods
based on a preselected dictionary of endmembers estimated
from other experimental conditions, and thus do not accurately
represent the endmembers in R. In order to estimate the
abundance matrix X , we use prior information. First, we
impose that the estimated abundances obey the non-negativity
and sum-to-one constraints, namely, Xij ≥ 0 for all (i, j), and∑N
i=1Xij = 1 for all j. In addition, as discussed above, the

algorithm has to force rows of X to be zero vectors in order to
identify the endmembers. Because the locations and the cardi-
nality of the endmembers are unknown, the set of candidates
has to be sufficiently large, that is, N ′ �M . We thus expect
many rows in X to be equal to zero. To promote this effect,
the so-called Group Lasso `2,1-norm regularization can be
employed [9]. Because model (4) is a poor approximation of
model (3) as the noise power increases, we shall also propose
an alternative strategy to solve the unmixing problem based
on the exact model (3). The first approach leads to a convex
optimization problem that can be solved with the Alternating
Direction Method of Multipliers (ADMM) [10]. The second
one takes the noise in Sω into account, which results in a non-
convex and heteroscedastic optimization problem. The latter
will be solved with an Iterative Reweighted Least Squares
(IRLS) algorithm.

To the best of our knowledge, this work is the first that
proposes to solve the noisy problem (3). Few models similar to
the approximate model (4) have been studied in the literature
[11]–[14]. These last four works assume that Sω is noise-
free. Moreover, in [11], the authors use an `1,∞-norm instead
of the `2,1-norm regularization , and incorporate an additional
`1-norm instead of the unit-sum constraint considered here. In
[12], the authors derive a Matching Pursuit approach [15] in
order to estimate the endmembers . With this greedy approach,
neither the positivity, nor the sum-to-one constraints, are taken
into account. A similar technique is considered in [13], but the
authors do not assume that the endmembers are present in the
scene and use a predefined dictionary. In their recent work
[14], the authors of [13] apply model (4) in order to extract
the endmembers from the observations.

The rest of this paper is organized as follows. Sections II and
III respectively describe the unmixing models (4) and (3), and
the corresponding estimation methods. Section IV provides
experimental results on synthetic and real data. Finally, Section
V concludes this paper.

II. GROUP LASSO WITH UNIT SUM AND POSITIVITY
CONSTRAINTS (GLUP)

A. Model description

The aim of this section is to derive the estimation method
for model (4), and finally define each step of the ADMM that
is performed to get the solution. With this approximate model,
we assume that the noise E is Gaussian independent and

identically distributed, with zero mean and possibly unknown
variance σ2, that is, Eki ∼ N (0, σ2). The negative log-
likelihood for model (4) is given by

L(X) =
NL

2
log(2π)+

NL

2
log(σ2)+

1

2σ2
‖S−SωX‖2F (5)

The Maximum Likelihood (ML) estimate, namely, the min-
imizer of L(X), is the solution of the Least Squares (LS)
approximation problem minX ‖S−SωX‖2F . Since model (4)
follows from an approximation of model (3), the relevance
of this LS fidelity term is essentially to ensure that SωX
matches S. The unmixing problem under investigation, how-
ever, requires that X only has a few rows different from zero,
in addition to the non-negativity and sum-to-one constraints.
This leads to following convex optimization problem

minX
1
2‖S − SωX‖

2
F + µ

∑N
k=1 ‖xk‖2

subject to Xij ≥ 0 ∀ i, j∑N
i=1Xij = 1 ∀ j

(6)

with µ ≥ 0 a regularization parameter and xk the k-th row
of X . The Group Lasso regularization term induces sparsity
in the estimated abundance matrix at the group level [9], by
possibly driving several rows xk of X to zero. It is worth
noting that when µ = 0 and Sω = S, the identity matrix is
a solution of problem (6). This solution may not be unique
depending on S. It follows that the efficiency of our approach
relies on the `2,1-norm regularization function.

B. ADMM algorithm
The solution of problem (6) can be obtained in a simple and

flexible manner using the ADMM algorithm [10]. We consider
the canonical form

minX,Z
1
2‖S − SωX‖

2
F + µ

∑N
k=1 ‖zk‖2 + I(Z)

subject to AX +BZ = C
(7)

with

A =

(
I
1>

)
, B =

(
−I
0>

)
, C =

(
0
1>

)
,

where I is the indicator of the positive orthant guarantying
the positivity constraint, that is, I(Z) = 0 if Z � 0 and +∞
otherwise. The equality constraint AX +BZ = C imposes
the consensus X = Z and the sum-to-one constraint. Note
that defining the constraint matrices differently, in particular
setting A = I , B = −I , and C = 0 allows to relax the sum-
to-one constraint. In matrix form, the augmented Lagrangian
for problem (7) is given by [16]

Lρ(X,Z,Λ) =
1

2
‖S − SωX‖2F + µ

N∑
k=1

‖zk‖2 + I(Z)

+ trace(Λ>(AX +BZ −C)) +
ρ

2
‖AX +BZ −C‖2F

where Λ is the matrix of Lagrange multipliers, µ and ρ are
positive regularization and penalty parameters, respectively.
The flexibility of the ADMM lies in the fact that it splits
the initial variable X into two variables, X and Z, and
equivalently the initial problem into two subproblems. At
iteration k + 1, the ADMM algorithm is outlined by three
sequential steps.
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1) Minimization of Lρ(X,Zk,Λk) with respect to X:
This step takes into account the previous estimates of Z and
Λ. The augmented Lagrangian is quadratic in terms of X .
As a result, the solution has an analytical expression that is
obtained by setting the gradient of Lρ(X,Zk,Λk) to zero:

Xk+1 = (Sω
>Sω + ρA>A)−1

(S>ωS −A
>[Λk + ρ (BZk −C)]).

(8)

2) Minimization of Lρ(Xk+1,Z,Λk) with respect to Z:
After discarding the terms that are independent of Z, the
minimization of Lρ(Xk+1,Z,Λk) with respect to Z reduces
to solving the following problem:

minZ µ
∑N
k=1 ‖zk‖2 + trace(Λ>BZ)

+ρ
2‖AX +BZ −C‖2F

subject to Z � 0.

(9)

This minimization step can be split into N problems given the
structure of matrices A and B, one for each row of Z, that
is,

minz
1
2‖z − v‖

2
2 + α‖z‖2 + I(z) (10)

where v = x + ρ−1λ, α = ρ−1µ. Vectors λ, x and z
correspond to a given row of Λ, X and Z, respectively. The
minimization problem (10) admits a unique solution given by
the proximity operator [17] of f(z) = α‖z‖2 + I(z):{

z∗ = 0 if ‖(v)+‖2 < α

z∗ =
(
1− α

‖(v)+‖2

)
(v)+ otherwise (11)

where (·)+ = max(0, ·). On the one hand, the proximity
operator of f1(z) = α‖z‖2 is the Multidimensional Shrinkage
Thresholding Operator (MiSTO) [18]. On the other hand, the
proximity operator of the indicator function f2(z) = I(z) is
the projection onto the positive orthant. The proximity operator
of f(z) in (11), that we refer to as Positively constrained
MiSTO, is an extension of both previous operators. The
solution is of the form proxf = proxf1 ◦ proxf2 , that is, the
thresholding of the projection. Operator (11) was recently used
in [19]. The derivation of this operator can be found in the
Appendix.

3) Update of the Lagrange multipliers Λ: Update of the
Lagrange multipliers is carried out at the end of each iteration.
Λk+1 represents the running sum of residuals. It gives an
insight on the convergence of the algorithm. As k tends to
infinity, the primal residual tends to zero and Λk+1 converges
to the dual optimal point.

Λk+1 = Λk + ρ(AXk+1 +BZk+1 −C). (12)

As suggested in [10], a reasonable stopping criteria is that the
primal and dual residuals must be smaller than some tolerance
thresholds, namely,

‖AXk+1 +BZk+1 −C‖2 ≤ εpri

‖ρA>B(Zk+1 −Zk)‖2 ≤ εdual.
(13)

The pseudocode for the so-called GLUP method is provided
by Algorithm 1. It is worth emphasizing that the main differ-
ence between the ADMM steps developed in GLUP and those
in [13] arises in the ADMM variable splitting. The global

problem in [13] is decomposed into three subproblems: the
least squares minimization, the Group Lasso regularization,
and projection on the positive orthant. A consequence is that
three ADMM variables are used instead of two, which leads
to additional steps. In addition, the sum-to-one constraint is
not considered in [13].

Algorithm 1 : X = GLUP(S,Sω, ρ, µ)

1: Precompute A, B, and C
2: Initialize Z = 0 and Λ = 0
3: Q = (Sω

>Sω + ρA>A)−1

4: while ‖R‖2 ≥ εpri or ‖P ‖2 ≥ εdual do
5: X = Q(S>ωS −A

>(Λ + ρ [BZ −C]))
6: Zold = Z
7: for i = 1 · · ·N ′ do
8: vi = ((xi)

> + ρ−1λi)+
9: if ‖vi‖2 < ρ−1µ then

10: zi = 0
11: else
12: zi =

(
1− µ

ρ‖vi‖2

)
vi

13: end if
14: end for
15: R = AX +BZ −C
16: P = ρAB(Z −Zold)
17: Λ = Λ + ρ(AX +BZ −C)
18: end while

III. REDUCED NOISE FOR GROUP LASSO WITH UNIT SUM
AND POSITIVITY CONSTRAINTS (NGLUP)

A. Model description

We now turn to the more realistic model (3). Let Eω and Iω
be the L-by-N ′ and N -by-N ′ restrictions of E and I to the
columns indexed by ω, respectively. The noisy mixing model
(3) is given by

S = (Sω −Eω)X +E = SωX +E(I − IωX). (14)

This model belongs to the family of heteroscedastic regression
[20], where the variance of the additive noise depends on X .
Let us define the matrix C(X) as

C(X) = (I − IωX)>(I − IωX). (15)

It follows that

vec(E(I − IωX)) ∼ N (0, σ2C(X)⊗ I) (16)

where ⊗ represents the Kronecker product of matrices, and
vec(·) is the operator that stacks the columns of a matrix on
top of each other. The presence of X in the expression of the
noise variance expression has consequences on the negative
log-likelihood of model (14), which no longer leads to the LS
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approximation problem

L(X, σ2) =
1

2
log |σ2C(X)⊗ I|

+
1

2
vec(S − SωX)>(σ2C(X)⊗ I)−1vec(S − SωX)

=
L

2
log |σ2C(X)|

+
1

2
trace((S − SωX)(σ2C(X))−1(S − SωX)>)

=
L

2
log |σ2C(X)|+ 1

2
‖S − SωX‖2(σ2C(X))−1

(17)

The ML estimate for problem (17) with the Group Lasso
regularization, nonnegativity and sum-to-one constraints yields
the following constrained optimization problem

minX,σ2
L
2 log |σ2C(X)|+ 1

2‖S − SωX‖
2
(σ2C(X))−1

+µ
∑N
k=1 ‖xk‖2

subject to Xij ≥ 0 ∀ i, j∑N
i=1Xij = 1 ∀ j

(18)

B. Alternating ADMM algorithm

Problem (18) is not convex and requires the estimation of
σ2. The second term in the objective function is closely related
to Iteratively Reweighted Least Squares (IRLS) algorithms
used as a solution in heteroscedastic models [21]. Note that,
in IRLS algorithms, (S − SωX) in equation (17) is usually
substituted by (S−SωX)>. This has consequences on the X
minimization step. In IRLS, the estimation process is carried
out in two steps. The first step consists of updating weights,
which are usually set to be inversely proportional to variances.
The second step is the calculation of the LS estimator using
the updated weights. Many strategies can be used to estimate
the variances for the weight matrix, see for example [20], [22],
[23].

The resolution of problem (18) with respect to σ2 for fixed
X gives

σ2(X) =
1

NL
trace((S − SωX)C(X)−1(S − SωX)>).

(19)
Let W (X) = σ2(X)C(X) denote the weight matrix of the
least squares term in (18). To solve problem (18) with respect
to σ2 and X , we propose to proceed iteratively. Let Xk be
the solution of the previous iteration. The first step consists
of calculating W (Xk) using equations (15) and (19). In the
second step, this updated weight matrix is used to estimate
Xk+1 as follows

minX
1
2‖S − SωX‖

2
(W k)−1 + µ

∑N
k=1 ‖xk‖2

subject to Xij ≥ 0 ∀ i, j∑N
i=1Xij = 1 ∀ j

(20)

where W k =W (Xk). Given W k, problem (20) reduces to
a weighted version of GLUP (6) due to the weighted norm
in the first term. The ADMM solution developed in section
II can be adapted to solve the optimization problem (20).
Minimizing the augmented Lagrangian with respect to Z, and

updating the Lagrange multipliers, can by carried out exactly
as in Section II. For concision, only the X-minimization step
is described hereafter.

Minimization of Lρ(X,Zk,Λk) with respect to X: Omit-
ting the terms that do not depend on X , the minimization of
the augmented Lagrangian Lρ(X,Zk,Λk) with respect to X
leads to

min
X

1

2
‖S − SωX‖2(W k)−1

+ trace(Λ>(AX)) +
ρ

2
‖AX +BZ −C‖2F.

(21)

Problem (21) is quadratic in X and admits an analytical
solution obtained by setting the gradient to zero. This amounts
to solving the Sylvester equation [24], which has an analytic
solution

S>ωSωX(W k)−1 + ρA>AX

= S>ωS(W
k)−1 − ρA>

(
BZk −C +

Λk

ρ

)
.

(22)

Problem (18) is not convex. An alternating optimization
algorithm is more likely to converge to local minima with
worse accuracy than the convex version. For this reason, we
suggest, as a warm start, to initialize NGLUP with GLUP
estimate. Algorithm 2 provides the pseudocode for NGLUP.
The algorithm contains two main loops. The inner loop aims
at finding the solution of problem (20), whereas the outer loop
updates the least-square weight matrix.

Algorithm 2 : X = NGLUP(S,Sω, ρ◦, µ◦, ρ, µ)
1: Precompute A, B, and C
2: Initialize X = GLUP(S,Sω, ρ◦, µ◦), Z =X , Λ = 0
3: while ‖X −Xold‖2 ≥ εtol do
4: C(X) = (I − IωX)>(I − IωX)
5: σ2(X) = 1

NL trace((S−SωX)C(X)−1(S−SωX)>)
6: W (X) = σ2(X)C(X)
7: Xold =X , J = 1
8: while (‖R‖2 ≥ εpri or ‖P ‖2 ≥ εdual) and (J ≤ Jmax)

do
9: X = solution of Sylvester equation (22)

10: Zold = Z
11: for i = 1 · · ·N ′ do
12: vi = ((xi)

> + ρ−1λi)+
13: if ‖vi‖2 < ρ−1µ then
14: zi = 0
15: else
16: zi =

(
1− µ

ρ‖vi‖2

)
vi

17: end if
18: end for
19: R = AX +BZ −C
20: P = ρAB(Z −Zold)
21: Λ = Λ + ρ(AX +BZ −C)
22: J = J + 1
23: end while
24: end while



5

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency band number

R
e
fl
e
c
t
a
n
c
e

Fig. 1. Reflectance of selected endmembers from the USGS Library.

TABLE I
PROBABILITY OF DETECTING M̂ ENDMEMBERS, USING SYNTHETIC DATA

GENERATED WITH M = 7 ENDMEMBERS.

M 2 3 6 7 8 9
GLUP

(30 dB) 0 0 0 1 0 0
NGLUP
(30 dB) 0 0 0 0.98 0.02 0

VD
(30 dB) 0.79 0.21 0 0 0 0
GLUP

(20 dB) 0 0 0 0.71 0.02 0.27
NGLUP
( 20 dB) 0 0 0.01 0.96 0.03 0

VD
(20 dB) 1 0 0 0 0 0

IV. EXPERIMENTAL RESULTS

A. Synthetic Data

The performances of GLUP and NGLUP were evaluated
using synthetic data. We used eight endmembers with 420
spectral samples extracted from the USGS library. Figure 1
shows the reflectance of the endmembers. The spectral mutual
coherence between two spectra is defined as θij =

〈si,sj〉
‖si‖‖sj‖ .

The maximum mutual coherence of the eight endmembers was
θmax = 0.9940. The abundances were generated based on a
Dirichlet distribution with unit parameter, as a consequence
of which the resulting abundances obeyed the non-negativity
and sum-to-one constraint, and were uniformly distributed over
this simplex. This model is widely used to generate synthetic
abundance maps [25]–[27].

First, we used three endmembers to generate an hyperspec-
tral data set containing N = 100 (resp. 500) pixels with a
SNR of 50 dB. The pure pixels were indexed by integers 1–
3 for simplicity, the mixed pixels being indexed by integers
4–100 (resp. 4–500). We ran GLUP algorithm using all the
observations (Sω = S) with µ = 10 and ρ = 100. The primal
and dual tolerances were set to 10−5. The first row of Figure
2 shows the mean of each row xk of the estimated abundance
matrices X̂ . We observe that the first three pixels in Figures 2
(a) and (b) can be identified as the endmembers since the mean
values of the first three rows are clearly different from zero.
The second row of Figure 2 shows the projection of the data
onto the space spanned by the first two PCA axes. Blue stars
indicate the data points, and red squares indicate the points that
had a non-zero row in X̂ , namely, those that were identified
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Fig. 2. First row: Mean value of each row of X̂ estimated with GLUP,
obtained with (a) N = 100 and (b) N = 500 pixels with SNR = 50 dB.
Second row: 2D data projection and GLUP estimated endmembers obtained
with (c) N = 100 and (d) N = 500 pixels.

as the endmembers. We can see from Figures 2 (c) and (d)
that the red squares correspond to the vertices of the simplex
enclosing all the data points. GLUP provided the results in
4.73 (resp. 138.59) seconds1 with a Root Mean Square Error
(RMSE), defined as 1

N2 ‖X̂ − X‖2F, equal to 0.0049 (resp.,
0.0097) for N = 100 (resp., N = 500).

We tested NGLUP in less favorable conditions by increasing
the number of endmembers and decreasing the SNR. To this
end, 7 endmembers were used to generate 93 (resp. 493)
mixed pixels. The pure pixels were indexed by integers 1–7.
Data points were corrupted with an additive Gaussian noise,
corresponding to a SNR of 20 dB. We tested the algorithm for
a maximum number of inner iterations Jmax = 1, 10 and 100.
We found that NGLUP converged to the same solution even
when the number of inner iterations J was equal to 1. For this
reason, only one inner iteration per outer iteration was used for
the rest of the experiments. The running time of the algorithm
was 77 seconds (resp. 45 min). The first row of Figure 3 shows
the mean value of each row xk of the abundance matrix X̂
estimated by GLUP for (a) N = 100 and (b) N = 500 pixels.
The second row of Figure 3 shows the mean value of each
row xk of the abundance matrix X̂ estimated by NGLUP
for (a) N = 100 and (b) N = 500 pixels. The 7 largest
mean values correspond to the 7 endmembers. As expected,
NGLUP converged to a sparser and more accurate solution
than GLUP. We observed that similar results can be obtained
with approximately sparse mixtures of the endmembers. This
scenario can be simulated by setting the scale parameter of
the Dirichlet distribution to some positive value smaller than
one.

We repeated the previous simulation with N = 100 pixels
100 times. For each realization, we examined the number
of mean values of the rows of X̂ that were larger than a
predefined threshold equal to 0.01. We considered this value

1Machine specifications: 2.2 GHz Intel Core i7 processor and 8 GB RAM
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Second row: Mean value of each row of X̂ estimated with NGLUP, obtained
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Fig. 4. Endmembers estimated by GLUP, VCA, NFINDR, and SDSOMP
when the data contains an outlier.

M̂ as the estimated number of endmembers in the scene.
Table I provides the probability of detecting M̂ endmembers
with our two approaches, given synthetic data generated with
M = 7 endmembers. The same task was performed using
Virtual Dimensionality (VD) [2]. We compared the results
of NGLUP with those of VD, the probability of false alarm
of VD being set to 10−3. Table I shows that NGLUP was
able to identify the presence of 7 endmembers in 98% (resp.,
96%) of the cases with an SNR of 30 dB (resp. 20 dB).
VD only identified 2 endmembers in most cases. Even with
higher values of the SNR, VD did not identify the correct
number of endmembers. This is due to the fact that VD has
asymptotic convergence, and thus requires a very large number
of observations in order to converge. This explains the poor
performance of VD compared to NGLUP.

Finally, we compared the performance of the proposed
approach with 3 endmember extraction algorithms, namely,
NFINDR [3], VCA [25], and SDSOMP [12]. In particular,
we considered the case where an outlier is present among the

observations. In real data, an outlier usually corresponds to
bad sensor measurements. To this end, 3 endmembers were
used to generate 500 mixed pixels. The 3 endmembers as
well as an additional spectra, the outlier, were inserted among
the observations. Figure 4 shows the 2D data projection after
performing 2-dimensional PCA. The outlier can be determined
by visual inspection as it is the only point outside the simplex.
GLUP found 3 endmembers denoted by green stars. We can
see that they correspond to the 3 vertices of the simplex,
thus to the true endmembers. On the other hand, with VCA,
NFINDR and SDSOMP, the number of endmembers to find
was explicitly set to 3. The three algorithms detected 2 end-
members over 3, and the outlier instead of the third one. This
advantage over geometrical and greedy approaches is related
to the formulation of endmember extraction as a penalized
optimization problem.

B. Real data: Cuprite

In this section, we shall evaluate the performance of
NGLUP using real hyperspectral data. The tests were per-
formed on the so-called images of Cuprite, provided by
NASA’s sensor AVIRIS. The scene has been captured over a
mining district in southern Nevada. The relatively low spatial
resolution of the measurements makes this data particularly
interesting to test unmixing algorithms. The spatial resolution
is about 17 meters. Originally, the images were collected with
224 spectral bands over the wavelength interval 400−2500 nm.
After removing the water absorption bands (1− 2, 105− 115,
150−170, and 223−224), 188 bands were left for the analysis.
The image we use for the experiments is a subset of 250×191
pixels, that is, a total of 475000 pixels.

Typically, S should contain all the available observations,
that is, N = 47750. In order to alleviate the computational
burden, we selected a subset of samples from the original
scene. The sampling strategy must guarantee the presence of
the endmembers among the selected candidates. To perform
this task, we initialized S with the whole observations. Next,
we computed the mutual coherence between all pairs of can-
didates. First, the pair with the largest mutual coherence was
identified, and one of the two spectra was randomly discarded.
The process was repeated until 300 spectra were left in S. As
shown by the experimental results provided hereafter, this led
to a subset of samples sufficiently representative of the original
data to identify the endmembers. Following this strategy, the
mutual coherence in the case of Cuprite was reduced from
1 (with N = 47750) to 0.9996 (with N = 300). Another
advantage of this strategy is that reducing the coherence of
the dictionary, which is the set of available data in our case,
improves the performance of the `1 penalized algorithm [28],
[29]. Other algorithms should be used to perform this task,
for example K-means clustering with an angle constraint as
in [11]. However, we found this sampling strategy efficient in
our experiments.

We applied GLUP and NGLUP (with S = Sω) successively
using the subset of pixels, the penalty parameter µ being set
to 1 and 10000 respectively. With this setting, we obtained
11 non-zero means in the estimated abundance matrix, that
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TABLE II
RECONSTRUCTION QUALITY OF CUPRITE USING NGLUP, N-FINDR,

AND VCA WITH FCLS.

Algorithm RMSE avg angle max angle

NGLUP (N=300) 0.0075 1.115◦ 4.679◦

N-FINDR (N=300) 0.0115 1.583◦ 9.286◦

N-FINDR (N=47750) 0.0095 1.400◦ 7.626◦

VCA (N=300) 0.0120 1.289◦ 7.450◦

VCA (N=47750) 0.0062 0.855◦ 8.020◦

is, 11 endmembers. We also extracted the endmembers using
NFINDR and VCA, the number of endmembers being set to
11. Given that VCA and NFINDR have lower computational
complexity, we applied them on the subset of pixels and on
the whole image. Figure 5 shows the identified endmembers
in each case. It is worth noting that NGLUP was able to
identify the endmembers without any prior knowledge on their
number. In Figure 6, we compare 6 of the spectra estimated
by NGLUP with those estimated by NFINDR when the latter
is applied on the whole scene. It can be observed that the 6
spectra correspond to some of the major minerals present in
the scene: Sphene, Kaolinite, Muscovite, Alunite, Dumortierite
[25]. Figure 7 shows the corresponding abundance maps
estimated by FCLS, the endmembers being those estimated
by NGLUP. Finally, Table II shows the reconstruction error of
the original image. In particular, we report the RMSE, average
and maximum spectral angles. Let θi be the spectral angle
between the i-th original spectrum si and its reconstructed
version ŝi defined as θi = acos( <si,ŝi>

‖si‖‖ŝi‖ ). The maximum and
average reconstruction angles are given by θmax = max

i=1···N
(θi),

and θavg = 1
N

∑N
i=1 θi respectively.

When the three algorithms were applied with the sampled
subset, NGLUP always had better scores. When VCA and
NFINDR were applied over the whole scene, NGLUP slightly
outperformed NFINDR and had comparable performance to
VCA.

V. CONCLUSION AND PERSPECTIVES

In this work, we presented two approaches for blind and
fully constrained unmixing. Both methods are based on mixing
models with increasing complexity, and allow to simulta-
neously determine the endmembers and estimate their local
abundance in the scene. Compared to the first model called
GLUP, the second model NGLUP explicitly considers that
endmembers present in the scene are corrupted by noise.
Experiments on synthetic and real data demonstrated the ex-
cellent performance of both approaches. Future work includes
their extension to an online framework, which should allow
to reduce their complexity and to make them adaptive to
changing environmental conditions.

APPENDIX

Proof: Since problem (11) is convex, we simply have to
check the validity of the solution in the two cases ‖(v)+‖2 >
α and ‖(v)+‖2 < α. Let f0(z) = 1

2‖z − v‖
2
2 + α‖z‖2. For

‖(v)+‖2 > α, the gradient of f0 is given by

∇f0(z∗) =
(
1 +

α

‖z∗‖2

)
z∗ − v. (23)

Replacing by the appropriate expression from (11) yields

∇f0(z∗) = (v)+ − v ≥ 0 (24)
z∗i · ∇f0(z∗)i ∝ ((v)+)i · ((v)+ − v)i = 0. (25)

These two conditions correspond the optimality conditions,
which means that z � 0 is a solution for the constrained
problem. For more details, refer to section 4.2.3 in [30].

For the second case, note that for every z � 0, we have∑
i

zivi ≤
∑
i

zi(vi)+ ≤ ‖z‖2 · ‖(v)+‖2. (26)

It follows that

f0(z)− f0(0) =
1

2

∑
i

z2i −
∑
i

zivi + α‖z‖2

≥ 1

2
‖z‖22 − ‖z‖2 · ‖(v)+‖2 + α‖z‖2

≥ 1

2
‖z‖22 + ‖z‖2(α− ‖(v)+‖2).

(27)

This proves that for ‖(v)+‖2 ≤ α, the minimum is reached
for z∗ = 0.
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Fig. 5. Estimated endmembers obtained with (a) NGLUP with 300 samples (b) NFINDR with 300 samples (c) NFINDR with all samples (d) VCA with
300 samples (e) VCA with all samples.
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Fig. 6. Comparison between six endmembers’ spectra estimated by NGLUP and by NFINDR when applied on the whole AVIRIS scene of Cuprite.
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